
General Recursion and Formal Topology

Claudio Sacerdoti Coen
Dip. Computer Science
Universisità di Bologna

sacerdot@cs.unbo.it and Silvio Valentini
Dip. Matematica Pura e Appl.

Università di Padova
silvio@math.unipd.it

Abstract

It is well known that general recursion cannot be expressed within Martin-Löf’s type
theory and various approaches have been proposed to overcome this problem still main-
taining the termination of the computation of the typable terms. In this work we propose a
new approach to this problem based on the use of inductively generated formal topologies.

1 Introduction

Martin-Löf’s type theory is at the same time a functional programming language and a rich
specification language which allows the definition of a full intuitionistic logical calculus since it
adheres to the proposition as types paradigm (see [ML84]).

However, in order to ensure the termination of the computation of every well typed program,
it does not allow general recursion and hence it does not permit to program in a natural
functional style (see [Hug84]).

On the other hand, each set is defined inductively and hence it is provided with a recursion
rule which allows the definition of programs by pattern matching on the possible shapes of an
element of that set. This feature, together with the presence of cartesian products and function
space, turns type theory into a very flexible programming environment where programs can be
developed together with the proof of their correctness while termination follows as a corollary
of the head normal form theorem (see [BV92]).

In order to solve the problem of the lack of general recursion still maintaining the property of
the termination of every well typed program many solutions have been proposed starting from
the first suggestions by Peter Aczel of using an accessibility predicate in [Acz77], the work by
Bengt Nordström where the use of a general recursion operator on well ordered set is proposed
(see [Nor88]), till the more recent papers by Ana Bove and Venanzio Capretta which suggest
to use an ad hoc accessibility predicate (see [BC05]).

In this paper we want to propose a slightly different approach based on the use of inductively
generated formal topologies that we are going to recall in the next section. Indeed, we think
that this approach, even if it is just a variation of the one of Nordström and it is less flexible
than the one of Bove and Capretta, is offering a much better possibility for further development
since it is not just a solution for a specific problem but it is part of a much deeper mathematical
theory: we will give some suggestions of these possibilities in the concluding section 5.

Finally, we also show that for the special class of inductively generated formal topologies
that we need for general recursion, it is possible to provide not only an induction principle,
but also a recursion principle for the representation of the ad-hoc accessibility predicate of
Bove and Capretta. Thus, as for a variant of the Bove-Capretta method, the witnesses of the
accessibility predicate have no concrete computational use and code extraction yields exactly
the same general recursive function that one would write in a functional programming language.

72 E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 72–83

sacerdot@cs.unbo.it
silvio@math.unipd.it

General Recursion and Formal Topology Sacerdoti Coen and Valentini

2 Inductively Generated Formal Topology

We are going to recall here only the main definitions on inductively generated formal topologies
and the results that we need in the following (for a more detail account on the topic the reader
is invited to refer to [CSSV, Val06]).

Definition 2.1 (Inductively generated formal topology). An inductively generated formal
topology is a triple (A, I, C) such that A is a set, I(a) is a set (of indexes) for any a ∈ A
and C(a, i) is a subset of A for any a ∈ A and i ∈ I(a).

In the following we will say that the couple I(−), C(−,−) is an axiom-set for the inductively
generated formal topology (A, I, C).

The name of inductively generated formal topology for the triple above is due to the fact
that in any inductively generated formal topology (A, I, C) it is possible to define an infinitary
relation, namely, the formal cover relation C, by using the following inductive rules1

(reflexivity)
h : a ∈ U

refl(a, h) : a C U
(infinity)

i : I(a) k : (∀y ∈ C(a, i)) y C U

inf(a, i, k) : a C U

and the most direct mathematical interpretation for the elements of A and the formal cover
relation is respectively into the open subsets of a topological space and its coverage relation.
Indeed, in this case, one immediately obtains that if a C U holds then the interpretation of a
is covered by the open set determined by the union of the open subsets where the elements of
U are interpreted provided the interpretation satisfies the axioms, namely, for any a ∈ A and
i : I(a), the interpretation of a is covered by the interpretation of C(a, i) (in fact, not only this
interpretation is valid, but it is possible to prove that it is also complete when it is considered
a countable number of axioms, see [Val06]).

The previous introduction rules allow an immediate definition of a recursion operator on
the proof terms of the set a C U . However, to keep the notation simpler we will write the rule
without the proof-terms2 (a complete formalization in the Matita proof assistant can be found
in [Sac10], based on [Tas10]).

(cover-induction)
a C U

[x ∈ U]
...

P (x)

[i : I(x), (∀y ∈ C(x, i)) P (y)]
...

P (x)

P (a)

For instance, this rule allows to prove the following theorem (see [CSSV]).

Theorem 2.2. Let (A, I, C) be an inductively generated formal topology and C its cover rela-
tion. Then the following conditions are admissible.

(axiom cond.)
i ∈ I(a)

a C C(a, i)
(transitivity)

a C U (∀u ∈ U) u C V

a C V

1It is worth noting that we are defining what does it mean to be covered by U and hence the subset U is not
required to appear in the proof term.

2A stronger version of the induction principle, where in the second minor premise the assumption is substi-
tuted by i : I(x), k : (∀y ∈ C(x, i)) (y C U) → P (y) wuold also be valid. However, the simplified one that we
propose here will be sufficient to grasp the ideas in the rest of the paper.

73

General Recursion and Formal Topology Sacerdoti Coen and Valentini

Proof. The axiom condition is straightforward since by reflexivity we have that, for any
y ∈ C(a, i), y C C(a, i) holds and hence the result follows by infinity.

On the other hand transitivity requires a proof by induction on the length of the derivation
of a C U , namely, cover-induction has to be used. Now, if a C U is generated by reflexivity
because a ∈ U then a C V follows by logic since we are assuming that, for all u ∈ U , u C V .
On the other hand, if a C U is generated by infinity because there exists some i ∈ I(a) such
that, for all y ∈ C(a, i), y C U , then by inductive hypothesis, y C V and hence we can conclude
a C V by infinity.

Besides the previous result, we are going to use only another theorem on a particular class of
inductively generated formal topologies, namely, singleton inductively generated formal topology,
that is, an inductively generated formal topology such that, for each a ∈ A, there is exactly
one axiom, namely, the set of indexes I(a) is a singleton. From now on, we will deal only
with singleton inductively generated formal topologies and this is the reason why, for sake of a
simpler notation, we will just omit any reference to the set of the indexes and its elements and
we will say that (A,C) is a singleton inductively generated formal topology if A is a set, and
C(a) is a subset of A for any a ∈ A. Of course, also the rules to generate the cover relation are
simplified in the obvious way, that is,

(reflexivity)
h : a ∈ U

refl(a, h) : a C U
(infinity)

k : (∀y ∈ C(a)) y C U

inf(a, k) : a C U

Theorem 2.3. Let (A,C) be a singleton inductively generated formal topology. Then, if a C ∅
then a 6∈ C(a).

Proof. The proof is by induction on the derivation of a C ∅. Now, a C ∅ if and only if,
for all y ∈ C(a), y C ∅. Hence, by inductive hypothesis, a C ∅ yields that, for all y ∈ C(a),
y 6∈ C(y). Assume now that a ∈ C(a). Then, we get a 6∈ C(a) by logic and hence we can
conclude a 6∈ C(a) by discharging the assumption.

3 General Recursion and Formal Topologies

Now, let us show how singleton inductively generated formal topologies can help in representing
terminating general recursion in Martin-Löf’s type theory . To begin with we need to illustrate
the relation between ordered sets and formal topologies.

3.1 Ordered Sets and Unary Formal Topologies

In this section we want to show that inductively generated formal topologies allow to express
relevant properties of ordered sets. To this aim let us begin with the following inductive
definition.

Definition 3.1 (R-foundation). Let A be a set and R be an order relation on elements of A.
Then an element a ∈ A is R-founded if and only if ¬aRa and, for all x ∈ A, if aRx then x is
R-founded.

Let us consider now any singleton inductively generated formal topology (A,C) on the set
A. Then we have that3

a C U iff (a ∈ U) or (∀x ∈ C(a)) x C U

3One can consider the inductive rules for the definition of a singleton inductively generated formal topology
as an equation whose unknown is the set of the elements covered by U ; for a general solution of the inductive
equation defining a cover relation in the case of inductively generated formal topologies see [Val07].

74

General Recursion and Formal Topology Sacerdoti Coen and Valentini

Thus, if we instantiate U to the empty set we obtain both that

a C ∅ iff (∀x ∈ C(a)) x C ∅

and, by Theorem 2.3, that a 6∈ C(a).
So, if (A,R) is an ordered set and C(a) ≡ {x ∈ A | aRx} we arrive at the following statement

(for a deeper analysis of the situation and a complete proof of the next theorem showing the
connection between inductively generated formal topologies and the tree set in [NPS90] the
reader is invited to look at [Val07, Val10]).

Theorem 3.2. Let (A,R) be an ordered set and put, for any x ∈ A, CR(x) ≡ {y ∈ A | xRy}.
Now, suppose that a is an element of A, then a is R-founded if and only if a CR ∅ in the
singleton inductively generated formal topology (A,CR).

3.2 Implementing Terminating General Recursion

The general shape of a functional program f on elements of a domain A that uses simple general
recursion — that is, recursive nested calls are not allowed, the recursively defined function is
always fully applied and never passed to higher order functions, see [BC05] — can be represented
as

f(x1) = g1(f(d1,1(x1)), . . . , f(d1,n1(x1)))
. . .
f(xk) = gk(f(dk,1(xk)), . . . , f(dk,nk

(xk)))

where x1, . . . , xk are all the disjoint possible shapes of the elements of A.
So the computation of f on an element of A gives rise to a finitary computation tree which

can be either finite or not.
Thus, we are naturally led to define an order relation Rf between elements of A such that

the element xi ∈ A is related with all those elements di,1(xi), . . . , d1,ni(xi) whose evaluation
by f is necessary in order to evaluate f on xi.

Moreover, it is clear that the computation of f on xi is terminating if and only if it is
terminating on all the elements di,1(xi), . . . , d1,ni

(xi), namely, if and only if the element xi is
Rf -founded.

Then, after Theorem 3.2, we get that the computation of f on xi is terminating if and only
if xi CRf

∅. Thus, we can define a functional program that emulates the computation of f on
the terminating values by structural recursion on the proof of xi CRf

∅.
Let us illustrate our statement on a simple example.

3.2.1 The Fibonacci Function

The standard general recursive definition of the Fibonacci function is

fib(0) = 0
fib(1) = 1
fib(x+ 2) = fib(x+ 1) + fib(x)

It is easy to find a solution for programming this function in standard type theory by exploiting
the possibility to define cartesian products.

However, we are here interested in showing how to use singleton inductively generated formal
topologies to implement the Fibonacci function.

75

General Recursion and Formal Topology Sacerdoti Coen and Valentini

Thus, let us consider the relation Rfib such that 0 and 1 are related to no element while
every natural number x+ 2, greater or equal to 2, is related to x+ 1 and x. According to the
abstract analysis above, we induce from this relation the axiom-set CRfib

(0) = ∅, CRfib
(1) = ∅

and CRfib
(x+ 2) = {x+ 1, x}. So, we get that inf(0, h) is a proof element for 0 CRfib

∅ if h is the
proof element for (∀x ∈ ∅) x CRfib

∅, which clearly exists after ex falsum quodlibet; in a similar
way inf(1, k), where k is a proof element for (∀x ∈ ∅) x CRfib

∅, is a proof element for 1 CRfib
∅

and inf(x+ 2,m), where m is a proof element for (∀y ∈ {x+ 1, x}) y CRfib
∅, is a proof element

for x+ 2 CRfib
∅ .

Thus, we can define the Fibonacci function by structural recursion on the proof element for
x CRfib

∅ by setting

fib(0, inf(0, h)) = 0
fib(1, inf(1, k)) = 1
fib(x+ 2, inf(x+ 2,m)) = fib(x+ 1,m(x+ 1)) + fib(x,m(x))

Then, if we are able to prove that, for any natural number x, x CRfib
∅ holds we will get

a proof of the termination of the Fibonacci function on every natural number, but it is worth
noting that we can still define the function even if we do not know that it is terminating on all
natural numbers.

4 Recursion on the Cover Predicate

So far we have been quite informal on the exact flavour of type theory we are working in. In
particular, if we assume Martin-Löf’s intuitionistic type theory, fully embracing the proof-as-
types paradigm, we can make no distinction between the universe of propositions and that of
types. Hence we can identify subsets of A, which are functions from A to the universe Prop
of propositions, with families of types indexed over A. Under this identification, the cover-
induction principle defined in Section 2 can be applied both to prove that an element a belongs
to a set V or to build an inhabitant of the data type V (a). The latter usage is the one that
justified the definition of the Fibonacci function given in the previous section.

Other versions of type theory, like the Calculus of (Co)Inductive Constructions implemented
in Coq [Coq8.2] and Maietti’s Minimal Type Theory [Mai09], depart from Martin-Löf’s tradition
by clearly distinguishing propositions from types by separating them into different universes.
The separation is reflected in the separation between induction and recursion: given a proof
term p for a predicate P , it is allowed to prove another predicate Q by induction over p, but not
to inhabit a data type by recursion over p. Both induction and recursion are allowed instead
when p is an inhabitant of a data type. The reader can consult [Mai09] for some motivations
for this restriction. We just recall that, in the restricted setting, proof terms have no role in the
computation of functions and thus that all propositions are identified with the unit data type
during code extraction (see [Let08]), yielding more efficient code. Moreover, since the proof
terms are ignored by code extraction, the use of classical logic and, more generally, of axioms
that break cut elimination, does not jeopardise computability of the extracted function.

For the rest of this section we assume to be in the restricted version of type theory and
we note that the cover-induction principle cannot be applied as it is to obtain a representation
of general recursive functions, unless we artificially replace the cover predicate a CR ∅ with
an isomorphic data type, losing all the benefits of the distinction between proofs and types
(and doubling the constant for the computational complexity of the extracted code, since the
inhabitant of a CR ∅ would be computed as well). Instead, we note that the following recursion

76

General Recursion and Formal Topology Sacerdoti Coen and Valentini

principle for singleton inductively generated formal topologies can be added without breaking
logical consistency:

(cover-recursion)
a C ∅

[(∀y ∈ C(x)) T (y)]
...

T (x)

T (a)

The cover-recursion principle can actually be defined in the modern versions of the Calculus
of (Co)Inductive Construction whose primitive operators are well founded structural recursion
(which is not restricted by the proof vs types separation) and case analysis (which is restricted
by not allowing to perform case analysis over a proof term to inhabit a data type, see [Coq8.2]).
The following proof term has been formalised in [Sac10] in the Matita interactive theorem
prover [ASTZ07] and it type-checks according to the rules presented in [ARST09]:

let rec cover-recursionT,H(a, p : a� ∅) : T (a) :=
H(a, λy ∈ C(a).cover-recursionT,H(y, π(a, p, y)))

where
π(a, refl(a, h : a ∈ ∅), y) : y � ∅ := ex-falso(h)
π(a, inf(a, h : (∀x ∈ C(a))x� ∅), y) : y � ∅ := h(y)

where T : A→ Type (i.e. T is a family of types indexed over A) and
H : (∀x : A)(∀y ∈ C(x))T (y)→ T (x) (i.e. H is an higher order function).

As a comparison, the canonical proof term automatically generated for the cover-induction
principle is:

let rec cover-inductionP,H(a, p : a� ∅) : P (a) :=
match p with

refl(a, h : a ∈ ∅)⇒ ex-falso(h)
inf(a, h : (∀x ∈ C(a))x� ∅)⇒ H(a, λy ∈ C(a).cover-recursionP,H(y, h(y)))

where T : A→ Prop (i.e. T is a predicate), H : (∀x : A)(∀y ∈ C(x))P (y)→ P (x) (i.e. H is an
ordinary induction hypothesis) and the pattern matching is an ordinary proof by cases.

The idea for the cover-recursion principle, which is not novel (see [BC04]), and has been
already applied in similar form to the Bove-Capretta method, consists in noting that it is
possible to immediately perform the recursive call before doing case analysis over the proof
term p (which is done by the π function). Indeed, all the computational arguments of the
function call (which is just y in our case) can be discovered without inspecting p, which is
required only to inhabit the last argument which is a proof term (and thus can be computed
by induction over p). Note, however, that this technique is rarely exploitable. For instance,
it cannot be applied in any way for the general case of non singleton inductively generated
formal topologies since, in that case, we would have to guess the index i ∈ I(a) to perform the
recursive call on without inspecting the proof term p which hides i. This constitute further
evidence that singleton generated formal topologies are the natural subclass of formal topologies
that is inherently linked to general recursion.

The first branch of the π() function obtains a proof of y�∅ by ex-falsum, from the assumption
that U = ∅ is inhabited. Hence the reader can imagine that restricting the cover relation to
the case U = ∅ is necessary. Actually, the recursion principle can be extended to deal with
any decidable set U , i.e. for any set U such that membership to U is decidable. We explored
this solution in [Sac10], but it turned out that for any singleton axiom-set (A,C) and for every

77

General Recursion and Formal Topology Sacerdoti Coen and Valentini

U ⊆ A there exists another axiom set (A,C ′) such that a �(A,C) U iff a �(A,C′) ∅ (see section
5.1.1).

Applying the code extraction procedure of [Let08] to our proof of the cover-recursion prin-
ciple we obtain the following ML-like code which is clearly the most general implementation of
a simple general recursion function whose associated functional is H:

let rec cover-recursionH(a) : T (a) :=
H(a, λy.cover-recursionH(y))

For our Fibonacci example, after code extraction H is defined in the expected way

Hfib(0,) = 0
Hfib(1,) = 1
Hfib(x+ 2, f) = f(x+ 1) + f(x)

and the recursive Fibonacci’s function is defined simply as

fib := cover-recursionHfib

5 Further Developments

It is clear that our approach is not much different from the one already proposed in [BC05] or
even [Nor88]. However, substituting a general theory for an ad hoc one could shed more light
or allows some generalizations.

In this concluding section we want to suggest some possible developments in this direction.
In order to get them we will exploit the topological meaning of many of the concepts that we
introduced.

5.1 Generalizing the Cover

The first kind of generalizations that we can suggest concern the cover relation. There are many
development directions here: first of all one can consider the possibility to cover by a generic
set instead of an empty one, then we can consider the case the subset C(a) covering by axiom
the element a is non finite, ad finally we can consider non-singleton formal topologies.

5.1.1 Covering by a Generic Set

Till now in developing our proposal we always considered the notion of “being covered by the
empty set”. This is due to the fact that in this way we can recover the meaning of a generic
accessibility predicate; however, in formal topology we can as well consider the notion of being
covered by a set U . Thus, in this section we will drop the restriction to the case a C ∅ and we
will consider general covers of the form a C U .

In order to understand what are the consequences of this generalization let us analyze the
meaning of a being covered by U . It means that the computation of f(a) is barred by U (see
[Val07]), namely, that every branch in the tree of recursive calls of f rooted in f(a) eventually
passes through some f(x) for x ∈ U . In particular, a C ∅ means that the computation tree
rooted in f(a) is finite, that is, the function f converges on a. But it also means that f(a) is
computable under the assumption that f(x) is computable for every x ∈ U . Hence the cover
relation captures the notion of relative computability.

78

General Recursion and Formal Topology Sacerdoti Coen and Valentini

Moreover, when U is decidable and we actually know the value of f(x) for each x ∈ U , then
we can use this knowledge to compute f(a); indeed, it is sufficient to change f so that it first
checks if its input is in U and in this case it stops immediately with no need for the recursive
calls. This could probably be used to force a diverging function to converge on some inputs by
stopping the computation on U and returning some value.

This simple consideration can be given the shape of an abstract result.

Lemma 5.1. Let (A,C) be a singleton inductively generated formal topology and U be a decid-
able subset of A. Then let us set

C ′(a) =

{
∅ if a ∈ U
C(a) otherwise

and consider the singleton inductively generated formal topology (A,C ′). Then a C U if and
only if a C′ ∅.

Proof. In both direction the proof is by induction on the length of the derivation. So let us
suppose that a C U in order to show that a C′ ∅. Now, if a C U because a ∈ U then C ′(a) = ∅
and hence (∀y ∈ C ′(a)) y C′ ∅ holds and so a C′ ∅ follows by infinity. And, if a C U because,
for any y ∈ C(a), y C U then by inductive hypothesis, for any y ∈ C(a), y C′ ∅ which yields
that, for any y ∈ C ′(a), y C′ ∅, since C ′(a) ⊆ C(a), and thus a C′ ∅ follows by infinity.

On the other hand, if a C′ ∅ then, for any y ∈ C ′(a), y C′ ∅, and hence, for any y ∈ C ′(a),
y C U by inductive hypothesis; now let us argue by cases according to membership of a to U :
if a ∈ U then a C U follows by reflexivity and otherwise C(a) = C ′(a) and hence a C U follows
by infinity.

From the point of view of an accessibility predicate this just mean that if we have a relation R
then a is covered by U in the singleton inductively generated formal topology (A,CR) if and only
if a is R′-founded for the relation R′ such that aR′x if aRx and a 6∈ U and {x ∈ A | aR′x} = ∅
if a ∈ U .

5.1.2 Generalizing to Infinite Axioms

In all the possible examples of an axiom-set obtained from a certain function f the set CRf
(a)

is always finite for any a ∈ A. But, singleton inductive generated formal topologies support
a more general definition which admits any kind of subset of A in the axioms. So the open
problem is: which kind of computable functions can take advantage of an infinite subset?

The answer should pass through a formalism which allows a function to have an infinite
amount of arguments, but which is still computable, since we should have a clause like

f(x) = g(f(d1(x)), f(d2(x)), . . .)

For instance, one can suppose that g is able to provide some more output by using some more
of its infinite amount of arguments, namely, g should be a continuous function.

From a topological point of view, here it can be useful the notion of compactness of an
element a: a is compact if, whenever a C U , there exists some finite subset V of U such that
a C V . This means that, if the calling tree of f(a) is barred by an infinite subset U (and hence
it can potentially requires infinitely many recursive calls), then it is also barred by a finite V ,
that is, the function can be rewritten in such a way that the tree becomes finitely branching.

This notion needs more investigation and is linked to the previous ideas of recursive functions
that perform an infinite number of recursive calls. It seems to capture those that are actually
computable.

79

General Recursion and Formal Topology Sacerdoti Coen and Valentini

5.1.3 The Case of the Non-Singleton Formal Topologies

If we drop the restriction to singleton inductively generated formal topologies, but we keep
the same intuition, what we obtain are non-deterministic functions that, given an input x, can
perform different sets C(a, i) of recursive calls for each i ∈ I(a), possibly yielding different
results.

For example, the axiom-set of the non deterministic function

f(0) = 0
f(1) = 1
f(n+ 2) = f(n) | f(n+ 1)

that can call either f(n) or f(n+ 1) when the input is f(n+ 2), would be

I(0) = {0} I(1) = {0} I(n+ 2) = {0, 1}
C(0, 0) = ∅ C(1, 0) = ∅ C(n+ 2, 0) = {n}

C(n+ 2, 1) = {n+ 1}
This clearly extends the Bove-Capretta approach, but it also requires a precise definition of

the formalism for non deterministic functions. Moreover, the cover-recursion principle that we
provided for the type theories that separate propositions from types only applies to singleton
generated formal topologies, but, for the case of an enumerable set of indexes I, we expect
to be able to write a similar principle that computes the set of all possible non-deterministic
outcomes of the reduction process.

5.2 The Role of the Positivity Predicate

We can exploit also other features offered by formal topology if we recall that inductively
generated formal topologies, apart for the inductive definition of the cover relation that we
already recalled, allow also the definition of a positivity predicate by using the following co-
inductive rules:

(n-reflexivity)
an F

a ∈ F
(n-infinity)

an F i ∈ I(a)

(∃y ∈ C(a, i)) y n F

The intended topological meaning of the positivity predicate a n F is that the basic open
where a is interpreted meets, namely, has inhabited intersection, with the close set determined
by F whose points are all the α such that if α is contained in the interpretation of b then b ∈ F
(see [Sam03]).

Like with the cover relation also here we can greatly simplify the co-inductive rules if we
consider the case of a singleton inductively generated formal topology and we instantiate F on
the whole set A. Indeed, we get that the only relevant rule is a simplified version of n-infinity

(n-infinity)
anA

(∃x ∈ C(a)) xnA

If we consider now the axioms set CRf
, defined after the relation Rf for some function f ,

then we get that an element a ∈ A is positive with A if and only if the computation of the
function f is not terminating on a since in order to have that an A holds we need an infinite
Rf -chain aRfx1Rfx2 . . . such that x1 ∈ CRf

(a), x2 ∈ CRf
(x1), The proof is simply a direct

application of the following co-induction principle for n to the predicate P stating the existence

80

General Recursion and Formal Topology Sacerdoti Coen and Valentini

of the infinite chain.

(positivity-coinduction)
P (a)

[P (b)]
...

(∃x ∈ C(b))P (x)

an F

More generally, anF means that f(a) is diverging and that all recursive calls are recursively
made on elements of F only. It is an informative (or positive) definition of divergence since it
tells us how the function diverges (to be compared to the negative definition “non converging”).
Since we know how the function diverges, we can exploit this information, for instance to
monitor the amount of memory that will be used in the computation. The less informative use
is the one we presented above, that is, anA: it just says that f(a) diverges (since A is the set
of all values). More generally, the positivity predicate tends to capture liveness properties of
processes (see [HH06]).

5.3 Further Research Directions

Other topological concepts are likely to be informative as well. In particular, it would be
interesting to consider real formal topologies, i.e. basic topologies with convergence. They are
obtained by adding a partial order ≤ over basic opens (usually meaning that a ≤ b if and only
if a is more informative than b) and asking the cover relation to respect this order (see [CSSV]).
In our case the order must be a partial order over the possible inputs of the function f . In
particular, we would obtain properties such as: if a ≤ b and b C U then a C U , meaning that
if b is computable relatively to U , then a also is (but not requiring f(a) to perform a single
recursive call on f(b)). Hence it could have applications to the study of relative computability.

It would also be interesting to try to extend the proposed approach to non simple general
recursion. In particular, as for the Bove-Capretta method, in order to capture nested recursion
the most natural way would be to use induction-recursion to simultaneously define the axiom
set together with a general recursive function given by recursion over a proof that a� ∅ where
the cover relation is determined by the axiom set under definition. At the moment, as far
as we know, inductively-recursively generated formal topologies have never been considered in
the literature and it is unknown if they capture more examples of formal topologies and if
interesting examples are among the captured ones.

6 Conclusion

We have shown that to each general recursive function f we can associate a basic topology that
describes its domain. In particular, standard topological notions (like cover, positivity, that is
the dual of cover, compactness, etc.) become informative characterizations of the domain of f .
Moreover, in type theory f(x) can be actually defined by recursion over the covering predicate
x C ∅ in such a way that the code obtained by proof extraction is the naive general recursive
description of f .

So far, our technique does not enlarge the class of general recursive functions that can be
already described in type theory using Nordstrom’s well-founded recursion or Bove-Capretta’s
method. In particular, some variants of Bove-Capretta’s method even capture more functions.
However, we believe that our work could help sheding more light on the topological content
of the above methods and suggest more informative proof and representation techniques. For

81

General Recursion and Formal Topology Sacerdoti Coen and Valentini

instance, the positivity predicate can be used to characterize the behaviour of divergent com-
putation, i.e. its liveness properties (when the computation is supposed to diverge). It also
naturally points to the investigation of different models of computation, like non determinism
or non finitely branching recursion.

References

[Acz77] Aczel, P., An introduction to inductive definition, in Barwise J. (ed.) Handbook of Mathe-
matical Logic, 1977, pp.739–782.

[ARST09] Asperti, A. and Ricciotti, W. and Sacerdoti Coen, C. and Tassi, E. A compact kernel for the
calculus of inductive constructions, Special Issue on Iteractive Proving and Proof Checking of
the Academy Journal of Engineering Sciences (Sadhana) of the Indian Academy of Sciences,
34(1): 71–144, 2009

[ASTZ07] Asperti, A. and Sacerdoti Coen, C. and Tassi, E. and Zacchiroli, S. User Interaction with
the Matita Proof Assistant, Journal of Automated Reasoning, 39(2): 109–139, 2007.

[BC04] Y. Bertot, P. Castran. Interactive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions, Springer-Verlag, 2004.

[BV92] Bossi, A. and S. Valentini, An intuitionistic theory of types with assumptions of high-arity
variables, Annals of Pure and Applied Logic 57, 1992, pp.93–149.

[BC05] Bove, A. and V. Capretta, Modelling general recursion in type theory, Mathematical Structures
in Computer Science, Vol. 15, Iss. 4 (2005), pages 671-708.

[Coq8.2] The Coq Development Team, The Coq Proof Assistant Reference Manual, Version 8.2, 2009
http://www.lix.polytechnique.fr/coq/doc/

[CSSV] Coquand, T., G. Sambin, J. Smith and S. Valentini, Inductively generated formal topologies,
Annals of Pure and Applied Logic 124, 2003, pp. 71–106.

[HH06] P. Hancock, P. Hyvernat, Programming interfaces and basic topology, Ann. Pure Appl. Logic
137(1-3): 189-239 (2006)

[Hug84] Hughes, J., Why Functional Programming Matters,
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html

[Let08] Letouzey, P., Coq Extraction, an Overview,
in Fourth Conference on Computability in Europe, Lecture Notes in Computer Science, 5028,
2008

[Mai09] Maietti, M., A minimalist two-level foundation for constructive mathematics, Annals of Pure
and Applied Logic 160(3):319–354, 2009

[ML84] Martin-Löf, P., Intuitionistic Type Theory, notes by G. Sambin of a series of lectures given
in Padua, Bibliopolis, Naples, 1984

[Nor88] Nordström, B., Terminating general recursion, BIT 28 (3), pp.605–619.

[NPS90] Nordström, B., K. Peterson, J. Smith, Programming in Martin-Löf ’s Type Theory, An intro-
duction, Clarendon Press, Oxford, 1990

[Sac10] Sacerdoti Coen, C., General recursion and formal topology,
http://matita.cs.unibo.it/nlibrary/topology/,
see files igft[1-4].ma for slightly different alternatives

[Sam03] Sambin, G., Some points in formal topology, Theoretical Computer Science 305, 2003, pp.
347–408

[Sam10] Sambin, G. The Basic Picture. Structures for Constructive Topology, Oxford University Press,
2010, ISBN: 978-0-19-923288-8

[Tas10] Tassi, E., Inductively generated formal topologies in Matita,
http://matita.cs.unibo.it/docs/tutorial/igft.html

82

http://www.lix.polytechnique.fr/coq/doc/
http://www.math.chalmers.se/~rjmh/Papers/whyfp.html
http://matita.cs.unibo.it/nlibrary/topology/
http://matita.cs.unibo.it/docs/tutorial/igft.html

General Recursion and Formal Topology Sacerdoti Coen and Valentini

[Val06] Valentini, S., Every inductively generated formal cover is spatial, classically, Journal of Sym-
bolic Logic, vol. 71 (2), 2006, pp. 491-500.

[Val07] Valentini, S., Constructive characterizations of bar subsets, Annals of Pure and Applied logic,
vol. 145 (3), 2007, pp. 368-378.

[Val10] Valentini, S., Cantor theorem and friends, in logical form, submitted.

83

	Introduction
	Inductively Generated Formal Topology
	General Recursion and Formal Topologies
	Ordered Sets and Unary Formal Topologies
	Implementing Terminating General Recursion
	The Fibonacci Function

	Recursion on the Cover Predicate
	Further Developments
	Generalizing the Cover
	Covering by a Generic Set
	Generalizing to Infinite Axioms
	The Case of the Non-Singleton Formal Topologies

	The Role of the Positivity Predicate
	Further Research Directions

	Conclusion

