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Abstract

We study integrable cases of the pairing BCS Hamiltonians containing several types of fermions and
possessing non-uniform coupling constants. We prove that there exist three classes of such the integrable
models associated with “Z2-graded” non-skew-symmetric classical r-matrices with spectral parameters and
Lie algebras gl(2m), sp(2m) and so(2m), respectively. The proposed models are higher rank generalizations
of the so-called “px + ipy” one-type fermion (m = 1) BCS model. In the partial case of two types of
fermions (m = 2) the obtained models may be interpreted as N = Z, “px + ipy” proton–neutron integrable
models. In particular, in the case of sp(4) we obtain the “px + ipy”-analogue of the famous integrable
proton–neutron model of Richardson. We find the spectrum of the constructed Hamiltonians in terms of
solutions of Bethe-type equations.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Proton–neutron pairing Hamiltonian plays an important role in the description of nuclear
structure for proton-rich nuclei with N � Z. In contrast to the proton–proton and neutron–
neutron pairing, the proton–neutron pairing may exist in two different forms, namely in the
forms of the isoscalar (T = 0) and isovector (T = 1) pairing. A pairing formalism, which in-
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cludes T = 0 and T = 1 p–n correlations was proposed in [1]. Such the pairing models were
studied in [2,3] using the mean-field approximation.

In our previous paper [5] we have constructed three types of integrable fermion Hamiltonians
containing isoscalar (T = 0) and isovector (T = 1) pairing and possessing uniform coupling con-
stants. The integrability of the models has permitted us to solve them exactly using the algebraic
Bethe ansatz.

In the present paper we investigate integrable cases of more general pairing Hamiltonians con-
taining isoscalar (T = 0) and isovector (T = 1) pairing and possessing non-uniform couplings.
The Hamiltonian of the model under the consideration has the following form:

ĤgBCS =
N∑

l=1

∑
σ∈±

(
εl,pc

†
l,p,σ cl,p,σ + εl,nc

†
l,n,σ cl,n,σ

)

− 2
N∑

k,l=1

GT =1
pp,klc

†
l,p,+c

†
l,p,−ck,p,−ck,p,+ − 2

N∑
k,l=1

GT =1
nn,klc

†
l,n,+c

†
l,n,−ck,n,−ck,n,+

−
N∑

k,l=1

GT =1
pn,kl

(
c

†
l,p,+c

†
l,n,− + c

†
l,n,+c

†
l,p,−

)
(ck,n,−ck,p,+ + ck,p,−ck,n,+)

−
N∑

k,l=1

GT =0
pn,kl

(
c

†
l,p,+c

†
l,n,− − c

†
l,n,+c

†
l,p,−

)
(ck,n,−ck,p,+ − ck,p,−ck,n,+), (1)

where c
†
l,p,σ , cl,p,σ and c

†
l,n,σ , cl,n,σ are fermion creation–annihilation operators corresponding

to protons and neutrons, σ ∈ ± is a sign of the angular momentum projection, εl,p , εl,n are
the proton and neutron single particle energies, N is the number of protons and neutrons (their
numbers are taken to be equal) and GT =0

pn,kl , G
T =1
pn,kl are the interaction strengths of proton–neutron

isoscalar and isovector pairings, GT =1
pp,kl and GT =1

nn,kl are interaction strengths of proton–proton and
neutron–neutron isovector pairings.

Like in the case of uniform coupling constants [5], it turned out to be methodologically more
convenient to consider a more general Hamiltonian, namely, the Hamiltonian containing instead
of two types of fermions (i.e. instead of protons and neutrons only) an arbitrary number m of
fermion types. In more details in the present paper we study the following Hamiltonian:

ĤgBCS =
N∑

l=1

m∑
i=1

∑
σ∈±

εl,ic
†
l,i,σ cl,i,σ − 2

m∑
i=1

N∑
k,l=1

GT =1
ii,kl c

†
l,i,+c

†
l,i,−ck,i,−ck,i,+

−
m∑

i,j=1,i<j

N∑
k,l=1

GT =1
ij,kl

(
c

†
l,j,+c

†
l,i,− + c

†
l,i,+c

†
l,j,−

)
(ck,i,−ck,j,+ + ck,j,−ck,i,+)

−
m∑

i,j=1,i<j

N∑
k,l=1

GT =0
ij,kl

(
c

†
l,j,+c

†
l,i,− − c

†
l,i,+c

†
l,j,−

)
× (ck,i,−ck,j,+ − ck,j,−ck,i,+), (2)

where m is an arbitrary positive integer.
We show that in the case of equal energies of different types of fermions, i.e.

εl,i = εl,j = εl, ∀i, j ∈ 1,m
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the Hamiltonian (2) admits, similar to the case of the uniform coupling constants [5], three inte-
grable cases. The form of the non-uniform coupling constants GT =1

ij,kl , GT =0
ij,kl in these cases is the

following:

(1) GT =0
ij,kl = GT =1

ij,kl = 1

2
g
√

εk
√

εl,

(2) GT =0
ij,kl = 0, GT =1

ij,kl = g
√

εk
√

εl,

(3) GT =1
ij,kl = 0, GT =0

ij,kl = g
√

εk
√

εl.

These three cases are connected with the Lie algebras gl(2m), sp(2m) and so(2m), respectively.
To the best of our knowledge for m > 1 all these integrable cases are new.

Let us briefly describe our method of obtaining of the above integrable cases of the Hamilto-
nian (2).

The usual method of obtaining of integrable fermion pairing models is based on applications
of Gaudin spin models [7] in an external magnetic field. The idea to associate a “one type of
fermions” BCS model with usual Gaudin spin models based on a standard skew-symmetric ratio-
nal r-matrix and the Lie algebra sl(2) is attributed to the paper [8]. The idea to associate a “many
type of fermions” BCS model with rational Gaudin spin models based on a skew-symmetric
rational r-matrix and higher rank Lie algebras ascends to the paper [11]. It was used in many
papers (see [9,10,12,13,5]).

Unfortunately, all the integrable fermion models that may be obtained using standard clas-
sical rational r-matrices possess uniform coupling constants. The integrable fermion models
associated with the skew-symmetric trigonometric r-matrices are characterized by the Hamil-
tonians containing not only pairing interaction terms, but also other terms having no evident
physical interpretation (see e.g. [14]). At last, there is no integrable Gaudin spin models in an
external magnetic field associated with a skew-symmetric elliptic r-matrix and no corresponding
integrable fermion model. Moreover there exists no other classical skew-symmetric r-matrices
except for the rational, trigonometric and elliptic ones due to the Belavin–Drinfeld theorem [4].

Hence, in order to generalize the above approach and obtain more general integrable BCS-
type models, in particular, the models containing non-uniform coupling constants, it is necessary
to generalize the very integrable Gaudin spin models in an external magnetic field. It was
done in a series of our previous papers [16–19,23]. The main our idea is a possibility to as-
sociate quantum integrable Gaudin-type spin chains not only with skew-symmetric but also with
non-skew-symmetric classical r-matrices. The non-skew-symmetric classical r-matrices satisfy
a “generalized” classical Yang–Baxter equation instead of the usual one. This permits us to
overcome the “bottle-neck” connected with Belavin–Drinfeld Theorem [4] and to obtain new
integrable Gaudin-type spin models.

In our papers [20–22] we have applied the previously discovered generalized Gaudin spin
models based on non-skew-symmetric r-matrices and Lie algebras sl(2) (and gl(2)) and have
constructed integrable “one type of fermions” BCS models. We have shown in [21,22] that among
the proposed models there is one especially interesting model with the Hamiltonian possessing
only kinetic and pairing interaction terms with non-uniform coupling constants. This model was
soon re-discovered by other method in [25] (see also [26]) and called px + ipy integrable model.

In the present paper we generalize our idea of associating of integrable fermion models with
non-skew-symmetric classical r-matrices onto the cases of higher rank Lie algebras g. For this
purpose we describe the generalized Gaudin spin models in an external magnetic field [17–19]
and study their symmetries. The symmetries of these models are very important — not all possi-
ble generalized Gaudin spin models in an external magnetic field are suitable for a construction
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of the generalized BCS models, but only those that are invariant with respect to the Cartan sub-
algebra h ⊂ g. This guaranties the existence of r = dimh particle number operators commuting
with a Hamiltonian and permits one to interpret these models as possessing r different types of
fermions.

We show that the “geometric” symmetry algebra of the generalized Gaudin spin models in an
external magnetic field coincides with the intersection of the geometric symmetry algebra of the
corresponding r-matrix and geometric symmetry algebra of “an external magnetic field”. From
this it follows that for a construction of BCS-type models only h-invariant classical r-matrices
and h-valued external magnetic fields are useful. This substantially restricts the admissible class
of the r-matrices. Nevertheless it is still large enough (see e.g. [16,17]).

In the present paper we concentrate on one class of such the r-matrices, namely, those leading
to many type of fermions “px + ipy” integrable models. We call such the r-matrices Z2-graded
because they are connected with Z2-grading of the corresponding Lie algebra g, i.e. with the
decompositions g = g0̄ + g1̄, where g0̄ is a closed subalgebra and g1̄ is a g0̄-module. For the
construction of the BCS model one should require, moreover, that g0̄ = gK

0 and g1̄ = gK
1 + gK−1,

where K is an element of the Cartan subalgebra, gK
0 is its reductive centralizer in g and the

subspaces gK±1 are abelian subalgebras. It turned out that the integrable magnetic field for the
corresponding r-matrices is proportional to the same element K of the Cartan subalgebra1 which
is used in the definition of the r-matrix itself. In this case the symmetry algebra both of the Z2-
graded r-matrix and element K coincides with the subalgebra gK

0 .
Having a fixed non-skew-symmetric classical r-matrix and “integrable magnetic field” one

completely determines (at the Lie-algebraic level) the corresponding generalized Gaudin system
and its integrals. We show that among the integrals of the model there is the following remarkably
simple Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

k=1

εl

rankg∑
i=1

(
ki + δK(Hi)

)
Ŝ

(l)
i + 2

N∑
k,l=1

√
εk

√
εl

∑
α∈(�/�K)+

Ŝ
(k)
−αŜ(l)

α , (3)

where � is a system of roots of g and �K is the system of roots of gK
0 , K = ∑rankg

i=1 kiHi ∈ h is
the above element of the Cartan subalgebra, δK is a sum of roots over the set (�/�K)+, and the
operators Ŝ

(l)
i , Ŝ

(l)
±α , i ∈ 1, rankg, α ∈ � represent the Cartan–Weyl basis of the lth copy of g in a

representation of the direct sum Lie algebra g⊕N and εl are connected with the poles of the Lax
operator of the generalized Gaudin system.

The Hamiltonian (3) is our generalized g-valued px + ipy BCS Hamiltonian written in the
spin form. Due to the said above the symmetry algebra of the Hamiltonian (3) coincides with
the reductive subalgebra gK

0 of the “global” spin operators. Such the symmetry algebra always
contains the global Cartan subalgebra.

In order to obtain from the integrable spin Hamiltonian BCS-type fermion Hamiltonian (3) it
is necessary to chose the fermionization formulas for the Lie algebra g (more precisely, a direct
sum Lie algebra g⊕N ) that should automatically define the representations of each Lie algebra g

in g⊕N and its highest weight λ(l), l ∈ 1,N . We will in a standard way consider the case λ(l) = λ,
∀l ∈ 1,N , i.e. use the same fermionization formulas for all spins in the chain. In order to ob-
tain the integrable Hamiltonian (2) we restrict ourselves to the consideration of the Lie algebras
gl(2m) and their subalgebras so(2m) and sp(2m) and for the representations with the following

1 In order for the model to be integrable a magnetic field is not arbitrary but satisfies the so-called shift equation [19].
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highest weights: λ = (λ1, . . . , λ2m) with λ1 = · · · = λm = 1, λm+1 = · · · = λ2m = 0 for gl(2m)

and λ = (λ1, λ2, . . . , λm) with λ1 = · · · = λm = 1 for the sp(2m) and so(2m). Using the fermion-
ization formulas existing for these representation [5] we finally obtain the integrable cases of the
Hamiltonian (2) with GT =0

ij,kl = GT =1
ij,kl = 1

2g
√

εk
√

εl, GT =0
ij,kl = 0,GT =1

ij,kl = g
√

εk
√

εl, GT =1
ij,kl = 0,

GT =0
ij,kl = g

√
εk

√
εl respectively, where the interaction strength g is connected with the coef-

ficients of the “external magnetic field” — the chosen diagonal matrix K . Let us mention
that the constructed Hamiltonians possess the geometric symmetry algebra, namely the alge-
bra gl(m) ⊕ gl(m) in the first case, the algebra gl(m) in the second and the third cases.2 The
symmetry algebra coincides with the global spin algebra gK

0 written in the given fermion repre-
sentation.

We diagonalize the constructed Hamiltonians using the general answers for the spectrum of
the Z2-graded Gaudin Hamiltonians in terms of solutions of the Bethe-type equations in any
representation of the Lie algebra g⊕N [15]. It turned out that for all the three considered cases
the spectrum of the integrable Hamiltonian (2) is given by the same formula:

E = 2
Mm∑
i=1

E
(m)
i ,

where E
(m)
i are the mth set of solutions of the Bethe equations, that depend on the Lie algebra,

element K and highest weights λ(l). For the cases at hand the Bethe equations have a sufficiently
simple form and we write them explicitly in each case. Due to the existence of the non-abelian
symmetry algebra the constructed energy levels are degenerated: the multiplicity of the degener-
ation of the level is equal to the dimension of the representation of the symmetry algebra gK

0 and
depends on the given eigen-vector.

In the end of the introduction let us explain the usage of the name “px +ipy” for the introduced
integrable fermionic models. Using the fact that the considered subalgebras gK±1 are abelian one
may re-scale the spin operators as follows:

Ŝ
(p)
±α → px ± ipy√

p2
x + p2

y

Ŝ
(p)
±α , ∀α ∈ (�/�K)+,

Ŝ(p)
α → Ŝ(p)

α , ∀α ∈ �K, Ŝ
(p)
j → Ŝ

(p)
j , j ∈ 1, rankg

(here i = √−1 ) without changes in the corresponding commutation relations. Putting εp = p2
x +

p2
y one arrives to the Hamiltonian (2) with GT =0

jj ′,pp′ = GT =1
jj ′,pp′ = 1

2g(px − ipy)(p
′
x + ip′

y), or

GT =0
jj ′,pp′ = 0,GT =1

jj ′,pp′ = g(px − ipy)(p
′
x + ip′

y) or GT =1
jj ′,pp′ = 0,GT =0

jj ′,pp′ = g(px − ipy)(p
′
x +

ip′
y), possessing the so-called “px + ipy wave symmetry” [25].
The structure of the present paper is the following: in the second section we remind the neces-

sary facts about semisimple Lie algebras and their reductive subalgebras, in the third section we
describe the needed fermionization formulas for the Lie algebras gl(n), sp(2m) and so(2m). In
the fourth section we consider quantum systems governed by general non-skew-symmetric clas-
sical r-matrices, in particular, the generalized Gaudin systems in an external magnetic field, and
find their symmetry algebras. In the fifth section we concentrate on Z2-graded r-matrices and

2 We prefer to speak about the Lie algebra gl(n) = gl(n,C) and not about the Lie algebra u(n), as it is used in the
physical literature, because all the considered algebras are the algebras over the field of complex numbers.
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the corresponding Gaudin Hamiltonians. In the six section we construct integrable many types
of fermions “px + ipy” BCS Hamiltonians (both in the spin and fermion form). Finally in the
seventh section we find the spectrum of the constructed Hamiltonians in terms of solutions of
Bethe-type equations.

2. Simple Lie algebras and their reductive subalgebras

The results of the present paper are obtained using Lie-algebraic technique. That is why in
this section we will remind the necessary facts from the theory of simple Lie algebras and their
subalgebras [27,28].

2.1. General case

Let g be a complex simple Lie algebra or reductive Lie algebra gl(n). Let Xa,a = 1,dimg be
a basis in g with the commutation relations:

[Xa,Xb] =
dimg∑
c=1

Cc
abXc, (4)

where Cc
ab are the structure constants of Lie algebra.

Let ( , ) be a bilinear symmetric invariant form on g (Killing–Cartan form), gab are the com-
ponents of the nondegenerate invariant form: gab = (Xa,Xb). Hereafter all raising and lowering
of vector and tensor indices will be made with the help of the metric tensor with the components
gab and its inverse with the components gab .

In the present paper we will use mainly the root basis in g. In more details, let � be the set of
roots of g, �+ be the set of its positive roots, gα be the root space corresponding to the root α, Xα

be a basis element of this root space and Hi be a basis vector of Cartan subalgebra h. The basis
in g consists of the elements {Xα,α ∈ �;Hi, i ∈ 1, rankg}. The corresponding commutation
relations have the following form:

[Xα1 ,Xα2] = Nα1,α2Xα1+α2 , if α1 + α2 �= 0, (5a)

[Xα,X−α] = Hα, (5b)

[Hi,Xα] = α(Hi)Xα, (5c)

where Hα ≡ ∑rankg
i=1 α(Hi)Hi .

The “orthonormality” relations read in this basis as follows:

(Xα,Xβ) = δα+β,0, (Xα,Hi) = 0, (Hi,Hj ) = δij .

Remark 1. Note, that hereafter the Latin indices a, b, c, d will index the basic elements of g

independent of a division of them on root spaces and Cartan elements, indices i, j , etc., will
index a basis in Cartan subalgebra, Greek indices α,β, γ, δ will denote the roots belonging to �.

We will need also a description of the reductive subalgebras of the algebra g. Let �K ⊂ � be
a closed, symmetric subset of the set of all roots. Then there exist an element K = ∑rankg

i=1 kiHi

such that α(K) = 0 for α ∈ �K . The reductive subalgebras of g correspond to the elements K

and the subset of roots �K . We will denote such the subalgebras by gK
0 . The basis of these

subalgebras consists of the elements {Xα,α ∈ �K ;Hi, i ∈ 1, rankg} (rankg = dimh).
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Each reductive subalgebra gK
0 provides its own “triangular” decomposition of g:

g = gK−1 + gK
0 + gK

1 ,

where [gK
0 ,gK

0 ] ⊂ gK
0 , [gK

0 ,gK±1] ⊂ gK±1, [gK±1,g
K±1] ⊂ gK±1 and the subalgebras gK±1 are nilpotent

subalgebras generated by the following basic elements: {Xα,α ∈ (�/�K)±}.
The reductive subalgebra gK

0 consists of its semisimple part — the ideal [gK
0 ,gK

0 ] and the
center — the abelian subalgebra c(gK

0 ) ⊂ h. Let us also note that using the definition of gK
0 it is

easy to show that the element K = ∑rankg
i=1 kiHi belongs to c(gK

0 ).

2.2. Case of classical matrix Lie algebras

Let us briefly illustrate the above theory by examples of classical matrix Lie algebras, their
root systems and reductive subalgebras. We will consider the examples of the elements K such
that the subalgebras gK±1 in the corresponding triangular decomposition are abelian. Only such
the cases will be used for the construction of BCS-type systems.

2.2.1. Case of g = gl(n)

The algebra gl(n) consists of all n by n matrices X. The natural basis of gl(n) consists of the
elements Xij , i, j ∈ 1, n which are n × n matrices with the matrix elements (Xij )ab = δiaδjb .
The Cartan subalgebra coincides with the algebra of diagonal matrices, and Hi ≡ Xii, i ∈ 1, n is
its orthonormal with respect to the form (X,Y ) = trXY basis. The set of all roots coincides with
the linear forms αij = αi − αj , where αi(Hj ) = δij , and the corresponding properly normalized
element of the root space gαij

is Xαij
≡ Xij (i �= j ). An arbitrary element of the Cartan subalge-

bra has the form K = ∑n
i=1 kiXii and αij (K) = ki −kj . The set of simple roots {α̃i , i ∈ 1, n − 1}

are the roots αii+1, i ∈ 1, n − 1.
Let us consider the degenerate element K ∈ h having the form: K = ∑n

i=1 kiXii , where
k1 = k2 = · · · = kp , kp+1 = · · · = kn. The corresponding reductive subalgebra gl(n)K0 is:
gl(n)K0 = gl(p) ⊕ gl(n − p). The set of roots �K has the form: �K = {αij : i, j ∈ 1,p ∪ i, j ∈
p + 1, n}. The abelian subalgebras gl(n)K±1 have the form: gl(n)K1 = SpanC{Xij , i ∈ 1,p, j ∈
p + 1, n}, gl(n)K−1 = SpanC{Xij , j ∈ 1,p, i ∈ p + 1, n}. The corresponding subset of roots are:

(�/�K)± = {±αij , i ∈ 1,p, j ∈ p + 1, n}.

2.2.2. Case of g = sp(2m)

This Lie algebra consists of the matrices X of a dimension n = 2m such that Xw = −wX,
where w is a matrix of the symplectic form in the linear space of dimension 2m: w = ( 0 1m

−1m 0

)
.

The corresponding matrix X is written explicitly as follows: X = ( a11 a12
a21 a22

)
, where the sub-

matrices aij act in the space of the dimension m and satisfy the following conditions:

a22 = −aT
11, a12 = aT

12, a21 = aT
21.

The Cartan subalgebra coincides with the set of the diagonal matrices, namely:

Hi = Xii − Xi+m,i+m, i ∈ 1,m. (6)

This basis in the Cartan subalgebra is orthonormal with respect to the form (X,Y ) = 1
2 trXY .

The set of positive roots coincides with the linear forms α− = αi − αj , α+ = αi + αj and 2αi
i,j i,j
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where αi(Hj ) = δij , i < j , i, j ∈ 1,m. The corresponding normalized basic elements of the root
spaces g±α±

i,j
, g±2αi

are given by the formulas:

Xα−
i,j

= Xi,j − Xj+m,i+m, X−α−
i,j

= Xj,i − Xi+m,j+m, i < j, i, j ∈ 1,m, (7a)

Xα+
i,j

= Xi,j+m + Xj,i+m, X−α+
i,j

= Xi+m,j + Xj+m,i, i < j, i, j ∈ 1,m, (7b)

X2αi
= √

2Xi,i+m, X−2αi
= √

2Xi+m,i, i ∈ 1,m, (7c)

where Xij is a basic element of gl(2m) defined as in the previous example. The set of the simple
roots {α̃i , i ∈ 1,m} consists of the roots α−

i,i+1, i ∈ 1,m − 1 and 2αm.
Let us consider the degenerate element K ∈ h of the form: K = ∑m

i=1 kiHi , with k1 =
k2 = · · · = km. The corresponding reductive subalgebra sp(2m)K0 is: sp(2m)K0 = gl(m). The
set of roots �K has the form: �K = {α−

i,j : i, j ∈ 1,m}. The nilpotent subalgebras sp(2m)K±1

are abelian and have the form: sp(2m)K1 = SpanC{Xα+
i,j

,X2αi
, i < j, i, j ∈ 1,m}, sp(2m)K−1 =

SpanC{X−α+
i,j

,X−2αi
, i < j, i, j ∈ 1,m}. The corresponding subset of roots are: (�/�K)± =

{±α+
i,j ,±2αi, i, j ∈ 1,m, i < j}.

2.2.3. Case of g = so(2m)

This Lie algebra consists of the matrices X of dimension 2m such that Xs = −sX, where s is
a matrix of the symmetric bilinear form in the linear space of dimension 2m: s = ( 0 1m

1m 0

)
. The

corresponding matrix X is written explicitly as follows: X = ( a11 a12
a21 a22

)
, where the sub-matrices

aij act in the space of the dimension m and satisfy the following conditions:

a22 = −aT
11, a12 = −aT

12, a21 = −aT
21.

The Cartan subalgebra coincides with the set of the diagonal matrices, namely:

Hi = Xii − Xi+m,i+m, i ∈ 1,m. (8)

This basis in the Cartan subalgebra is orthonormal with respect to the form (X,Y ) = 1
2 trXY .

The set of positive roots coincides with the linear forms α−
i,j = αi − αj , α+

i,j = αi + αj where

αi(Hj ) = δij , i < j , i, j ∈ 1,m. The corresponding normalized basic elements of the root spaces
g±α±

i,j
, g±2αi

are given by the formulas:

Xα−
i,j

= Xi,j − Xj+m,i+m, X−α−
i,j

= Xj,i − Xi+m,j+m, i < j, i, j ∈ 1,m, (9a)

Xα+
i,j

= Xj,i+m − Xi,j+m, X−α+
i,j

= Xi+m,j − Xj+m,i, i < j, i, j ∈ 1,m, (9b)

where Xij is a basic element of gl(2m) defined as previously. The set of the simple roots {α̃i , i ∈
1,m} consists of the roots α−

i,i+1, i ∈ 1,m − 1 and α+
m−1,m.

Let us consider the degenerated element K ∈ h of the form: K = ∑m
i=1 kiHi , with k1 = k2 =

· · · = km. The corresponding reductive subalgebra so(2m)K0 is: so(2m)K0 = gl(m). The set of
roots �K has the form: �K = {α−

i,j : i, j ∈ 1,m}. The nilpotent subalgebras so(2m)K±1 are abelian

and have the form: so(2m)K1 = SpanC{Xα+
i,j

, i < j, i, j ∈ 1,m}, so(2m)K−1 = SpanC{X−α+
i,j

, i <

j, i, j ∈ 1,m}. The corresponding subset of roots are: (�/�K)± = {±α+ , i, j ∈ 1,m, i < j}.
i,j
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3. Fermionization

The important technical tool in the construction of integrable BCS models is the “fermion-
ization” of integrable spin Hamiltonians based on Lie algebras. By the fermionization we will
mean the realization of complex Lie algebras (or direct sums of their N -copies) via n (or nN )
fermion creation–annihilation operators (i.e. via complex Clifford algebra in the space of the
dimension 2n (or 2nN )). The commutation relations of the fermions will be the standard an-
ticommutation relations. In more details, let ck,i ,c

†
l,j , k, l ∈ 1,N , i, j ∈ 1, n be the fermionic

creation–annihilation operators, i.e:

c
†
k,icl,j + cl,j c

†
k,i = δklδij 1, c

†
k,ic

†
l,j + c

†
l,j c

†
k,i = 0, ck,icl,j + cl,j ck,i = 0. (10)

We will use the standard representation of the fermion algebra with the vacuum vector |0〉 such
that

cl,j |0〉 = 0, ∀l ∈ 1,N, j ∈ 1, n.

The representation space is spanned over the elements

c
†
k1,i1

c
†
k2,i2

. . . c
†
kq ,iq

|0〉 where ks ∈ 1,N, is ∈ 1, n, (ks, is) �= (kt , it ) if s �= t.

There are different fermionization formulas that depend on a chosen Lie algebra and a chosen
class of its representations. In the next subsections we will construct the “fermionization” of
certain classes of representations of classical matrix Lie algebras that we will use in the present
paper.

Remark 2. Observe that in the applications the index i will label different types of fermions and
the index l will label fermions of the same type.

3.1. Case of g = gl(n)

In this subsection we describe a fermionic realization of the fundamental representations of
g = gl(n).

The following proposition holds true [5]:

Proposition 3.1. Let ck,i ,c
†
l,j , i, j ∈ 1, n, k, l ∈ 1,N satisfy the anticommutation relations (10).

Let us fix some integer p ∈ 1, n − 1. Then

(i) the following operators:

Ŝ
(l)
ij = cl,ic

†
l,j , where i, j ∈ 1,p, l ∈ 1,N, (11a)

Ŝ
(l)
ij = c

†
l,icl,j , where i, j ∈ p + 1, n, l ∈ 1,N, (11b)

Ŝ
(l)
ij = cl,icl,j , where i ∈ 1,p, j ∈ p + 1, n, l ∈ 1,N, (11c)

Ŝ
(l)
ij = c

†
l,ic

†
l,j , where j ∈ 1,p, i ∈ p + 1, n, l ∈ 1,N (11d)

constitute a fermion realization of the direct sum Lie algebra gl(n)⊕N , i.e.:[
Ŝ

(l)
ij , Ŝ

(k)
st

] = δkl

(
δsj Ŝ

(l)
it − δit Ŝ

(l)
sj

)
.
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(ii) the operators (11) acting on a fermion vacuum vector |0〉 span the finite-dimensional repre-
sentation of gl(n)⊕N with the highest weight Λ = (λ(1), λ(2), . . . , λ(N)), where λ(1) = λ(2) =
· · · = λ(N) = λ, λ = (λ1, λ2, . . . , λn) and λ1 = λ2 = · · · = λp = 1, λp+1 = λp+2 = · · · =
λn = 0.

Example 1. In the simplest gl(2)⊕N case the only meaningful choice is p = 1 and we obtain the
following fermionization formulas [21]:

Ŝ
(l)
21 = c

†
l,2c

†
l,1, Ŝ

(l)
12 = cl,1cl,2,

Ŝ
(l)
22 = c

†
l,2cl,2, Ŝ

(l)
11 = cl,1c

†
l,1, l ∈ 1,2, . . . ,N. (12)

After the restriction to the subalgebra sl(2)⊕N and the substitution Ŝ
(l)
12 = Ŝ

(l)
+ , Ŝ

(l)
21 = Ŝ

(l)
− , Ŝ

(l)
11 −

Ŝ
(l)
22 = 2Ŝ

(l)
3 we obtain the standard fermionization of the Lie algebra sl(2) used in the BCS

models [8,14].

3.2. Case of g = sp(2m)

The Lie algebra sp(2m) is important for the applications in nuclear physics. In this subsection
we describe its fermionization. For this purpose it is convenient to use the root basis of sp(2m)

described in Section 2.2.2 rather than the matrix one.
The following proposition holds true [5]:

Proposition 3.2. Let ck,i ,c
†
l,j , i, j ∈ 1,2m, k, l ∈ 1,N satisfy the anticommutation relations (10).

Then

(i) the following operators:

Ŝ
(l)
i = (

1 − (
c

†
l,icl,i + c

†
l,i+mcl,i+m

))
, where i ∈ 1,m, l ∈ 1,N, (13a)

Ŝ
(l)

α−
i,j

= (
cl,ic

†
l,j − c

†
l,j+mcl,i+m

)
, where i < j, i, j ∈ 1,m, l ∈ 1,N, (13b)

Ŝ
(l)

α+
ij

= (cl,icl,j+m + cl,j cl,i+m), where i < j, i, j ∈ 1,m, l ∈ 1,N, (13c)

Ŝ
(l)
2αi

= √
2cl,icl,i+m, where i ∈ 1,m, l ∈ 1,N, (13d)

Ŝ
(l)

−α−
i,j

= (
Ŝ

(l)

α−
i,j

)†
, Ŝ

(l)

−α+
i,j

= (
Ŝ

(l)

α+
i,j

)†
,

Ŝ
(l)
−2αi

= (
Ŝ

(l)
2αi

)†
, where i < j, i, j ∈ 1,m, l ∈ 1,N (13e)

constitute a fermion realization of the direct sum Lie algebra sp(2m)⊕N .
(ii) the operators (13) acting on a fermion vacuum vector |0〉 span the finite-dimensional rep-

resentation of sp(2m)⊕N with the highest weight Λ = (λ(1), λ(2), . . . , λ(N)), were λ(1) =
λ(2) = · · · = λ(N) = λ, λ = (1,1, . . . ,1).

Example 2. In the simplest sp(2)⊕N case the only non-trivial generators are Ŝ
(l)
1 , Ŝ

(l)
±2α1

which
are written in terms of the fermionization formulas equivalent to those discussed in Example 1.
This equivalence is explained by the well-known isomorphism: sp(2) � sl(2).
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Example 3. In sp(4)⊕N case, i.e. in when m = 2 we obtain the following fermionization formu-
las:

Ŝ
(l)
1 = (

1 − (
c

†
l,1cl,1 + c

†
l,3cl,3

))
, Ŝ

(l)
2 = (

1 − (
c

†
l,2cl,2 + c

†
l,4cl,4

))
,

Ŝ
(l)

α−
1,2

= (
cl,1c

†
l,2 − c

†
l,4cl,3

)
,

Ŝ
(l)

α+
1,2

= (cl,1cl,4 + cl,2cl,3),

Ŝ
(l)
2α1

= √
2cl,1cl,3, Ŝ

(l)
2α2

= √
2cl,2cl,4,

Ŝ
(l)

−α−
1,2

= (
Ŝ

(l)

α−
1,2

)†
, Ŝ

(l)

−α+
1,2

= (
Ŝ

(l)

α+
1,2

)†
, Ŝ

(l)
−2α1

= (
Ŝ

(l)
2α1

)†
, Ŝ

(l)
−2α2

= (
Ŝ

(l)
2α2

)†
,

where l ∈ 1,N . This fermionization is equivalent to the fermionization constructed in [9] for
g = so(5). It is explained by the isomorphism sp(4) � so(5) existing in this case.

3.3. Case of g = so(2m)

The Lie algebra so(2m) may also be important for the applications. In this subsection we
describe the fermionization of so(2m) based on its realization as a subalgebra in gl(2m). This
fermionization will be similar to the one written for a symplectic Lie algebra.

The following proposition holds true [5]:

Proposition 3.3. Let ck,i ,c
†
l,j , i, j ∈ 1,2m, k, l ∈ 1,N satisfy anticommutation relations (10).

Then

(i) the following operators:

Ŝ
(l)
i = (

1 − (
c

†
l,icl,i + c

†
l,i+mcl,i+m

))
, where i ∈ 1,m, l ∈ 1,N, (14a)

Ŝ
(l)

α−
i,j

= (
cl,ic

†
l,j − c

†
l,j+mcl,i+m

)
, where i < j, i, j ∈ 1,m, l ∈ 1,N, (14b)

Ŝ
(l)

α+
ij

= (cl,j cl,i+m − cl,icl,j+m), where i < j, i, j ∈ 1,m, l ∈ 1,N, (14c)

Ŝ
(l)

−α−
i,j

= (
Ŝ

(l)

α−
i,j

)†
, Ŝ

(l)

−α+
i,j

= (
Ŝ

(l)

α+
i,j

)†
, where i < j, i, j ∈ 1,m, l ∈ 1,N (14d)

constitute a fermion realization of the direct sum Lie algebra so(2m)⊕N .
(ii) the operators (14) acting on a fermion vacuum vector |0〉 span the finite-dimensional rep-

resentation of so(2m)⊕N with the highest weight Λ = (λ(1), λ(2), . . . , λ(N)), were λ(1) =
λ(2) = · · · = λ(N) = λ, λ = (1,1, . . . ,1).

Example 4. In so(4)⊕N case, i.e. when m = 2 we obtain the following fermionization formulas:

Ŝ
(l)
1 = (

1 − (
c

†
l,1cl,1 + c

†
l,3cl,3

))
, Ŝ

(l)
2 = (

1 − (
c

†
l,2cl,2 + c

†
l,4cl,4

))
,

Ŝ
(l)

α−
1,2

= (
cl,1c

†
l,2 − c

†
l,4cl,3

)
, Ŝ

(l)

α+
1,2

= (cl,2cl,3 − cl,1cl,4),

Ŝ
(l)

−α−
1,2

= (
Ŝ

(l)

α−
1,2

)†
, Ŝ

(l)

−α+
1,2

= (
Ŝ

(l)

α+
1,2

)†
,

where l ∈ 1,N .
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Remark 3. Observe that the operators (14) in this case, like in the case of g = gl(n), do not span
the whole fermion Fock space (which is completely reducible so(2m)⊕N -module) but only its
irreducible submodule containing the vacuum vector.

4. Generalized Gaudin systems

4.1. General classical r-matrices and “shift elements”

In the construction of BCS models classical r-matrices are used. That is why we have to
remind several main facts about them. We will need the following definition [29–31]:

Definition 1. A function of two complex variables r(u1, u2) with values in the tensor square of
the algebra g is called a classical r-matrix if it satisfies the following “generalized Yang–Baxter
equation”:[

r12(u1, u2), r13(u1, u3)
] = [

r23(u2, u3), r12(u1, u2)
] − [

r32(u3, u2), r13(u1, u3)
]
, (15)

where r12(u1, u2) ≡ ∑dimg

a,b=1 rab(u1, u2)Xa ⊗ Xb ⊗ 1, etc.

Remark 4. Let us note that if the matrix r(u1, u2) is “skew-symmetric”, i.e. r12(u1, u2) =
−r21(u2, u1), Eq. (15) pass into the usual classical Yang–Baxter equation [4]:[

r12(u1, u2), r13(u1, u3)
] = [

r23(u2, u3), r12(u1, u2) + r13(u1, u3)
]
. (16)

Hereafter we will not be interested in the global geometry associated with the solutions of (15)
preferring to work in some local parametrization. In more details, we will assume that the pa-
rameters u and v are such that in some open region U ⊂ C

2 the r matrix r(u, v) possesses the
decomposition:

r(u, v) = Ω

(u − v)
+ r0(u, v) (17)

where Ω ∈ g⊗ g is the tensor Casimir: Ω = ∑dimg

a,b=1 gabXα ⊗ Xb and r0(u, v) is a regular in U
g⊗ g-valued function, i.e. is decomposed into a Taylor power series in u and v.

Lat g0 be a Lie subalgebra of g. We will use the following definition:

Definition 2. The classical r-matrix r(u, v) is called g0-invariant if for all X ∈ g0 the following
identity holds true:[

r12(u, v),X ⊗ 1 + 1 ⊗ X
] = 0. (18)

Note, that on the level of Lie groups the property (18) means exactly the invariance:

(g ⊗ g)r12(u, v) = r12(u, v),

for g ∈ G0, where G0 is a Lie group of g0.

We will need also the following definition [19]:

Definition 3. A g-valued function of one complex variable c(u) = ∑dimg

a=1 ca(u)Xa is called a
“generalized shift element” if it solves the following equation:[

r12(u, v), c1(u)
] − [

r21(v,u), c2(v)
] = 0. (19)
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Remark 5. Observe that the generalized shift elements constitute a linear space, i.e. one can add
them and multiply by complex numbers. Observe also that for the skew-symmetric g0-invariant
r-matrices (and for some special non-skew-symmetric ones) any element X ∈ g0 is a shift el-
ement. For general non-skew-symmetric r-matrices shift elements are not connected with the
symmetry of the r-matrix.

4.2. Linear algebra of the Lax operators

Having general solution of Eq. (15) one can define the “Lie algebra of quantum Lax operators”
by one convoluted “tensor” formula:[

L̂1(u), L̂2(v)
] = [

r12(u, v), L̂1(u)
] − [

r21(v,u), L̂2(v)
]
, (20)

where L̂1(u) = L̂(u) ⊗ 1, L̂2(v) = 1 ⊗ L̂(v), L̂(u) = ∑dimg

a=1 L̂a(u)Xa .

Remark 6. The form of the Lax operator as a function of quantum dynamical variables depends
on the physical model under the consideration. In this paper we will consider the most important
form of such the Lax operators corresponding to generalized Gaudin systems in an external
magnetic field.

The role of the generating function of the quantum integrals usually plays the function
tr L̂2(u). For the subsequent we will need to know its symmetry algebra, coinciding with the
symmetry algebra of the integrals it generates. The following proposition holds true:

Proposition 4.1. Let g be a semisimple Lie algebra and g0 its subalgebra. Let M̂a , a ∈ 1,dimg0
be some operators that act on the Lax operators L̂(u) by the adjoint representation of g0:

[
M̂a, L̂b(u)

] =
dimg∑
c=1

Cc
abL̂c(u), where a ∈ 1,dimg0, b ∈ 1,dimg. (21)

Then (i) the operators M̂a constitute the Lie algebra isomorphic to g0:

[M̂a, M̂b] =
dimg0∑
c=1

Cc
abM̂c, a, b ∈ 1,dimg0. (22)

(ii) the Lie algebra Ma centralizes the algebra of integrals generated by tr L̂2(u) i.e.:[
M̂a, tr L̂2(u)

] = 0.

Proof. Let us prove the item (i) of the proposition. For this purpose it is enough to utilize the
relations (21) and Jacobi identity. Indeed, using the Jacobi identity we obtain:[

M̂a,
[
M̂b, L̂c(u)

]] − [
M̂b,

[
M̂a, L̂c(u)

]] − [[M̂a, M̂b], L̂c(u)
] = 0.

On the other hand, using two times the relations (21) and the Jacobi identity for the structure con-
stants of g one can show that [M̂a, [M̂b, L̂c(u)]] − [M̂b, [M̂a, L̂c(u)]] = ∑dimg

d,e=1 Cd
abC

e
dcL̂e(u).

Using again the relations (21) we obtain:
∑dimg

d,e=1 Cd
abC

e
dcL̂e(u) = ∑dimg

d=1 Cd
ab[M̂d, L̂c(u)]. That

is we obtain that [[M̂a, M̂b] − ∑dimg

d=1 Cd
abM̂d, L̂c(u)] = 0. Using the semisimple nature of g we

finally derive that [M̂a, M̂b] = ∑dimg
Cd M̂d .
d=1 ab
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The proof of the item (ii) is also straightforward. Indeed we have:

[
M̂a, tr L̂2(u)

] =
[
M̂a,

dimg∑
b,d=1

gbdL̂b(u)L̂d(u)

]

=
dimg∑

c,b,d=1

(
gbdCc

abL̂c(u)L̂d(u) + gbdCc
adL̂b(u)L̂c(u)

)

=
dimg∑

c,b,d=1

(
gbdCc

abL̂c(u)L̂d(u) + gcbCd
abL̂c(u)L̂d(u)

)

=
dimg∑

c,b,d=1

(
Ccd

a + Cdc
a

)
L̂c(u)L̂d(u) = 0,

due to the skew-symmetry of the structure tensor Ccd
a : Ccd

a = −Cdc
a . Proposition is proven. �

Remark 7. This proposition permits us to widen the algebra of integrals generated by tr L̂2(u).

4.2.1. Generalized Gaudin Hamiltonians in external magnetic field
Let Ŝ

(l)
a , a ∈ 1,dimg, l ∈ 1,N be quantum operators that constitute a representation of the

Lie algebra g⊕N , i.e.:

[
Ŝ(l)

a , Ŝ
(k)
b

] = δkl

dimg∑
c=1

Cc
abŜ

(k)
c .

Let νk , νk �= νl , k, l ∈ 1, . . . ,N be some fixed points on the complex plane belonging to the
open region U in which the r-matrix r(u, v) possesses the decomposition (17). Let c(u) be a
generalized shift element and νk , k,∈ 1,N be its regular points. In this case it is possible to show
[17,19] that the following operator:

L̂(u) =
N∑

k=1

dimg∑
a,b=1

rab(νk, u)Ŝ(k)
a Xb +

dimg∑
a=1

ca(u)Xa (23)

satisfies the linear Lax algebra (20).
Let us assume that an algebra Lie g is realized as a subalgebra of the full matrix algebra. Let

us define the following set of quantum operators3:

Ĥl = − 1

2cg
resu=νl

tr L̂2(u).

The following theorem holds true [17,19]:

Theorem 4.1. Let the r-matrix r(u, v), points νk , shift element c(u), spin operators Ŝ
(l)
a , k ∈ 1,

. . . ,N a ∈ 1,dimg be as above. Then:

3 The normalization coefficient cg depends on the algebra: cg = 1 for gl(n), cg = 2 for so(2m) and sp(2m).
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(i) the operators Ĥl , l ∈ 1,N constitute an abelian (commutative) algebra.
(ii) the operators Ĥl have the following explicit form:

Ĥl =
dimg∑
a,b=1

N∑
k=1,k �=l

rab(νk, νl)Ŝ
(k)
a Ŝ

(l)
b + 1

2

dimg∑
a,b=1

rab
0 (νl, νl)

(
Ŝ(l)

a Ŝ
(l)
b + Ŝ

(l)
b Ŝ(l)

a

)

+
dimg∑
a=1

ca(νl)Ŝ
(l)
a . (24)

Remark 8. The operators (24) are generalized Gaudin Hamiltonians in an external magnetic
field [19]. They may be interpreted as energies of the spinning particle living at the site l, that
interact with the spins living at other sites, with itself and with the external non-uniform magnetic
field. The case c(u) = 0 corresponds to the generalized Gaudin Hamiltonians without external
magnetic field, that were introduced in [17].

Remark 9. Observe that additionally to the Hamiltonians Ĥl there always exist the “trivial”
integrals — Casimir operators, in particular, the quadratic Casimir operators Ĉ2

l commuting with
the Hamiltonians and having the form:

Ĉ2
l =

dimg∑
a,b=1

gabŜ(l)
a Ŝ

(l)
b .

Remark 10. Generally speaking, for higher rank Lie algebras the constructed quantum opera-
tors (24) do not constitute a complete family of “non-trivial” commutative integrals. In order to
construct such a family one needs to construct the so-called “higher Gaudin Hamiltonians”. This
is a complicated mathematical problem solved only for the partial case g = gl(n) and standard
rational r-matrices [32]. Fortunately for physical applications one needs to know only quadratic
Gaudin-type Hamiltonians (24) and the “additional” integrals M̂a stemming from the “geomet-
ric” symmetry of the model.

4.3. Symmetries of the generalized Gaudin models in magnetic field

In this subsection we will describe the additional integrals M̂a for the case of the generalized
Gaudin models in an external magnetic field.

The following proposition is true:

Proposition 4.2. Let the r-matrix r(u, v) be g0-invariant. Let νk , k ∈ 1,N be the regular points
of the r-matrices. Let L̂(u) = ∑dimg

b,d=1(r
bd(νk, u)Ŝ

(k)
b + cd(u))Xd = ∑dimg

d=1 L̂d(u)Xd be the Lax
operator of the generalized Gaudin system in an external magnetic field. Let z(c(u)) be a cen-
tralizer of the element c(u) in g. Then the operators: M̂a = ∑N

n=1 Ŝ
(k)
a , where Xa ∈ g0 ∩ z(c(u))

satisfy the condition (21).

Proof. The proposition is proven directly, using the invariance of the r-matrix. Indeed by direct
calculation one can show that the g0-invariance of the r-matrix has the following expression in
the component form:
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dimg∑
b=1

(
rbd(u, v)Cc

ab + rcb(u, v)Cd
ab

) = 0, where a ∈ 1,dimg0, d, c ∈ 1,dimg. (25)

Using (25) we obtain:[
M̂a, L̂

d(u)
]

=
[

N∑
n=1

Ŝ(k)
a ,

dimg∑
b=1

rbd(νk, u)Ŝ
(k)
b + cd(u)

]
=

[
N∑

n=1

Ŝ(k)
a ,

dimg∑
b=1

rbd(νk, u)Ŝ
(k)
b

]

=
N∑

n=1

dimg∑
c,b=1

Cc
abr

bd(νk, u)Ŝ(k)
c = −

dimg∑
c,b=1

Cd
abr

cb(νk, u)Ŝ(k)
c = −

dimg∑
b=1

Cd
abL̂

b(u),

where we have used the equality
∑dimg

b=1 Cd
abc

b(u) = 0 which is equivalent to the condition
[Xa, c(u)] = 0, i.e. Xa ∈ z(c(u)). Now, using the properties of the structure tensor Cc

ab , and
invariant metric gde, it is straightforward to show that this condition is equivalent to the condi-
tion (21). The proposition is proven. �
Remark 11. Observe that in the case of the generalized Gaudin models in an external magnetic
field the symmetry of the model coincides with the intersection of the symmetry of the r-matrix
and symmetry of the shift element c(u).

For obtaining of the meaningful BCS Hamiltonians starting from Gaudin-type models it will
be very important that the symmetry algebra of the model contains the Cartan subalgebra h of g
elements of which will play the role of the particle number operators. This is achieved, when the
Cartan subalgebra belongs to a symmetry algebra of the r-matrix and the shift element c(u) takes
its values in the Cartan subalgebra. In the next subsection we will consider one of the simplest
examples of such the r-matrices, shift elements and Gaudin-type systems.

5. Example: Z2-graded r-matrices and Gaudin Hamiltonians

In this subsection we will consider a class of examples of classical r-matrices and generalized
Gaudin models that will be basic throughout the rest of the article.

5.1. “Z2-graded” non-skew-symmetric r-matrices and shift elements

Let σ be an automorphism of g of a second order. Let g = g0 + g1 be the corresponding
Z2-grading of g, i.e:

[g0,g0] ⊂ g0, [g0,g1] ⊂ g1, [g1,g1] ⊂ g0.

It is known (see e.g. [18,23]) that the non-skew-symmetric tensor

r12(u, v) = 2v

u2 − v2
Ω0

12 + 2u

u2 − v2
Ω1

12, (26)

where Ω0
12 = ∑dimg0

α=1 X0,α ⊗ X0,α , Ω1
12 = ∑dimg1

α=1 X1,α ⊗ X1,α , Xj,α and Xj,α are dual basises
in g , satisfies the generalized classical Yang–Baxter equation.
j
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It is straightforward to show that the r-matrix (27) is g0̄-invariant. Due to the fact that the
r-matrix (27) is not skew-symmetric, elements of X ∈ g0̄ are not shift elements. Nevertheless,
for the reductive g0̄ it is possible to show [24] that shift elements in this case lie in the quotient
space u−1(g0̄/[g0̄,g0̄])∗.

Remark 12. The r-matrix (26) is a particular example of σ -twisted classical r-matrices of the
following form [18]:

rσ
12(u, v) = r12(u − v) − 1 ⊗ σ · r12(u + v),

where r12(u − v) is a σ -invariant classical skew-symmetric r-matrix (see [18]). In more details,
the r-matrix (26) is a σ -twisted rational r-matrix i.e. in this case: r12(u − v) = Ω12

u−v
, where

Ω12 = ∑dimg

α,β=1 gαβXα ⊗ Xβ .

In order to proceed with the construction of BCS-type models we will hereafter assume that
automorphism σ and the corresponding Z2-grading of g is such that

g0 = gK
0 , g1 = gK

1 + gK−1,

where the subalgebra gK
0 is reductive, the subalgebras gK

0 are nilpotent and the decomposition
g = gK−1 + gK

0 + gK
1 is triangular. In order for these definitions to be consistent one has to require

moreover gK±1 be abelian, i.e. if α,β ∈ (�/�K)+ then α + β /∈ �+.
The corresponding r-matrix (26) may be written in this case as follows:

r12(u, v) = 2v

u2 − v2

( rankg∑
i=1

Hi ⊗ Hi +
∑

α∈(�K)+
(Xα ⊗ X−α + X−α ⊗ Xα)

)

+ 2u

u2 − v2

∑
α∈(�/�K)+

(Xα ⊗ X−α + X−α ⊗ Xα). (27)

Due to the said above, in this case we may take the following shift element: c(u) = u−1K .

5.2. Z2-graded Gaudin systems in a magnetic field

Let us consider the Lax operator corresponding to the r-matrix (26) and generalized Gaudin
Hamiltonians in magnetic field. By virtue of the general formula (23) it has the form:

L̂(u) =
N∑

k=1

(
2u

(ν2
k − u2)

( dimg0̄∑
a,b=1

gabŜ(k)
a Xb

)
+ 2νk

(ν2
k − u2)

dimg1̄∑
a,b=1

gabŜ(k)
a Xb

)

+ 1

u

dimg0̄∑
a=1

kaXa. (28)

The generalized Gaudin Hamiltonians in a magnetic field associated with a Z2-graded r-
matrix are more complicated and less symmetric than usual rational ones. They have the follow-
ing form:
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Ĥl =
N∑

k=1,k �=l

(
2νl

(ν2
k − ν2

l )

( dimg0̄∑
a,b=1

gabŜ(k)
a Ŝ

(l)
b

)
+ 2νk

(ν2
k − ν2

l )

dimg1̄∑
a,b=1

gabŜ(k)
a Ŝ

(l)
b

)

− 1

2νl

dimg0̄∑
a,b=1

gabŜ(l)
a Ŝ

(l)
b + 1

2νl

dimg1̄∑
a,b=1

gabŜ(l)
a Ŝ

(l)
b + 1

νl

dimg0̄∑
a=1

kaŜ
(l)
a , (29)

where K = ∑dimg0̄
a=1 kaXa is not arbitrary element of g∗̄

0
but belongs to the quotient space

(g0̄/[g0̄,g0̄])∗.
In the case of Z2-gradings connected with triangular decompositions the Lax operator (28) is

written as follows:

L̂(u) =
N∑

k=1

(
2u

(ν2
k − u2)

( rankg∑
i=1

Ŝ
(k)
i Hi +

∑
α∈(�K)+

(
Ŝ(k)

α X−α + Ŝ
(k)
−αXα

))

+ 2νk

(ν2
k − u2)

∑
α∈(�/�K)+

(
Ŝ(k)

α X−α + Ŝ
(k)
−αXα

)) + 1

u

rankg∑
i=1

kiHi,

and the Hamiltonians (29) have the following explicit form:

Ĥl =
N∑

k=1,k �=l

(
2νl

(ν2
k − ν2

l )

( rankg∑
i=1

Ŝ
(k)
i Ŝ

(l)
i +

∑
α∈(�K)+

(
Ŝ(k)

α Ŝ
(l)
−α + Ŝ

(k)
−αŜ(l)

α

))

+ 2νk

(ν2
k − ν2

l )

∑
α∈(�/�K)+

(
Ŝ(k)

α Ŝ
(l)
−α + Ŝ

(k)
−αŜ(l)

α

))

− 1

2νl

( rankg∑
i=1

Ŝ
(l)
i Ŝ

(l)
i +

∑
α∈(�K)+

(
Ŝ(l)

α Ŝ
(l)
−α + Ŝ

(l)
−αŜ(l)

α

))

+ 1

2νl

∑
α∈(�/�K)+

(
Ŝ(l)

α Ŝ
(l)
−α + Ŝ

(l)
−αŜ(l)

α

) + 1

νl

rankg∑
i=1

ki Ŝ
(l)
i , (30)

where K = ∑rankg
i=1 kiHi coincides with the element of the Cartan subalgebra centralized by gK

0 ,
because in this case the quotient algebra gK

0 /[gK
0 ,gK

0 ] coincides with a center of gK
0 and belongs

to h.4

Remark 13. Observe that due to the fact that symmetry algebra of the element K coincides
with the symmetry algebra of the r-matrix, introduction of the external magnetic field does not
decrease the symmetry of the corresponding generalized Gaudin Hamiltonians in a magnetic
field. Their symmetry algebra is the global spin algebra gK

0 . It always contains Cartan algebra
as it subalgebra. For the case of the arbitrary Z2-graded r-matrix (26) situation is similar —
the symmetry algebra of the corresponding generalized Gaudin Hamiltonians is a global spin
algebra g0̄. But, in this more general case g0̄ may contain only a part of the Cartan subalgebra
of g.

4 Hereafter we identify the spaces h∗ and h.



788 T. Skrypnyk / Nuclear Physics B 864 [FS] (2012) 770–805
6. Generalized (px + ipy )-type BCS models

In this section we write an explicit form of the higher rank generalized BCS Hamiltonians
associated with non-skew-symmetric classical r-matrices. The form of the Hamiltonians will be
different for different r-matrices, that is why we will concentrate on the main example of the
present paper — Z2-graded r-matrices. They will produce the generalized BCS models of the
px + ipy type.

6.1. Higher rank (px + ipy )-type BCS Hamiltonian in spin form

In order to obtain the BCS Hamiltonians of px + ipy type it is necessary to consider their
spin version. For this purpose let us consider the following linear combination of the Z2-graded
Gaudin Hamiltonians in a magnetic field:

Ĥ
px+ipy

gBCS =
N∑

l=1

ν−1
l Ĥl + 1

2

N∑
l=1

ν−2
l Ĉ2

l , (31)

where Ĉ2
l are Casimir operators of lth copy of g in g⊕N or, more explicitly:

Ĥ
px+ipy

gBCS =
N∑

k=1

ν−2
l

dimg0̄∑
i=1

kaŜ
(l)
a +

N∑
k,l=1

dimg1̄∑
a,b=1

gabν−1
k ν−1

l Ŝ(k)
a Ŝ

(l)
b , (32)

where K = ∑dimg0̄
a=1 kaXa belongs to the quotient algebra g0̄/[g0̄,g0̄].

The Hamiltonian (32) is the general integrable BCS-Richardsons Hamiltonian associated with
Z2-grading of g and written in the spin form. In order to give it more applicable form we assume
that the decomposition g = g0̄ + g1̄ is based on the triangular decomposition of g.

In this the Hamiltonian (32) acquires the following form:

Ĥ
px+ipy

gBCS =
N∑

k=1

ν−2
l

rankg∑
i=1

ki Ŝ
(l)
i +

N∑
k,l=1

ν−1
k ν−1

l

∑
α∈(�/�K)+

(
Ŝ(k)

α Ŝ
(l)
−α + Ŝ

(k)
−αŜ(l)

α

)
, (33)

where K = ∑rankg
i=1 kiHi belongs to the center of the Lie algebra gK

0 .
We will also need to represent the Hamiltonian (33) in the “normal-ordered form”:

Ĥ
px+ipy

gBCS =
N∑

k=1

ν−2
l

rankg∑
i=1

(
ki + δK(Hi)

)
Ŝ

(l)
i + 2

N∑
k,l=1

ν−1
k ν−1

l

∑
α∈(�/�K)+

Ŝ
(k)
−αŜ(l)

α , (34)

where δK ≡ ∑
α∈(�/�K)+ α.

The Hamiltonian (34) is our general integrable px + ipy BCS Hamiltonian written in the spin
form.

Remark 14. Observe also that the Hamiltonian (34) commutes with the global operators M̂i =∑N
n=1 Ŝ

(k)
i , i ∈ 1, rankg, representing the Cartan symmetry, which thus are also included in the

constructed commutative family and are diagonalized simultaneously with Ĥ
px+ipy

gBCS . Physically
this will mean that the number of each type of fermions is a good quantum number.
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6.2. Higher rank (px + ipy )-type BCS Hamiltonian: case of gl(n)

Now we are ready to obtain the px + ipy BCS Hamiltonian with many types of fermions. For
this purpose we will use the fermionization formulas (11) and the specially chosen element K

described in Section 2.2.1. Applying the general formula (34) for this choice of the algebra g and
root subsystem (�/�K)+ we obtain the following spin Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

ν−2
l

(
p∑

i=1

(
kp + (n − p)

)
S

(l)
ii +

n∑
i=p+1

(kn − p)S
(l)
ii

)

+ 2
N∑

k,l=1

ν−1
k ν−1

l

p∑
i=1

n∑
j=p+1

Ŝ
(k)
j i Ŝ

(l)
ij , (35)

which yields (up to the constant — “vacuum energy”) after the fermionization (11) the following
BCS-type Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

εl

(
p∑

i=1

(−kp − (n − p)
)
c

†
l,icl,i +

n∑
i=p+1

(kn − p)c
†
l,icl,i

)

+ 2
N∑

k,l=1

p∑
i=1

n∑
j=p+1

√
εk

√
εlc

†
l,j c

†
l,ick,ick,j , (36)

where we have introduced the following obvious notation: εl ≡ ν−2
l .

6.2.1. Higher rank (px + ipy )-type BCS Hamiltonian: case of gl(2m)

Let us restrict ourselves to the case n = 2m, p = m and assume that k2m = −km and the
operators cl,i , c

†
l,i and cl,i+m, c

†
l,i+m correspond to the two “time-reversed” states of the fermion

of number l and of type i:

cl,i ≡ cl,i,−, c
†
l,i ≡ c

†
l,i,−, cl,i+m ≡ cl,i,+,

c
†
l,i+m ≡ c

†
l,i,+, i ∈ 1,m, l ∈ 1,N.

In such the notations we see that the Hamiltonian (36) (after division by −(km + m)) acquires
the form:

Ĥ
px+ipy

gBCS =
N∑

l=1

m∑
i=1

εl

(
c

†
l,i,−cl,i,− + c

†
l,i,+cl,i,+

)

− g

N∑
k,l=1

√
εk

√
εl

m∑
i,j=1

c
†
l,j,+c

†
l,i,−ck,i,−ck,j,+, (37)

where g ≡ 2(km + m)−1.
The first term in the Hamiltonian (37) is a kinetic term of fermions with the free energies

εl ≡ ν−2
l . The second describes the pairing interaction of fermions of m different types. The

interaction takes place only between “time-reversed” fermions, its strength does not depend on a
fermion type but does depend on the fermion number, i.e.: gk,i;l,j = g

√
εk

√
εl , where i, j ∈ 1,m,

k, l ∈ 1,N .
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Observe that from the general Lie-theoretical consideration exposed above it follows that there
exists the “geometric” symmetry of the Hamiltonian (37) given by the Lie algebra gl(m)⊕ gl(m)

with the following generators:

M̂ij =
N∑

l=1

cl,i,−c
†
l,j,−, i, j ∈ 1,m, M̂s+mt+m =

N∑
l=1

c
†
l,s,+cl,t,+, s, t ∈ 1,m.

This Lie algebra contains the commutative subalgebra — the Cartan algebra of “number of par-
ticles” operators M̂ii , M̂ss , i ∈ 1,m, s ∈ m + 1,2m, i.e. number of particles of each type i ∈ 1,m

and each “spin” δ ∈ (+,−) are good quantum numbers.

Example 5. Let us consider the simplest one type of fermions case m = 1 (g = gl(2)). In this
case we obtain the following Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

εl

(
c

†
l,−cl,− + c

†
l,+cl,+

) − g

N∑
k,l=1

√
εk

√
εlc

†
l,+c

†
l,−ck,−ck,+. (38)

It coincides with the Hamiltonian of the second integrable case of the reduced BCS model dis-
covered in [21] and [25]. The “geometric” symmetry algebra of the Hamiltonian (39) is the Lie
algebra gl(1) ⊕ gl(1) with the following generators:

M̂11 =
N∑

l=1

cl,−c
†
l,−, M̂22 =

N∑
l=1

c
†
l,+cl,+.

Example 6. Let us consider the more complicated case m = 2 (g = gl(4)). In this case there
are two types of fermions which may be interpreted as protons and neutrons. Introducing the
notations:

cl,1,− ≡ nl,−, c
†
l,1,− ≡ n

†
l,−, cl,1,+ ≡ nl,+, c

†
l,1,+ ≡ n

†
l,+,

cl,2,− ≡ pl,−, c
†
l,2,− ≡ p

†
l,−, cl,2,+ ≡ pl,+, c

†
l,2,+ ≡ p

†
l,+,

we obtain the following integrable proton–neutron BCS Hamiltonian of the “type px + ipy”:

Ĥ
px+ipy

gBCS =
N∑

l=1

εl

(
n

†
l,−nl,− + n

†
l,+nl,+ + p

†
l,−pl,− + p

†
l,+pl,+

)

− g

N∑
k,l=1

√
εk

√
εl

(
n

†
l,+n

†
l,−nk,−nk,+ + p

†
l,+p

†
l,−pk,−pk,+

+ p
†
l,+n

†
l,−nk,−pk,+ + n

†
l,+p

†
l,−pk,−nk,+

)
. (39)

From the general consideration above the “geometric” symmetry of the Hamiltonian (39) is given
by the Lie algebra gl(2) ⊕ gl(2) with the following generators:

M̂ij =
N∑

l=1

cl,i,−c
†
l,j,−, i, j ∈ 1,2, M̂s+2 t+2 =

N∑
l=1

c
†
l,s,+cl,t,+, s, t ∈ 1,2.

This Lie algebra contains the commutative subalgebra — the Cartan algebra of “number of par-
ticles” operators M̂ii , i ∈ 1,4, i.e. number of protons and neutrons of each “spin” δ ∈ (+,−) are
good quantum numbers.
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6.3. Higher rank (px + ipy )-type BCS Hamiltonian: case of sp(2m)

Let us obtain the (px + ipy )-type BCS Hamiltonian with many types of fermions associated
with sp(2m). For this purpose we will us use the fermionization formulas (13) and the specially
chosen element K described in Section 2.2.2. The external magnetic field and the r-matrix are
defined with the help of this element K and share the same symmetry with it.

Applying the general formula (34) for this choice of the algebra g, element K and root sub-
system (�/�K)+, we obtain the following spin-BCS Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

ν−2
l

m∑
i=1

(ki + m + 1)S
(l)
i

+ 2
N∑

k,l=1

ν−1
k ν−1

l

(
m∑

i,j=1,i<j

S
(l)

−α+
i,j

S
(k)

α+
i,j

+
m∑

i=1

S
(l)
−2αi

S
(k)
2αi

)
. (40)

Using the fermionization formulas (13) and introducing there the notations

cl,i ≡ cl,i,−, c
†
l,i ≡ c

†
l,i,−, cl,i+m ≡ cl,i,+,

c
†
l,i+m ≡ c

†
l,i,+, i ∈ 1,m, l ∈ 1,N

we obtain the following expression for the Hamiltonian (40):

Ĥ
px+ipy

gBCS =
N∑

l=1

m∑
i=1

εl

(
c

†
l,i,−cl,i,− + c

†
l,i,+cl,i,+

)

− 2g

N∑
k,l=1

√
εk

√
εl

m∑
i=1

c
†
l,i,+c

†
l,i,−ck,i,−ck,i,+

− g

N∑
k,l=1

√
εk

√
εl

m∑
i,j=1,i<j

(
c

†
l,j,+c

†
l,i,− + c

†
l,i,+c

†
l,j,−

)
× (ck,i,−ck,j,+ + ck,j,−ck,i,+), (41)

where εl = ν−2
l , g = 2(km + (m + 1))−1. In order to obtain the Hamiltonian (41) we have ex-

tracted from the Hamiltonian (40) the vacuum energy (km + (m + 1))m
∑N

l=1 εl , multiplied the
Hamiltonian by −(km + (m + 1))−1 and used that in the considered case k1 = · · · = km.

The first term in the Hamiltonian (41) is a kinetic term. The second and third terms describe
a pairing interaction of fermions of m different types. The interaction takes place only between
“time-reversed” fermions and does not depend on their type but depends on a number of fermions
of the fixed type. The interaction is less symmetric than in the considered in the previous example
case of g = gl(2m). From the general consideration exposed above it follows that the symmetry
algebra for this model coincides with the algebra gl(m) generated by the following operators:

M̂i =
N∑

l=1

(
1 − (

c
†
l,i,−cl,i,− + c

†
l,i,+cl,i,+

))
, where i ∈ 1,m,

M̂α−
i,j

=
N∑(

cl,i,−c
†
l,j,− − c

†
l,j,+cl,i,+

)
, where i < j, i, j ∈ 1,m,
l=1
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M̂−α−
i,j

= (M̂α−
i,j

)†, where i < j, i, j ∈ 1,m.

Let us consider the physically most interesting following example.

Example 7. Let m = 2 (g = sp(4)). In this case there are two types of fermions which may
be interpreted as protons and neutrons. Introducing like in the previous example the following
notations:

cl,1,− ≡ nl,−, c
†
l,1,− ≡ n

†
l,−, cl,1,+ ≡ nl,+, c

†
l,1,+ ≡ n

†
l,+,

cl,2,− ≡ pl,−, c
†
l,2,− ≡ p

†
l,−, cl,2,+ ≡ pl,+, c

†
l,2,+ ≡ p

†
l,+,

we obtain the following integrable proton–neutron BCS Hamiltonian of the “px + ipy” type:

Ĥ
px+ipy

gBCS =
N∑

l=1

εl

(
n

†
l,−nl,− + n

†
l,+nl,+ + p

†
l,−pl,− + p

†
l,+pl,+

)

− 2g

N∑
k,l=1

√
εk

√
εl

(
n

†
l,+n

†
l,−nk,−nk,+ + p

†
l,+p

†
l,−pk,−pk,+

)

− g

N∑
k,l=1

√
εk

√
εl

(
p

†
l,+n

†
l,− + n

†
l,+p

†
l,−

)
(nk,−pk,+ + pk,−nk,+). (42)

The Hamiltonian (42) is an exact px + ipy analogue of proton–neutron Hamiltonian of Richard-
son [6]. From the general consideration above the “geometric” symmetry of the Hamiltonian (42)
is given by the Lie algebra gl(2) with the following generators:

M̂1 =
N∑

l=1

(
1 − (

n
†
l,−nl,− + n

†
l,+nl,+

))
, M̂2 =

N∑
l=1

(
1 − (

p
†
l,−pl,− + p

†
l,+pl,+

))
,

M̂α−
1,2

=
N∑

l=1

(
nl,−p

†
l,− − p

†
l,+nl,+

)
,

M̂−α−
1,2

=
N∑

l=1

(
pl,−n

†
l,− − n

†
l,+pl,+

)
, where l ∈ 1,N.

6.4. Higher rank (px + ipy )-type BCS Hamiltonian: case of so(2m)

Let us obtain the (px + ipy )-type BCS Hamiltonian with many types of fermions associated
with so(2m). For this purpose we will us use the fermionization formulas (14) and the specially
chosen element K described in Section 2.2.3.The external magnetic field and the r-matrix are
defined with the help of this element K and share with it the same symmetry.

Applying the general formula (34) for this choice of the algebra g, shift element K and root
subsystem (�/�K)+, we obtain the following spin-BCS Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

ν−2
l

m∑
i=1

(ki + m − 1)S
(l)
i + 2

N∑
k,l=1

ν−1
k ν−1

l

m∑
i,j=1,i<j

S
(l)

−α+
i,j

S
(k)

α+
i,j

. (43)

Using the fermionization formulas (14), and introducing there the notations
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cl,i ≡ cl,i,−, c
†
l,i ≡ c

†
l,i,−, cl,i+m ≡ cl,i,+,

c
†
l,i+m ≡ c

†
l,i,+, i ∈ 1,m, l ∈ 1,N

we obtain the following expression for the Hamiltonian (43):

Ĥ
px+ipy

gBCS =
N∑

l=1

m∑
i=1

εl

(
c

†
l,i,−cl,i,− + c

†
l,i,+cl,i,+

)

− g

N∑
k,l=1

√
εk

√
εl

m∑
i,j=1,i<j

(
c

†
l,i,+c

†
l,j,− − c

†
l,j,+c

†
l,i,−

)
× (ck,j,−ck,i,+ − ck,i,−ck,j,+), (44)

where εl = ν−2
l , g = 2(km + (m − 1))−1 and we have extracted from the Hamiltonian (43) the

vacuum energy (km + (m − 1))m
∑N

l=1 εl , multiplied it by −(km + (m − 1))−1, and used that in
the considered case k1 = · · · = km.

The first term in the Hamiltonian (44) is a kinetic term of fermions. The second describes
the pairing interaction of fermions of m different types. The interaction does not depend on the
type of a fermion but depends on the number of fermions of the fixed type. The interaction is
less symmetric than in the case of g = gl(2m). From the general consideration exposed above it
follows that the symmetry algebra for this model is gl(m) and it is given by the same formulas
as in the sp(2m) case.

Example 8. Let g = so(4) (m = 2). In this case there are two types of fermions which may be
interpreted as protons and neutrons. Introducing as in the case of gl(4) the following notations:

cl,1,− ≡ nl,−, c
†
l,1,− ≡ n

†
l,−, cl,1,+ ≡ nl,+, c

†
l,1,+ ≡ n

†
l,+,

cl,2,− ≡ pl,−, c
†
l,2,− ≡ p

†
l,−, cl,2,+ ≡ pl,+, c

†
l,2,+ ≡ p

†
l,+,

we obtain the following integrable proton–neutron BCS Hamiltonian:

Ĥ
px+ipy

gBCS =
N∑

l=1

εl

(
n

†
l,−nl,− + n

†
l,+nl,+ + p

†
l,−pl,− + p

†
l,+pl,+

)

− g

N∑
k,l=1

√
εk

√
εl

(
p

†
l,+n

†
l,− − n

†
l,+p

†
l,−

)
(nk,−pk,+ − pk,−nk,+). (45)

From the above considerations it follows that the “geometric” symmetry of the Hamiltonian (45)
is the Lie algebra gl(2) and it is given by the same formulas as in the considered example of sp(4).

Remark 15. Observe, that due to the isomorphism of small dimensions so(4)⊕N � so(3)⊕N ⊕
so(3)⊕N the Hamiltonian (45) may be written entirely in terms of elements of one of the subal-
gebras so(3)⊕N .

7. Diagonalization

In this section we will describe the spectrum of the obtained in the previous section fermion
BCS-type Hamiltonians based on non-skew-symmetric classical r-matrices in terms of solutions
of the Bethe-type equations.
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Let us remind that a representations of the algebra g⊕N is called a representation with the
highest weight Λ = (λ(1), . . . , λ(N)), λ(l) = (λ

(l)
1 , . . . , λ

(l)
rankg), l ∈ 1,N if there exists such a vec-

tor Ω that:

Ŝ
(l)
i Ω = λ

(l)
i Ω, Ŝ(l)

α Ω = 0, i ∈ 1, rankg, ∀α ∈ �+, ∀l ∈ 1,N. (46)

Our treatment of the problem of a diagonalization of the Gaudin Hamiltonians in an external
magnetic field will be based on the following general theorem5:

Theorem 7.1. Let g = gl(n), so(2m) or sp(2m) and the element K of the Cartan subalgebra be
as the described in a Section 2. Then the spectrum of the Gaudin Hamiltonians in the external
magnetic field Ĥl (30) in the finite-dimensional representation of g⊕N with the highest weigh
(λ(1), λ(2), . . . , λ(N)) is characterized by rapidities v

(i)
k , k ∈ 1,Mi , i ∈ 1, rankg6 and has the

following form:

hl = h0
l + 2νl

rankg∑
i=1

Mi∑
k=1

(λ(l), α̃i )

(ν2
l − (v

(i)
k )2)

, (47)

where

h0
l = 2νl

N∑
k=1,k �=l

(λ(k), λ(l))

(ν2
k − ν2

l )
− 1

2νl

((
λ(l), λ(l)

) + (
ρK,λ(l)

)) + 1

2νl

(
2K + ρK,λ(l)

)
, (48)

is an eigenvalue of Ĥl on the highest-weight vector Ω , ρK = ∑
α∈(�K)+ α, ρK = ∑

α∈(�/�K)+ α,

and the rapidities v
(i)
k satisfy the following set of Bethe equations:

N∑
l=1

(λ(l), α̃i)

(νl)2 − (v
(i)
k )2

+ 1

4(v
(i)
k )2

(
2K + ρK − ρK, α̃i

)

=
Mi∑

l=1,l �=k

(α̃i , α̃i)

(v
(i)
l )2 − (v

(i)
k )2

− (α̃i , α̃i )

4(v
(i)
k )2

+
rankg∑

j=1,j �=i

Mj∑
l=1

(α̃j , α̃i)

(v
(j)
l )2 − (v

(i)
k )2

, (49)

and α̃i , i ∈ 1, rankg are simple roots.

Remark 16. Taking into account our definition (31) of the Hamiltonian Ĥ
px+ipy

gBCS written in the
spin form and the explicit form of the spectrum of the Casimir operator we obtain for its spectrum
the following answer:

h
px+ipy

gBCS =
N∑

l=1

1

ν2
l

(
K + ρK,λ(l)

) + 2
N∑

l=1

rankg∑
i=1

Mi∑
k=1

(λ(l), α̃i )

(ν2
l − (v

(i)
k )2)

. (50)

Remark 17. Observe, that due to the special form of the elements K and ρK , only one type of
Eq. (49), namely that corresponds to the only simple root belonging to (�/�K)+, contains the
summand proportional to (v

(i)
k )−2.

5 The proof of the theorem is beyond the scope of the present article. We re-direct reader to the paper [15] for details.
6 In the case of the reductive Lie algebra gl(n) one has to put everywhere in this theorem rankg→ rankg− 1.
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7.1. Case of gl(n)

In this section we will consider the diagonalization of the constructed BCS Hamiltonians in
the case of gl(n). For simplicity we will restrict ourselves to the consideration of the physically
most meaningful case n = 2m.

A space of an irreducible representation of the algebra gl(2m)⊕N has the form: V =
(
⊗N

l=1 V λ(l)
), where V λ(l)

is the space of an irreducible representation of the lth copy of gl(2m)

labeled by the highest weights λ(l) = (λ
(l)
1 , . . . , λ

(l)
2m), l ∈ 1,N . In the representation space V

there exists the highest weight vector Ω such that:

Ŝ
(l)
ii Ω = λ

(l)
i Ω, Ŝ

(l)
ij Ω = 0, i, j ∈ 1,2m, i < j ; l ∈ 1,N. (51)

We will consider the representation with the following highest weight:

λ
(l)
1 = λ

(l)
1 = · · · = λ(l)

m = 1, λ
(l)
m+1 = λ

(l)
m+2 = · · · = λ

(l)
2m = 0, ∀l ∈ 1,N.

Observe, that in this case Ω coincides with the fermion vacuum |0〉.
The following corollary of the Theorem 7.1 holds true:

Corollary 7.1. The spectrum of the generalized BCS Hamiltonian Ĥ
px+ipy

gBCS (37) has the form:

h
px+ipy

gBCS = 2
Mm∑
i=1

E
(m)
i , (52)

where “energies” E
(k)
i , i ∈ 1,Mk , k ∈ 1,2m − 1 satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

−
M2∑
j=1

E
(2)
j

(E
(1)
i − E

(2)
j )

= 0, (53a)

M2∑
j=1; j �=i

2E
(2)
j

(E
(2)
i − E

(2)
j )

−
M1∑
j=1

E
(1)
j

(E
(2)
i − E

(1)
j )

−
M3∑
j=1

E
(3)
j

(E
(2)
i − E

(3)
j )

= 0, (53b)

· · ·
Mm−1∑

j=1; j �=i

2E
(m−1)
j

(E
(m−1)
i − E

(m−1)
j )

−
Mm−2∑
j=1

E
(m−2)
j

(E
(m−1)
i − E

(m−2)
j )

−
Mm∑
j=1

E
(m)
j

(E
(m−1)
i − E

(m)
j )

= 0, (53c)
N∑

k=1

εk

E
(m)
i − εk

= − 2

g
+

Mm∑
j=1; j �=i

2E
(m)
j

(E
(m)
i − E

(m)
j )

−
Mm−1∑
j=1

E
(m−1)
j

(E
(m)
i − E

(m−1)
j )

−
Mm+1∑
j=1

E
(m+1)
j

(E
(m)
i − E

(m+1)
j )

, (53d)

Mm+1∑
j=1; j �=i

2E
(m+1)
j

(E
(m+1)
i − E

(m+1)
j )

−
Mm∑
j=1

E
(m)
j

(E
(m+1)
i − E

(m)
j )

−
Mm+2∑
j=1

E
(m+2)
j

(E
(m+1)
i − E

(m+2)
j )

= 0, (53e)
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· · ·
M2m−2∑

j=1; j �=i

2E
(2m−2)
j

(E
(2m−2)
i − E

(2m−2)
j )

−
M2m−3∑
j=1

E
(2m−3)
j

(E
(2m−2)
i − E

(2m−3)
j )

−
M2m−1∑
j=1

E
(2m−1)
j

(E
(2m−2)
i − E

(2m−1)
j )

= 0, (53f)

M2m−1∑
j=1; j �=i

2E
(2m−1)
j

(E
(2m−1)
i − E

(2m−1)
j )

−
M2m−2∑
j=1

E
(2m−2)
j

(E
(2m−1)
i − E

(2m−2)
j )

= 0. (53g)

Proof. In order to prove the corollary it is necessary to specify the statement of the Theorem 7.1
for the Lie algebra gl(2m) and the chosen form of the highest weights λ(l) and element K .

Using the explicit form of simple roots in the case of the Lie algebra gl(2m), and identi-
fying h∗ with h we may write αi = Hi and α̃i ≡ αii+1 = Hi − Hi+1, i ∈ 1,2m − 1. Using
the chosen form of the highest weights λ(l) and element K we obtain that (λ(l), α̃i) = δim,
(K, α̃i) = 2kmδim.

The direct calculation gives: ρK = m(
∑m

i=1 Hi − ∑m
i=1 Hi+m). Using this we obtain that

(ρK, α̃i) = 2mδim. The direct calculation also gives: ρ = ρK + ρK = ∑2m
i=1(m − 2i + 1)Hi .

Using this we obtain that (ρ, α̃i) = 2, ∀i ∈ 1,2m − 1.
Taking into account that in the case of gl(n) we have that (α̃i , α̃j ) = 2δij − δi−1,j − δi+1,j ,

substituting all this into the Bethe-type equations (49), making the change of variables

E
(j)
k = (

v
(j)
k

)−2
, εk = ν−2

k

and taking into account that in this case g = 2(km + m)−1 we come to the Bethe-type equations
(53).

Now it is left to obtain the spectrum of the BCS Hamiltonian (37). Using the formula (50) and
the above calculations we obtain:

h
px+ipy

gBCS = m(km + m)

N∑
l=1

1

ν2
l

+ 2
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

.

The first summand in this term is the vacuum energy that we have to extract in accordance with
the definition of the Hamiltonian (37). It is left to calculate the last term. We have:

2
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

= 2
N∑

l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

.

Using the mth set of the Bethe equations (53d) we obtain:

Mm∑
i=1

N∑
l=1

εlE
(m)
i

E
(m)
i − εl

= − 2

g

Mm∑
i=1

E
(m)
i +

Mm∑
i,j=1;j �=i

2E
(m)
j E

(m)
i

(E
(m)
i − E

(m)
j )

−
Mm∑Mm−1∑ E

(m−1)
j E

(m)
i

(E
(m) − E

(m−1)
)

−
Mm∑Mm+1∑ E

(m+1)
j E

(m)
i

(E
(m) − E

(m+1)
)
.

i=1 j=1 i j i=1 j=1 i j
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The second summand in the right-hand side of this equality is equal to zero. Let us calculate its
third and fourth summands. Making use of Eqs. (53c) and (53e) we obtain

Mm−1∑
i=1

Mm∑
j=1

E
(m)
j E

(m−1)
i

(E
(m−1)
i − E

(m)
j )

=
Mm−1∑

i,j=1;j �=i

2E
(m−1)
j E

(m−1)
i

(E
(m−1)
i − E

(m−1)
j )

−
Mm−1∑
i=1

Mm−2∑
j=1

E
(m−2)
j E

(m−1)
i

(E
(m−1)
i − E

(m−2)
j )

,

Mm+1∑
i=1

Mm∑
j=1

E
(m)
j E

(m+1)
i

(E
(m+1)
i − E

(m)
j )

=
Mm+1∑

i,j=1;j �=i

2E
(m+1)
j E

(m+1)
i

(E
(m+1)
i − E

(m+1)
j )

−
Mm+1∑
i=1

Mm+2∑
j=1

E
(m+2)
j E

(m+1)
i

(E
(m+1)
i − E

(m+2)
j )

.

The first summands in the right-hand sides of these equalities are equal to zero. In order to
calculate their second summands we proceed recursively using the other Bethe equations (53).
Finally we come to the Bethe equations (53a) and (53g) and obtain (because there is no E

(0)
j and

no E
(2m)
j )

Mm∑
i=1

Mm−1∑
j=1

E
(m−1)
j E

(m)
i

(E
(m)
i − E

(m−1)
j )

=
Mm∑
i=1

Mm+1∑
j=1

E
(m+1)
j E

(m)
i

(E
(m)
i − E

(m+1)
j )

= 0.

In the result we will have that

N∑
l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

= − 2

g

Mm∑
i=1

E
(m)
i .

Finally, taking into account that the fermion Hamiltonian (37) was defined by the division of
the spin Hamiltonian (31) by −(km +m) = − 2

g
, we will obtain that the spectrum of (37) is given

by the formula (52). The corollary is proven. �
Remark 18. The spectrum of the additional integrals M̂ii , i ∈ 1,2m has the same form as in the
case of rational r-matrices [21] and is written as follows [15]:

mi(M1, . . . ,M2m−1) =
N∑

l=1

λ
(l)
i + (Mi−1 − Mi), where M0 = M2m = 0. (54)

Example 9. In the simplest m = 1 case the spectrum of the ordinary “one type of fermions”

px + ipy BCS Hamiltonian [21,22]: Ĥ
px+ipy

gBCS (38) has the form:

h
px+ipy

gBCS = 2
M2∑
i=1

E
(1)
i ,

where energies E
(1), i ∈ 1,M1 satisfy the following Bethe-type equations:
i
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N∑
k=1

εk

E
(1)
i − εk

= − 2

g
+

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

.

The spectrum mi , i ∈ 1,2 of the additional integrals which are particle number operators M̂ii ,
i ∈ 1,2 (see the formula (54)) depends only on N and M1 and has the form:

m1 = N − M1, m2 = M1.

Example 10. In the important “proton–neutron” m = 2 case the spectrum of the generalized BCS
Hamiltonian ĤgBCS (39) has the form:

h
px+ipy

gBCS = 2
M2∑
i=1

E
(2)
i ,

where the energies E
(k)
i , i ∈ 1,Mk , k ∈ 1,3 satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

−
M2∑
j=1

E
(2)
j

(E
(1)
i − E

(2)
j )

= 0,

N∑
k=1

εk

E
(2)
i − εk

= − 2

g
+

M2∑
j=1; j �=i

2E
(2)
j

(E
(2)
i − E

(2)
j )

−
M1∑
j=1

E
(1)
j

(E
(2)
i − E

(1)
j )

−
M3∑
j=1

E
(3)
j

(E
(2)
i − E

(3)
j )

,

M3∑
j=1; j �=i

2E
(3)
j

(E
(3)
i − E

(3)
j )

−
M2∑
j=1

E
(2)
j

(E
(3)
i − E

(2)
j )

= 0.

The spectrum mi , i ∈ 1,4 of the additional integrals, i.e. of the particle number operators M̂ii

(see the formula (54)) i ∈ 1,4 depends only on N and Mi and has the form:

m1 = N − M1, m2 = N + (M1 − M2), m3 = (M2 − M3), m4 = M3.

7.2. Diagonalization: case of sp(2m)

In this subsection we will consider the diagonalization of the constructed BCS Hamiltonians
in the case of g = sp(2m). A space of an irreducible representation of the algebra sp(2m)⊕N has
the form: V = (

⊗N
l=1 V λ(l)

), where V λ(l)
is the space of an irreducible representation of the lth

copy of sp(2m) labeled by the highest weights λ(l) = (λ
(l)
1 , . . . , λ

(l)
m ), l ∈ 1,N . There exists the

highest weight vector Ω such that:

Ŝ
(l)
i Ω = λ

(l)
i Ω, Ŝ

(l)

α−
ij

Ω = 0, Ŝ
(l)

α+
ij

Ω = 0,

Ŝ
(l)
2αi

Ω = 0, i, j ∈ 1,m, i < j ; l ∈ 1,N. (55)

We will consider the representation with the following highest weight:

λ
(l)
1 = λ

(l)
1 = · · · = λ(l)

m = 1, ∀l ∈ 1,N.

Observe that in this case Ω coincides with the fermion vacuum |0〉.
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The following corollary of the Theorem 7.1 holds true:

Corollary 7.2. The spectrum of the generalized BCS Hamiltonian Ĥ
px+ipy

gBCS (41) has the form:

h
px+ipy

gBCS = 2
Mm∑
i=1

E
(m)
i , (56)

where the energies E
(k)
i , i ∈ 1,Mk , k ∈ 1,m satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

−
M2∑
j=1

E
(2)
j

(E
(1)
i − E

(2)
j )

= 0, (57a)

M2∑
j=1; j �=i

2E
(2)
j

(E
(2)
i − E

(2)
j )

−
M1∑
j=1

E
(1)
j

(E
(2)
i − E

(1)
j )

−
M3∑
j=1

E
(3)
j

(E
(2)
i − E

(3)
j )

= 0, (57b)

...

Mm−2∑
j=1; j �=i

2E
(m−2)
j

(E
(m−2)
i − E

(m−2)
j )

−
Mm−3∑
j=1

E
(m−3)
j

(E
(m−2)
i − E

(m−3)
j )

−
Mm−1∑
j=1

E
(m−1)
j

(E
(m−2)
i − E

(m−1)
j )

= 0, (57c)

Mm−1∑
j=1; j �=i

2E
(m−1)
j

(E
(m−1)
i − E

(m−1)
j )

−
Mm−2∑
j=1

E
(m−2)
j

(E
(m−1)
i − E

(m−2)
j )

−
Mm∑
j=1

2E
(m)
j

(E
(m−1)
i − E

(m)
j )

= 0, (57d)
N∑

k=1

2εk

E
(m)
i − εk

= − 2

g
+

Mm∑
j=1; j �=i

4E
(m)
j

(E
(m)
i − E

(m)
j )

−
Mm−1∑
j=1

2E
(m−1)
j

(E
(m)
i − E

(m−1)
j )

. (57e)

Proof. In order to prove the corollary it is necessary to specify the statement of the Theorem 7.1
for the Lie algebra sp(2m) and the chosen form of the highest weights λ(l) and element K .

Using the explicit form of simple roots in the case of Lie algebra sp(2m), and identifying
h∗ with h we may write αi = Hi and α̃i = Hi − Hi+1, i ∈ 1,m − 1, α̃m = 2Hm. Using the
chosen form of the highest weights λ(l) and element K we obtain that (λ(l), α̃i ) = 2δim, (K, α̃i) =
2kmδim.

The direct calculation gives: ρK = (m + 1)(
∑m

i=1 Hi). Using this we obtain that (ρK, α̃i) =
2(m+ 1)δim. The direct calculation also gives: ρK = ∑m

i=1(m− 2i + 1)Hi . Using this we derive
that (ρK, α̃i) = 2, ∀i ∈ 1,m − 1, (ρK, α̃m) = 2(−m + 1).

Taking into account that in the case of sp(2m) we have that (α̃i , α̃j ) = 2δij − δi−1,j − δi+1,j ,
i, j ∈ 1,m − 1, (α̃i , α̃m) = −2δi+1,m, (α̃m, α̃m) = 4, substituting all this into the Bethe-type
equations (49), making the change of variables

E
(j) = (

v
(j))−2

, εk = ν−2,
k k k
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and taking into account that in this case g ≡ 2(km + m + 1)−1 we come to the Bethe equations
(57).

Now it is left to obtain the spectrum of the BCS Hamiltonian (41). Using the formula (50) and
the calculations above we obtain:

h
px+ipy

gBCS = m(km + m + 1)

N∑
l=1

1

ν2
l

+ 4
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

.

The first summand in this term is the vacuum energy that we have to extract in accordance with
the definition of the Hamiltonian (41). It is left to calculate the last term. We have:

4
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

= 4
N∑

l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

.

Using the mth set of the Bethe equations (57e) we obtain:

2
Mm∑
i=1

N∑
l=1

E
(m)
i εl

E
(m)
i − εl

= − 2

g

Mm∑
i=1

E
(m)
i +

Mm∑
i,j=1; j �=i

4E
(m)
j E

(m)
i

(E
(m)
i − E

(m)
j )

−
Mm∑
i=1

Mm−1∑
j=1

2E
(m−1)
j E

(m)
i

(E
(m)
i − E

(m−1)
j )

.

The second summand in the right-hand side of this equality is equal to zero.
Let us calculate its third summand. Making use of Eq. (57d) we obtain that

2
Mm−1∑
i=1

Mm∑
j=1

E
(m)
j E

(m−1)
i

(E
(m−1)
i − E

(m)
j )

=
Mm−1∑

i,j=1; j �=i

2E
(m−1)
j E

(m−1)
i

(E
(m−1)
i − E

(m−1)
j )

−
Mm−1∑
i=1

Mm−2∑
j=1

E
(m−2)
j E

(m−1)
i

(E
(m−1)
i − E

(m−2)
j )

.

The first summand in the right-hand sides of this equality is equal to zero. In order to calculate its
second summand we proceed recursively using the other Bethe equations (57). Finally we come
to the Bethe equations (57a) and obtain in the result (because there is no E

(0)
j ) that

Mm∑
i=1

Mm−1∑
j=1

E
(m−1)
j E

(m)
i

(E
(m)
i − E

(m−1)
j )

= 0.

In the result we will have that

2
N∑

l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

= − 2

g

Mm∑
i=1

E
(m)
i .

Finally, taking into account that the fermion Hamiltonian (41) was defined by the division of
the spin Hamiltonian (31) by −(km + m + 1) = − 2

g
, we will obtain that the spectrum of (41) is

given by the formula (56). The corollary is proven. �
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Remark 19. The spectrum of the additional integrals M̂i , i ∈ 1,m is written as follows [15]:

mi(M1, . . . ,Mm) =
N∑

l=1

λ
(l)
i + (Mi−1 − Mi), where i ∈ 1,m − 1,M0 ≡ 0, (58a)

mm(M1, . . . ,Mm) =
N∑

l=1

λ
(l)
i + (Mm−1 − 2Mm). (58b)

Example 11. In the physically most important “proton–neutron” m = 2 case the spectrum of the

generalized BCS Hamiltonian Ĥ
px+ipy

gBCS (42) has the form:

h
px+ipy

gBCS = 2
M2∑
i=1

E
(2)
i ,

where energies E
(k)
i , i ∈ 1,Mk , k ∈ 1,2 satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

−
M2∑
j=1

2E
(2)
j

(E
(1)
i − E

(2)
j )

= 0,

N∑
k=1

2εk

E
(2)
i − εk

= − 2

g
+

M2∑
j=1; j �=i

4E
(2)
j

(E
(2)
i − E

(2)
j )

−
M1∑
j=1

2E
(1)
j

(E
(2)
i − E

(1)
j )

.

The spectrum mi , i ∈ 1,2 of the additional integrals — the number of particles operators M̂i ,
i ∈ 1,2 depends only on N and M1, M2 and has the form:

m1 = N − M1, m2 = N + (M1 − 2M2).

7.3. Diagonalization: case of so(2m)

In this subsection we will consider the diagonalization of the constructed BCS Hamiltonians
in the case of g = so(2m). A space of an irreducible representation of the algebra so(2m)⊕N has
the form: V = (

⊗N
l=1 V λ(l)

), where V λ(l)
is the space of an irreducible representation of the ith

copy of so(2m) labeled by the highest weights λ(l) = (λ
(l)
1 , . . . , λ

(l)
m ), l ∈ 1,N . The action on the

highest weight vector is written as follows:

Ŝ
(l)
i Ω = λ

(l)
i Ω, Ŝ

(l)

α−
kr

Ω = 0, Ŝ
(l)

α+
kr

Ω = 0, i, k, r ∈ 1,m, k < r; l ∈ 1,N. (59)

We will consider the representation with the following highest weight:

λ
(l)
1 = λ

(l)
1 = · · · = λ(l)

m = 1, ∀l ∈ 1,N.

Observe, that in this case Ω coincides with the fermion vacuum |0〉.
The following corollary of the Theorem 7.1 holds true:

Corollary 7.3. The spectrum of the generalized BCS Hamiltonian Ĥ
px+ipy (44) has the form:
gBCS
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h
px+ipy

gBCS = 2
Mm∑
i=1

E
(m)
i , (60)

where the energies E
(k)
i , i ∈ 1,Mk , k ∈ 1,m satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

−
M2∑
j=1

E
(2)
j

(E
(1)
i − E

(2)
j )

= 0, (61a)

M2∑
j=1; j �=i

2E
(2)
j

(E
(2)
i − E

(2)
j )

−
M1∑
j=1

E
(1)
j

(E
(2)
i − E

(1)
j )

−
M3∑
j=1

E
(3)
j

(E
(2)
i − E

(3)
j )

= 0, (61b)

...
Mm−3∑

j=1; j �=i

2E
(m−3)
j

(E
(m−3)
i − E

(m−3)
j )

−
Mm−4∑
j=1

E
(m−4)
j

(E
(m−3)
i − E

(m−4)
j )

−
Mm−2∑
j=1

E
(m−2)
j

(E
(m−3)
i − E

(m−2)
j )

= 0, (61c)

Mm−2∑
j=1; j �=i

2E
(m−2)
j

(E
(m−2)
i − E

(m−2)
j )

−
Mm−3∑
j=1

E
(m−3)
j

(E
(m−2)
i − E

(m−3)
j )

−
Mm−1∑
j=1

E
(m−1)
j

(E
(m−2)
i − E

(m−1)
j )

−
Mm∑
j=1

E
(m)
j

(E
(m−2)
i − E

(m)
j )

= 0, (61d)

Mm−1∑
j=1; j �=i

2E
(m−1)
j

(E
(m−1)
i − E

(m−1)
j )

−
Mm−2∑
j=1

E
(m−2)
j

(E
(m−1)
i − E

(m−2)
j )

= 0, (61e)

N∑
k=1

2εk

E
(m)
i − εk

= − 2

g
+

Mm∑
j=1; j �=i

2E
(m)
j

(E
(m)
i − E

(m)
j )

−
Mm−2∑
j=1

E
(m−2)
j

(E
(m)
i − E

(m−2)
j )

. (61f)

Proof. In order to prove the corollary it is necessary to specify the statement of the Theorem 7.1
for the Lie algebra so(2m) and the chosen form of the highest weights λ(l) and element K .

Using the explicit form of simple roots in the case of the Lie algebra so(2m), and identifying
h∗ with h we may write that αi = Hi and α̃i = Hi − Hi+1, i ∈ 1,m − 1, α̃m = Hm−1 + Hm.
Using the chosen form of the highest weights λ(l) and element K we obtain that (λ(l), α̃i ) = 2δim,
(K, α̃i) = 2kmδim.

The direct calculation gives: ρK = (m − 1)(
∑m

i=1 Hi). Using this we obtain that (ρK, α̃i) =
2(m − 1)δim. The direct calculation also gives: ρK = ∑m

i=1(m − 2i + 1)Hi . Using this we also
derive that (ρK, α̃i) = 2, ∀i ∈ 1,m − 1, (ρK, α̃m) = 2(−m + 2).

Taking into account that in the case of so(2m) we have that (α̃i , α̃j ) = 2δij − δi−1,j − δi+1,j ,
i, j ∈ 1,m − 1, (α̃i , α̃m) = −δi+2,m, i < m, (α̃m, α̃m) = 2, substituting all this into the Bethe-
type equations (49), making the change of variables

E
(j) = (

v
(j))−2

, εk = ν−2,
k k k
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and taking into account that in this case g ≡ 2(km + m − 1)−1 we come to the Bethe equa-
tions (61).

Now it is left to obtain the spectrum of the BCS Hamiltonian (44). Using the formula (50) and
the calculations above we obtain:

h
px+ipy

gBCS = m(km + m − 1)

N∑
l=1

1

ν2
l

+ 4
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

.

The first summand in this term is the vacuum energy that we have to extract in accordance with
the definition of the Hamiltonian (44). It is left to calculate the last term. We have:

4
N∑

l=1

Mm∑
i=1

1

(ν2
l − (v

(m)
i )2)

= 4
N∑

l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

.

Using the mth set of the Bethe equations (61f) we obtain:

2
Mm∑
i=1

N∑
l=1

εlE
(m)
i

E
(m)
i − εl

= − 2

g

Mm∑
i=1

E
(m)
i +

Mm∑
i,j=1;j �=i

Mm∑
i=1

2E
(m)
j E

(m)
i

(E
(m)
i − E

(m)
j )

−
Mm−2∑
j=1

E
(m−2)
j E

(m)
i

(E
(m)
i − E

(m−2)
j )

.

The second summand in the right-hand side of this equality is equal to zero. Let us calculate its
third summand. Using the Bethe equation (61d) we obtain:

Mm−2∑
i=1

Mm∑
j=1

E
(m)
j E

(m−2)
i

(E
(m−2)
i − E

(m)
j )

=
Mm−2∑

i,j=1;j �=i

2E
(m−2)
j E

(m−2)
i

(E
(m−2)
i − E

(m−2)
j )

−
Mm−2∑
i=1

Mm−1∑
j=1

E
(m−1)
j E

(m−2)
i

(E
(m−2)
i − E

(m−1)
j )

−
Mm−2∑
i=1

Mm−3∑
j=1

E
(m−3)
j E

(m−2)
i

(E
(m−2)
i − E

(m−3)
j )

.

The first summand in the right-hand sides of this equality is equal to zero. In order to calculate
its second summand we use Eq. (61e) and obtain that

Mm−1∑
i=1

Mm−2∑
j=1

E
(m−2)
j E

(m−1)
i

(E
(m−1)
i − E

(m−2)
j )

=
Mm−1∑

i,j=1;j �=i

2E
(m−1)
j E

(m−1)
i

(E
(m−1)
i − E

(m−1)
j )

= 0.

In order to calculate its last summand we proceed recursively using the other Bethe equa-
tions (61). Finally we come to the Bethe equations (61a) and obtain in the result (because there
is no E

(0)
j ) that

Mm−2∑ Mm−3∑ E
(m−3)
j E

(m−2)
i

(E
(m−2) − E

(m−3)
)

= 0.
i=1 j=1 i j
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In the result we will also have that

2
N∑

l=1

Mm∑
i=1

E
(m)
i εl

(E
(m)
i − εl)

= − 2

g

Mm∑
i=1

E
(m)
i .

Finally, taking into account that the fermion Hamiltonian (44) was defined by the division of
the spin Hamiltonian (31) by −(km + m − 1) = − 2

g
, we will obtain that the spectrum of (44) is

given by the formula (60). The corollary is proven. �
Remark 20. The spectrum of the additional integrals M̂i , i ∈ 1,m is written as follows [15]:

mi(M1, . . . ,Mm) =
N∑

l=1

λ
(l)
i + (Mi−1 − Mi), where i ∈ 1,m − 2, M0 ≡ 0, (62a)

mm−1(M1, . . . ,Mm) =
N∑

l=1

λ
(l)
i + (Mm−2 − Mm−1 − Mm), (62b)

mm−1(M1, . . . ,Mm) =
N∑

l=1

λ
(l)
i + (Mm−1 − Mm). (62c)

Example 12. In the physically important m = 2 case the spectrum of the BCS-type Hamiltonian

Ĥ
px+ipy

gBCS (45) has the form:

h
px+ipy

gBCS = 2
M2∑
i=1

E
(2)
i ,

where the energies E
(k)
i , i ∈ 1,Mk , k ∈ 1,2 satisfy the following Bethe-type equations:

M1∑
j=1; j �=i

2E
(1)
j

(E
(1)
i − E

(1)
j )

= 0, (63a)

N∑
k=1

2εk

E
(2)
i − εk

= − 2

g
+

M2∑
j=1; j �=i

2E
(2)
j

(E
(2)
i − E

(2)
j )

. (63b)

Let us note, that in this case we have two independent sets of Bethe equations. This is ex-
plained by the isomorphism so(4) � so(3) ⊕ so(3). Moreover, from the first of these equations
one easily deduces that M1 = 0. Hence Eq. (63a) is effectively absent and there exists only
Eq. (63b) which coincides with the Bethe equation for the Z2-graded so(3) Gaudin spin chain in
an external magnetic field corresponding to the Lie algebra so(3) � sl(2) � sp(1) and the repre-
sentation with a spin one at each cite of the spin chain. This reflects the already mentioned fact
that the constructed so(4)-BCS Hamiltonian may be re-written completely in terms of the so(3)

subalgebra of the Lie algebra so(4).
The spectrum mi , i ∈ 1,2 of the additional integrals – the number of particle operators M̂i ,

i ∈ 1,2 depends only on N , M2 (M1 = 0) and has the form:

mi = N − M2, i ∈ 1,2.
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8. Conclusion and discussion

In the present paper we have constructed three classes of the integrable many type of fermions
models associated with non-skew-symmetric classical r-matrices and the Lie algebras gl(2m),
sp(2m) and so(2m). In the partial case of two types of fermions (m = 2) the obtained models are
interpreted as N = Z proton–neutron integrable models with non-uniform coupling constants.
We have diagonalized the constructed Hamiltonians by means of the Bethe ansatz. The important
open problem is to study the solutions of the discovered Bethe-type equations in order to obtain
final numerical answers for the spectrum of the constructed pairing Hamiltonians.
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