
A. Banerjee, O. Danvy, K.-G. Doh, J. Hatcliff (Eds):
David A. Schmidt’s 60th Birthday Festschrift
EPTCS 129, 2013, pp. 41–65, doi:10.4204/EPTCS.129.4

c© I. Mastroeni
This work is licensed under the
Creative Commons Attribution License.

Abstract interpretation-based approaches to Security
A Survey on Abstract Non-Interference and its Challenging Applications

Isabella Mastroeni
Department of Computer Science

University of Verona
Verona, Italy

isabella.mastroeni@univr.it

In this paper we provide a survey on the framework of abstract non-interference. In particular, we
describe a general formalization of abstract non-interference by means of three dimensions (obser-
vation, protection and semantics) that can be instantiated in order to obtain well known or even new
weakened non-interference properties. Then, we show that the notions of abstract non-interference
introduced in language-based security are instances of this more general framework which allows to
better understand the different components of a non-interference policy. Finally, we consider two
challenging research fields concerning security where abstract non-interference seems a promising
approach providing new perspectives and new solutions to open problems: Code injection and code
obfuscation.

1 Introduction

Understanding information-flow is essential in code debugging, program analysis, program transforma-
tion, and software verification but also in code protection and malware detection. Capturing information-
flow means modeling the properties of control and data that are transformed dynamically at run-time.
Program slicing needs information-flow analysis for separating independent code; code debugging and
testing need models of information-flow for understanding error propagation, language-based security
needs information-flow analysis for protecting data confidentiality from erroneous or malicious attacks
while data are processed by programs. In code protection information-flow methods can be used for de-
ciding where to focus the obfuscating techniques, while in malware detection information flow analyses
can be used for understanding how the malware interact with its context or how syntactic metamor-
phic transformations interfere with the analysis capability of the malware detector. The key aspect in
information-flow analysis is understanding the degree of independence of program objects, such as vari-
ables and statements. This is precisely captured by the notion of non-interference introduced by Goguen
and Meseguer [20] in the context of the research on security polices and models.

The standard approach to language-based non-interference is based on a characterization of the at-
tacker that does not impose any observational or complexity restriction on the attackers’ power. This
means that, the attackers have full power, namely they are modeled without any limitation in their quest
to obtain confidential information. For this reason non-interference, as defined in the literature, is an
extremely restrictive policy. The problem of refining this kind of security policy has been addressed by
many authors as a major challenge in language-based information-flow security [31]. Refining security

http://dx.doi.org/10.4204/EPTCS.129.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


42 Abstract non-interference

policies means weakening standard non-interference checks, in such a way that these restrictions can be
used in practice or can reveal more information about how information flows in programs.

In the literature, we can find mainly two different approaches for weakening non-interference: by
constraining the power of the attacker (from the observational or the computational point of view), or
by allowing some confidential information to flow (the so called declassification). There are several
works dealing with both these approaches, but to the best of our knowledge, the first approach aiming
at characterizing at the same time both the power of the attacker’s model and the private information
that can flow is abstract non-interference [15] where the attacker is modeled as an abstraction of public
data (input and output) and the information that may flow is an abstraction of confidential inputs. In this
framework these two aspects are related by an adjunction relation [16] formally proving that the more
concrete the analysis the attacker can perform the less information we can keep protected.

In this paper, we introduce the abstract non-interference framework from a more general point of
view. Data are simply partitioned in unobservable (called internal) and observable [17] and we may
observe also relations between internal and observable data, and not simply attribute independent prop-
erties [4]. Our aim is that of showing that the abstract non-interference framework may be exported, due
to its generality, to different fields of computer science, providing new perspectives for attacking both
well known and new security challenges.

Paper outline. The paper is structured as follows. In the following of this section we introduce the
basic notions of abstract interpretation, abstract domain completeness and program semantics, used in
the rest of the paper. In Sect. 2 we recall and we slightly generalize the notion of abstract non-interference
(ANI) formalized in the last years. In particular we describe ANI by means of three general dimensions:
semantic, observation and protection. Finally we combine all these dimensions together. In Sect. 3
we provide a survey about how, in the literature, this notion of ANI has been used for characterizing
weakened policies of non-interference in language-based security. Again, we organize the framework by
means of the three dimensions that here become: Who attacks, What is disclosed and Where/When the
attacker observes. Finally, we conclude the paper in Sect. 4 where we introduce two promising security
fields where we believe the ANI-based approach may be fruitful for providing a new perspective and a
set of new formal tools for reasoning on challenging security-related open problems.

Abstract interpretation: Domains and surroundings. Abstract interpretation is a general theory for
specifying and designing approximate semantics of program languages [10]. Approximation can be
equivalently formulated either in terms of Galois connections or closure operators [11]. An upper clo-
sure operator ρ : C → C on a poset C (uco(C ) for short), representing concrete objects, is monotone,
idempotent, and extensive: ∀x ∈C . x ≤C ρ(x ). The upper closure operator is the function that maps the
concrete values to their abstract properties, namely with the best possible approximation of the concrete
value in the abstract domain. For example, Sign :℘(Z)→℘(Z), on the powerset of integers, associates
each set of integers with its sign: Sign(∅) =∅ def

= “none”, Sign(S ) = {n | n > 0} def
=+ if ∀n ∈ S .n > 0,

Sign(0) = {0} def
= 0, Sign(S ) = {n | n < 0} def

=− if ∀n ∈ S . n < 0, Sign(S ) = {n | n ≥ 0} def
= 0+ if

∀n ∈ S . x ≥ 0, Sign(S ) = {n | n ≤ 0} def
= 0− if ∀n ∈ S . n ≤ 0 and Sign(S ) = Z def

= “I don’t know”
otherwise. Analogously, the operator Par : ℘(Z)→℘(Z) associates each set of integers with its par-



I. Mastroeni 43

x

f

! !

⊥ ⊥

ρ

x

f

! !

⊥ ⊥

ρρ ρ

f

ρ
ρ

f

Figure 1: Backward completeness

ity, Par(∅) = ∅ def
= “none”, Par(S ) = {n ∈ Z | n is even} def

= ev if ∀n ∈ S .n is even, Par(S ) = {n ∈
Z | n is odd} def

= od if ∀n ∈ S .n is odd and Par(S ) = Z def
= “I don’t know” otherwise. Usually, “none”

and “I don’t know” are simply denoted ∅ and Z. Formally, closure operators ρ are uniquely deter-
mined by the set of their fix-points (or idempotents) ρ(C ), for instance Par = {Z,ev,od,∅}. For
upper closures, X ⊆ C is the set of fix-points of ρ ∈ uco(C ) iff X is a Moore-family of C , i.e.,
X = M (X )

def
= {∧S | S ⊆ X } — where ∧∅ = > ∈M (X ). The set of all upper closure operators

on C , denoted uco(C ), is isomorphic to the so called lattice of abstract interpretations of C [11]. If C
is a complete lattice then uco(C ) ordered point-wise is also a complete lattice, 〈uco(C ),v,t,u,>, id〉
where for every ρ,η ∈ uco(C ), I ⊆Nats, {ρi}i∈I ⊆ uco(C ) and x ∈C : ρ v η iff ∀y ∈C . ρ(y)≤ η(y)

iff η(C )⊆ ρ(C ); (ui∈I ρi)(x ) = ∧i∈I ρi(x ); and (ti∈I ρi)(x ) = x ⇔ ∀i ∈ I . ρi(x ) = x .
Abstract interpretation is a theory for approximating program behaviour by approximating their se-

mantics. Now, we formally introduce the notion of precision in terms of abstract domain completeness.
There are two kinds of completeness, called backward and forward completeness [18]. Backward com-
pleteness (B) requires accuracy when we compare the computations on the program input domain: the
abstract outputs of the concrete computation f are the same abstract outputs obtained by computing the
program on the abstract values. Formally, ρ is backward complete for f iff ρ ◦ f ◦ρ = ρ ◦ f [11]. Consider
Fig. 1. The outer oval always represents the concrete domain, while the inner one represents the abstract
domain characterised by the closure ρ . The computation is represented by the function f . Hence, on the
left, we have incompleteness since the abstract computation on the abstract values (ρ(f (ρ(x )))) loses
precision with respect to (i.e., is more abstract than) the abstraction of the computation on the concrete
values (ρ(f (x ))). On the right, we have completeness because the two abstract computations coincide.
Forward completeness (F ) requires accuracy when we compare the abstract and the concrete compu-
tations on the output domain of the program, i.e., we compare whether the abstract and the concrete
outputs are the same when the program computes on the abstract values. Formally, given a semantics f
and a closure ρ , ρ is forward complete for f iff ρ ◦ f ◦ρ = f ◦ρ . Consider Fig. 2 . On the left, we have
incompleteness since the concrete and the abstract computations on abstract values (respectively f (ρ(x ))

and ρ(f (ρ(x )))) does not provide the same result, and in particular the abstraction of the computation
loses precision. On the right, the two computations coincide since f returns, as output, an element in
ρ , and therefore we have completeness. Finally we observe that, if f is additive1, then there exists
f +

def
= λx .

∨{ y | f (y)≤ x} and we have that ρ is B-complete for f iff it is F -complete for f +.

1It commutes with least upper bounds.



44 Abstract non-interference

x

f

! !

⊥ ⊥

ρ

x

f

! !

⊥ ⊥

ρ

ρ ρ

Figure 2: Forward completeness

Programs and Semantics. Consider a simple (deterministic) imperative language L : C ::= skip | x :=
e | C 0;C 1 | while B do C endw | if B then C 0 else C 1. Let PL be a set of programs in the language
L , Var(P) the set of all the variables in P ∈ PL , V be the set of values, M : Var(P)→ V. In sake of
simplicity, in the examples, we consider a fine-grained big-step operational semantics, where each step
of computation corresponds to the execution of a single statement, e.g. the execution of an if statement
corresponds to one step. In this way, the program points coincide with the steps of computation. This is
not a mandatory choice and the whole framework can be extended to trace semantics of any granularity.
Let→P be the transition relation induced by the fine-grained big-step semantics, then we denote by 〈|P |〉
the set of execution traces of P obtained by fix-point iteration of the transition relation [9]. We denote
by JPK : M→M the denotational semantics of P associating with initial states the corresponding final
states. In other words JPK is the I/O abstraction of the trace semantics 〈|P |〉 [9].

2 A general framework for Abstract Non-Interference

In this section, we introduce the notion of abstract non-interference [15], i.e., a weakening of non-
interference given by means of abstract interpretations of concrete semantics. We will start from standard
notion on non-interference (NI for short), originally introduced in language-based security [7, 20, 31],
and here generalized to any kind of classification of data (intended as program variables), where we are
interested in understanding whether a given class of data (internal) interferes with another class of data
(observable). In other words, we generalize the public/private data classification in language-based se-
curity to a generic observable/internal classification [17].
Consider variables statically2 distinguished into internal (denoted ∗) and observable (denoted ◦). The
internal data3 correspond to those variables that must not interfere with the observable ones. This parti-
tion characterises the NI policy we have to verify/define.
Both the input and the output variables are partitioned in this way, and the two partitions need not coin-
cide. Hence, if I denotes the set of input variables and O denotes the set of output variables, we have
four classes of data: I∗ are the input internal variables, I◦ are the not internal (potentially observable)
input, O∗ are the not observable (hence internal) outputs, and O◦ are the output observables. Note that
the formal distinction between I and O is used only to underline that there can be different partitions of

2In this paper we do not consider security types that can dynamically change.
3In sake of simplicity, we identify data with their containers (variables).



I. Mastroeni 45

input and output, namely I∗ = O∗ need not hold. In general, we have the same set of variables in input
and in output, hence I = O = Var(P).
Informally, non-interference can be reformulated by saying that if we fix the values of variables in I◦ and
we let values of variables in I∗ change, we must not observe any difference in the values of variables
in O◦. Indeed if this happens it means that I∗ interferes with O◦. We will use the following nota-
tion: if n = |{x ∈Var(P) | x is internal}|= |I∗|, then I∗

def
= Vn , analogously O∗

def
= V|O∗|, I◦

def
= V|I◦| and

O◦
def
= V|O◦|, where |X | denotes the cardinality of the set of variables X . Consider C ∈ {I∗,I◦,O∗,O◦},

in the following, we abuse notation by denoting v ∈ C the fact that v is a possible tuple of values for the
vector of variables evaluated in C, e.g., v ∈ I∗ is a vector of values for the variables in I∗. Moreover, if
x is a tuple of variables in O (analogous for I ) we denote as x ∗ [resp. x ◦] the projection of the tuple of
variables x only on the variables in O∗ [resp. O◦] (analogous for values). At this point, we can reformu-
late standard non-interference for a deterministic program P4, w.r.t. fixed partitions of input and output
variables πI

def
= {I◦,I∗} and πO

def
= {O◦,O∗} (π = {πI,πO}):

A program P , satisfies non-interference w.r.t. π if
∀v ∈ I◦,∀v1,v2 ∈ I∗ . (JPK(v1,v))

◦ = (JPK(v2,v))
◦ (1)

2.1 An abstract domain completeness problem

In this section, we recall from [16, 4] the completeness formalization of (abstract) non-interference. This
characterization underlines that non-interference holds when the abstraction of input and output data
(the projection on observable values in standard NI) is complete, i.e., precise, w.r.t. the semantics of the
program. This exactly means that, starting from a fixed input property the semantics of the program does
not change the output observable property [21].
Joshi and Leino’s characterization of classic NI in [22] provides an equational definition of NI which can
be easily rewritten as a completeness equation: a program P containing internal and observable variables
(ranged over by p and o respectively) satisfies non-interference iff HH ;P ;HH = P ;HH , where HH is
an assignment of an arbitrary value to p. “The postfix occurrences of HH on each side mean that we
are only interested in the final value of o and the prefix HH on the left-hand-side means that the two
programs are equal if the final value of o does not depend on the initial value of p” [32].

An abstract interpretation is (backwards) complete for a function, f , if the result obtained when f

is applied to any concrete input, x , and the result obtained when f is applied to an abstraction of the
concrete input, x , both abstract to the same value. The completeness connection is implicit in Joshi and
Leino’s definition of secure information flow and the implicit abstraction in their definition is: “each
internal value is associated with >, that is, the set of all possible internal values”.

Let π
def
= πI = πO, namely I∗ = O∗,I◦ = O◦. The set of program states is Σ = I∗ × I◦, which is

implicitly indexed by the internal variables followed by the observable variables.
Because HH is an arbitrary assignment to p ∈ I∗, its semantics can be modelled as an abstraction

function, H , on sets of concrete program states, Σ; that is, H :℘(Σ)→℘(Σ), where℘(Σ) is ordered by
subset inclusion, ⊆. For each possible value of an observable variable, H associates all possible values

4If P is not deterministic the definition works anyway simply by interpreting JPK(s) as the set of all the possible outputs
starting from s .



46 Abstract non-interference

of the internal variables in P . Thus H (X ) = I∗×X ◦, where I∗ is the top element of ℘(I∗). Hence the
Joshi-Leino definition can be rewritten [16] in the following way:

H ◦ JPK◦H = H ◦ JPK (2)

It is clear that H is parametric on the partition π (and in general the abstraction H applied to the
input is parametric on πI, while the one applied on the output is parametric on πO). Anyway, in sake of
readability we use simply H instead of Hπ .
The equation above is precisely the definition of backwards completeness in abstract interpretation [11,
19] (see [25] for examples). Note that, Equation (2) gives us a way to dynamically check whether a
program satisfies a confidentiality policy, this is due to the use of denotational semantics. In [25] we
show that we can perform the same analysis statically, by involving the weakest precondition semantics.

In particular, static checking involves F -completeness, instead of B-completeness, and the use of
weakest preconditions instead of the denotational semantics [25]. With weakest preconditions, (written
WlpP ), equation (2) has the following equivalent reformulation:

H ◦WlpP ◦H = WlpP ◦H (3)

Equation (3) says that H is F -complete for WlpP . The equation asserts that WlpP (H (X )) is a fixpoint
of H , meaning that WlpP ◦H associates each observable output with any possible internal input: a
further abstraction of the fixpoint (cf., the lhs of equation (3)) yields nothing new. Because no distinctions
among internal inputs get exposed to an observer, the observable output is independent of the internal
input, hence also equation (3) asserts classic NI.

2.2 Tuning Non-Interference: Three dimensions of Non-Interference

We believe that the real added value of abstract non-interference is the possibility of deeply understand-
ing which are the actors playing and which is their role in the definition of a security policy to enforce
[25]. In particular, we can observe that in the abstract non-interference framework we can identify three
dimensions: (a) the semantic dimension, (b) the observation dimension and (c) the protection/declassi-
fication dimension. These dimensions are pictorially represented in Fig. 3 [4]. In general, to describe

Semantic 
Policy

Trace 
semantics

I/O 
semantics

Protection 
policy

Observation 
Policy

Figure 3: The three dimensions of non-interference

any non-interference property, we first fix its semantic dimension. The semantic dimension comprises of
the concrete semantics of the program (the solid arrow in Fig. 3 shows Cousot’s hierarchy of semantics



I. Mastroeni 47

[9]), the set of observation points, that is the program points where the observer can analyse data, and
the set of protection points, that is the program points where information must be protected. Next we
fix the program’s observation and protection dimensions that say what information can be observed and
what information needs to be protected at these program points. This is how the what dimension of
declassification policies [33] is interpreted in [25].
Consider, for instance standard NI in Eq. 1. The three dimensions of NI are as follows. The semantic
dimension, i.e., the concrete semantics, is P ’s denotational semantics. Both inputs and outputs constitute
the observation points while inputs constitute the protection points because it is internal data at program
inputs that need to be protected. The observation dimension is the identity on the observable input-output
because the observer can only analyse observable inputs and outputs. Such an observer is the most pow-
erful one for the chosen concrete semantics because its knowledge (that is, the observable projections of
the initial and final states of the two runs of the program) is completely given by the concrete semantics.
Finally, the protection dimension is the identity on the internal input. This means that all internal inputs
must be protected, or dually, no internal inputs must be released.
In this survey we generalize these dimensions in the notion of abstract non-interference introduced in
[17], which goes beyond the standard low and high data classification in language-based security.

2.2.1 The semantic dimension

In this section our goal is to provide a general description of a semantic dimension that is parametric
on any set of protection and observation points. For this purpose it is natural to move to a trace se-
mantics. The first step in this direction is to consider a function post as defined below. Let us define
postP

def
= {〈s, t〉 | s, t ∈ Σ, s →P t}, where, we recall that→P is the semantic transition relation. From

this definition of postP it is quite straightforward to recover non-interference based on I/O observation
[4]. Let post+P the transitive closure of postP associating with each initial state s the final state t reach-
able from s , i.e., post+P

def
= {〈s, t〉 | s, t ∈ Σ, s→∗P t , t final}. Then, an equivalent characterization of NI,

where Σ` is the set of initial states, is

∀s1,s2 ∈ Σ`. s
◦
1 = s◦2 ⇒ post+P (s1)

◦ = post+P (s2)
◦

NI for trace semantics. A denotational semantics does not take into account the whole history of com-
putation, and thus restricts the kind of protection/declassification policies one can model. In order to
handle more precise policies, that take into account where/when [33] information is released in addition
to what information is released we must consider a more concrete semantics, such as trace semantics.
More precisely, depending on how we fix the observation points we describe a where or a when dimen-
sion: If the observation points are program points then we are fixing where to observe, if the they are
computational steps then we are fixing when to observe. In our semantics these points coincide and we
choose to call this dimension where.
Let us define NI on traces:

∀s1,s2 ∈ Σ`. s
◦
1 = s◦2 ⇒ 〈|P |〉(s1)

◦ = 〈|P |〉(s2)
◦

This definition says that given two observably indistinguishable input states, s1 and s2, the two executions
of P must generate two — both finite or both infinite — sequences of states in which the corresponding



48 Abstract non-interference

states in each sequence are observably indistinguishable. Equivalently, we can use a set of post relations:
for i ∈ Nats we define the family of relations postiP

def
= {〈s, t〉 | t ∈ Σ, s ∈ Σ`, s→i

P t}, i.e., postiP is the
I/O semantics after i steps of computations. The following result is straightforward.

Proposition 2.1 [4] NI on traces w.r.t. πI and πO holds iff for each program point, i , of program P , we
have ∀s1,s2 ∈ Σ`.s◦1 = s◦2 ⇒ postiP (s1)

◦ = postiP (s2)
◦.

The post characterization of trace-based NI precisely identifies the observation points as the outputs
of the post relations, that is, any possible intermediate state of computation, and the protection points are
identified as the inputs of the post relations, that is, the initial states.

General semantic policies. In the previous paragraph, we show how for denotational and trace seman-
tics, we can define a corresponding set of post relations fixing protection and observation points. In order
to understand how we can generalize this definition, let us consider a graphical representation of the
situations considered in Fig. 4 [25].

Each step 
observed

Only I/O  
observed

Only internal 
input protected

(b)
Trace-based

(a)
Standard I/O

Each step 
observed

Each step 
internal protected

(c)
Post-based

Protection 
point

Observation 
point

Only internal 
input protected

Figure 4: Different notions of non-interference for trace semantics

(i) In the first picture, the semantic dimension says that an observer can analyse the observable inputs
and outputs only, while we can protect only the internal inputs. This notion corresponds to NI.

(ii) In the second picture, the semantic dimension says that an observer can analyse each intermediate
state of computation, including the input and the output, while the protection point is again the
input.

(iii) In the last picture, the semantic dimension says that an observer can analyse each intermediate
state of computation, while the protection points are all intermediate states of the computation. In
order to check this notion of non-interference for a program we have to check non-interference
separately for each statement of the program itself. It is worth noting that this corresponds exactly
to ∀s1,s2 ∈ Σ. s◦1 = s◦2 .postP (s1)

◦ = postP (s2)
◦.

It is clear that between (i) and (ii) there are several notions of non-interference depending on the inter-
mediate observable states fixed by the where dimension of the policy (observation points in Fig. 4). For
example, in language-based security, gradual release [2] considers as observation points only those pro-
gram points corresponding to observable events (i.e., assignment to observable variables, declassification



I. Mastroeni 49

points and termination points). However, unless we consider interactive systems that can provide inputs
in arbitrary states, we will protect only the initial ones. Hence, in this case, (ii) and (iii) collapse to the
same notion.

Definition 2.2 (Trace-based NI) [4] Given a set O of observation points, the notion of NI w.r.t. πI and
πO, based on the semantic dimension w.r.t. O, and the input as protection point, is defined:

∀j ∈ O.∀s1,s2 ∈ Σ`. s◦1 = s◦2 ⇒ postjP (s1)
◦ = postjP (s2)

◦

Note that, this is a general notion, that can be formulated depending on O. In particular, we obtain stan-
dard NI by fixing O= {p | p is the final program point}, we obtain the most concrete trace-based NI pol-
icy by fixing O= {p | p is any program point}. But we can also obtain intermediate notions depending on
O: we obtain gradual release by fixing O= {p | p is a program point corresponding to an observable event}.

Example 2.3 Let us consider the program fragment P with the semantic policies represented in the
following picture. The semantic dimension represented in picture (a) is the I/O one. In this case, for
each pair of initial states s1,s2 such that s◦1 = s◦2 we have to check post6(s1)

◦ = post6(s2)
◦, and it is clear

that this hold since, for instance, both l1 and l2 become constant.

p0→ ← o0

h1 := h2;
h2 := h2 mod 2;
l1 := h2

l2 := h1

l2 := 5
l1 := l2 +3

← o6

(a)

p0→ ← o0

h1 := h2;
h2 := h2 mod 2;
l1 := h2

← o3

l2 := h1

← o4

l2 := 5
l1 := l2 +3

← o6

(b)

On the other hand, the policy in picture (b) considers O = {3,4,6} (the observable events). In this
case, for each pair of initial states s1,s2 such that s◦1 = s◦2 we have to check post6(s1)

◦ = post6(s2)
◦, but

also post4(s1)
◦ = post4(s2)

◦ and post3(s1)
◦ = post3(s2)

◦, and both these new tests fail since in all the
corresponding program points there is a leakage of private information. For instance, if s1 = 〈h1,h2 =

2, l1, l2〉 and s2 = 〈h1,h2 = 3, l1, l2〉 then we have different l1 values in o3: respectively l1 = 0 and l1 = 1.

Semantic dimension in the completeness formalization. We can observe that the completeness equa-
tion is parametric on the semantic function used. Since the denotational semantics is the post of a transi-
tion system where all traces are two-states long. A generalization of the completeness reformulation, in
order to cope also with trace-based NI (Def. 2.2), can be immediately obtained [4]. Theorem 2.4 below
shows the connection, also for traces, between completeness and non-interference.

Theorem 2.4 [4] Let 〈Σ,→P 〉 be the transition system for a program P , and O a set of observation
points. Then, trace-based NI w.r.t. πI and πO (Def. 2.2) holds iff ∀j ∈ O.H ◦postjP ◦H = H ◦postjP .



50 Abstract non-interference

This theorem characterizes NI as a family of completeness problems also when a malicious attacker
can potentially observe the whole trace semantics, namely when we deal with trace-based NI.

Moreover, let us denote as p̃rej the adjoint map of postj 5 in the same transition system, then the
completeness equation can be rewritten as H ◦ p̃rej ◦H = p̃rej ◦H .

2.2.2 The observation dimension

Consider the program P
def
= x := |x | ∗Sign(y), where I∗ = {y} and I◦ = O◦ = {x}, suppose that | · |

is the absolute value function, then “only a portion of x is affected, in this case x ’s sign. Imagine if
an observer could only observe x ’s absolute value and not x ’s sign” [7] then we could say that in the
program there is non-interference between ∗ and ◦. Abstract interpretation provides the most appropriate
framework to further develop Cohen’s intuition. The basic idea is that an observer can analyze only some
properties, modeled as abstract interpretations of the concrete program semantics.

Suppose the observation points fixed by the chosen semantics are input and output. Then the observa-
tion dimension might require that the observer analyse a particular property, ρ , of the observable output
— e.g., parity — and a particular property, η , of the observable input — e.g., signs. In the following, we
will consider η ∈ uco(I) such that η abstracts internal and observable variables. This abstraction may be
attribute independent or relational6. Attribute independent means that η can be split in two independent
abstractions identifying precisely what is observable (I◦) or not (I∗). Hence, in this case it can be split in
one abstraction for the variables in I∗, denoted η∗, and one for the variables in I◦, denoted η◦, and we
write η = 〈η∗,η◦〉. Then we obtain a weakening of standard NI as follows:

∀x1,x2 ∈ V .x ◦1 = x ◦2 ⇒ ρ(JPK(η(x1))) = ρ(JPK(η(x2))) (4)

This weakening, here called abstract non-interference (ANI), was first partially introduced in [15]. The
interesting cases are two. The first is η = id, which consists in a dynamic analysis where the observers
collects the (possibly huge) set of possible computations and extract in some way (e.g. data mining)
properties of interest. The second is an observer performing a static analysis of the code, in which case
usually η = ρ . Standard NI is recovered by setting η to be the identity and ρ to the projection on
observable values, i.e., ρ = 〈T∗, id◦〉, where T∗ def

= λx ∈ I∗.> (in this case >= I∗) and id◦ = λx ∈ I◦. x
is the identity on observables.

Observation dimension for a generic semantic dimension. In [25] we showed how to combine a se-
mantic dimension that comprises of a trace-based semantics with an observation dimension. In other
words, we showed how we abstract a trace by a state abstraction. Consider the following concrete trace
where each state in the trace is represented as a pair 〈x ∗,x ◦〉.

〈3,1〉 → 〈2,2〉 → 〈1,3〉 → 〈0,4〉 → 〈0,4〉

Suppose also that the trace semantics fixes the observation points to be each intermediate state of com-
putation. Now suppose the observation dimension is that only the parity (represented by the abstract

5By adjoint relation the function p̃rej is the weakest precondition of the corresponding function postj
6Here, by relational, we mean not attribute independent, namely a property describing relations of elements, for example

η(〈x ,y〉) = 0+ if x +y ≥ 0 is a relational property.



I. Mastroeni 51

domain, Par) of the public data can be observed. Then the observation of the above trace through Par is:

〈3,odd〉 → 〈2,even〉 → 〈1,odd〉 → 〈0,even〉 → 〈0,even〉

The abstract notion of NI on traces is formulated by saying that all the execution traces of a program
starting from states with the same property (η) of public input, have to provide the same property (ρ)
of reachable states. Therefore, the general notion of ANI consists simply in abstracting each state of the
computational trace. We thus have

Definition 2.5 (Trace-based ANI) Given a set of observation points O and the partitions πI and πO

∀j ∈ O.∀s1,s2 ∈ Σ` . s
◦
1 = s◦2 ⇒ ρ(postjP (η(s1))) = ρ(postjP (η(s2)))

The following example shows the meaning of the observation dimension.

Example 2.6 Consider the program fragment in Ex. 2.3 together with the semantic policies shown so far.
If we consider the semantic dimension in (a) and an observer able only to analyse in output the sign of
integer variables, i.e., η = id and ρ = 〈T∗,ρ◦〉, ρ◦= {∅,< 0,≥ 0,>}, trivially we have that, for any pair
of initial states s1 and s2 agreeing on the observable part, ρ(post6(s1)) = (≥ 0) = ρ(post6(s2)). Namely,
the program is secure. Consider now the semantic dimension in (b) and the same observation dimension.
In this case, non-interference is still satisfied in o6 but it fails in o3 and in o4 since by changing the sign
of h2 we change the sign of respectively l1 and l2.

Observation dimension in the completeness formalization. In order to model ANI by using the com-
pleteness equation we have to embed the abstractions characterizing the attacker into the abstract domain
H . Hence, let us first note that H = λX .〈T∗(X ∗), id◦(X ◦)〉= λX .〈I∗,X ◦〉where X ∗ def

= {x ∗ | x ∈X },
i.e., H is the product of respectively the top and the bottom abstractions in the lattice of abstract inter-
pretations. As far as the semantics is concerned, if the attacker may perform a static analysis w.r.t. η in
input and ρ in output, then the semantics is its best correct approximation, i.e.,

JPKρ

η

def
= λx .ρ ◦ JPK ◦η(x )

This means that the right formalization of ANI via completeness is

H ◦ JPKρ

η
◦H = H ◦ JPKρ

η
(5)

The next theorem shows that the equation above completely characterizes ANI as a completeness prob-
lem. This theorem is a generalization of the one proved for language-based security [16].

Theorem 2.7 Consider ρ ∈ uco(℘(I)) defining what is observable, η ∈ uco(℘(I)):

P satisfies ANI in Eq. 4 ⇔ H ◦ JPKρ

η
◦H = H ◦ JPKρ

η
.

If η = id, and ρ = 〈ρ∗,ρ◦〉 ∈ uco(℘(I)), we define Hρ ∈ uco(℘(I)): Hρ

def
= λX .H (X )◦ρ = 〈I∗,ρ◦(X ◦)〉 ∈

uco(℘(I)). In this case we can rewrite the completeness characterization as

Hρ ◦ JPK ◦H = Hρ ◦ JPK (6)



52 Abstract non-interference

2.2.3 The protection dimension

Suppose now, we aim at describing a property on the input representing for which inputs, we are inter-
ested in testing NI properties [4]. Let φ ∈ uco(℘(I)) such a property, also this input property can be
modeled, when possible, as an attribute independent abstraction of states, i.e., φ = 〈φ∗,φ◦〉. This compo-
nent of the NI dimension specifies what must be protected or dually, what must be declassified.
For denotational semantics, standard NI says that nothing must be declassified. Formally, we can say that
the property T∗ has been declassified. From the observer perspective, this means that every internal input
has been mapped to >. On the other hand, suppose we want to declassify the parity of the internal in-
puts. Then we do not care if the observer can analyse any change due to the variation of parity of internal
inputs. For this reason, we only check the variations of the output when the internal inputs have the same
parity property. Formally, consider an abstract domain φ — the selector, that is a function that maps
any internal input to its corresponding parity 7. Then a program P satisfies declassified non-interference
(DNI) provided

∀x1,x2 ∈ V .φ(x1) = φ(x2) ⇒ JPK(x1)
◦ = JPK(x2)

◦ (7)

This notion of DNI has been advanced several times in the literature, e.g., by [30]; this particular for-
mulation using abstract interpretation where φ

def
= 〈φ∗, id◦〉 is due to [15] and is further explained in [24]

where it is termed “declassification by allowing”. The generalization of DNI to Def. 2.2 is straightfor-
ward. Since we protect the internal inputs, we simply add the condition φ(s1) = φ(s2) to Def. 2.2. In
general, we can consider a different declassification policy φj for each observation point oj , j ∈ O.
Definition 2.8 (Trace-based DNI.) Let O be a set of observation points, πI a partition of inputs and
πO the partitions of observable outputs. Let ∀j ∈ O φj be the input property declassified in oj : ∀j ∈
O.∀s1,s2 ∈ Σ` .φj (s1) = φj (s2)⇒ postjP (s1)

◦ = postjP (s2)
◦

This definition allows a versatile interpretation of the relation between the where and the what dimen-
sions for declassification [25]. Indeed if we have a unique declassification policy, φ , that holds for all the
observation points, then it means that ∀j ∈ O.φj = φ . On the other hand, if we have explicit declassifi-
cation, then we have two different choices. We can combine where and what supposing that the attacker
knowledge can only increase. We call this kind of declassification incremental declassification. On the
other hand, we can combine where and what in a stricter way. Namely, the information is declassified
only in the particular observation point where it is explicitly declared, but not in the following points. In
this case it is sufficient to consider as φj exactly the property corresponding to the explicit declassification
and we call it localized declassification. This kind of declassification can be useful when we consider the
case where the information obtained by the different observation points cannot be combined, for example
if different points are observed by different observers, as it can happen in the security protocol context.

Protection dimension in the completeness formalization. Finally, we can model the protection di-
mension as a completeness problem. Consider an abstract domain φ = 〈φ∗,φ◦〉 ∈ uco(℘(I)), where
φ∗ ∈ uco(℘(I∗)) and φ◦ ∈ uco(℘(I◦)). In this case we consider the concrete semantics JPK of the pro-
gram, since the property φ is only used for deciding/selecting when we have to check whether non-
interference is satisfied or not. For this reason, the property φ is embedded in the input abstract domain

7More precisely, φ maps a set of internal inputs to the join of the parities obtained by applying φ to each internal input; the
join of even and odd is >.



I. Mastroeni 53

in a way similar to what we have done for the output observation [25].
Consider any o ∈ X ◦. Define the set Ho

def
= {r ∈ I∗ | 〈r ,o〉 ∈ X }; i.e., given a value o, Ho contains all

the relevant values associated with o in X . Then the selecting abstract domain, H φ (X ), corresponding
to X , is defined as H φ (X ) =

⋃
o∈X ◦ φ∗(Ho)×φ◦(o). Note that the domain H , for standard NI, is the

instantiation of H φ , where φ∗ maps any set to > and φ◦ maps any set to itself.
Let φ ∈ uco(℘(I)), selecting the inputs on which to check non-interference, then we define the

following completeness equation

H ◦ JPK ◦H φ = H ◦ JPK (8)

Now we can connect H φ to DNI:

Theorem 2.9 P satisfies DNI w.r.t. φ iff H ◦ JPK ◦H φ = H ◦ JPK.

2.3 All together...

The following definition combines all the three dimensions obtaining the notion of ANI as a generaliza-
tion of the standard one [17]. We can say that the idea of abstract non-interference is that a program
P satisfies abstract non-interference relatively to a pair of observations η and ρ , and to a property φ ,
denoted [φ ` (η)P(ρ)], if, whenever the input values have the same property φ then the best correct
approximation of the semantics of P , w.r.t. η in input and ρ in output, does not change. This captures
precisely the intuition that φ -indistinguishable input values provide η ,ρ-indistinguishable results, for
this reason it can still be considered a non-interference policy.

Definition 2.10 ((Declassified) Abstract non-interference DANI)
Let φ ,η ∈ uco(℘(I)),ρ ∈ uco(℘(O◦)).

A program P satisfies [φ ` (η)P(ρ)] w.r.t. πI and πO if
∀x1,x2 ∈ I .φ(x1) = φ(x2) ⇒ ρ((JPK(η(x1)))) = ρ((JPK(η(x2))))

For instance, in Eq. 1 we have φ = 〈T∗, id◦〉, η = id and ρ = id.In the following, we define closures on
Vn by using closures on V. In this case we abuse notation by supposing that ρ(〈x ,y〉) = 〈ρ(x ),ρ(y)〉.

Example 2.11 Consider the property Sign and Par defined in Sect. 1.Consider I◦ = {x}, I∗ = {y}
and I= Z. Let φ = Sign , η = id, ρ = Par , and consider the program fragment:

P
def
= x := 2∗x ∗y2;

In the standard notion of non-interference there is a flow of information from variable y to variable x ,
since x depends on the value of y , i.e., the statement does not satisfy non-interference.
Let us consider [Sign ` (id)P(Par)]. If Sign(〈x ,y〉) = 〈Sign(x ),Sign(y)〉= 〈0+,0+〉, then the possible
outputs are always in ev, indeed the result is always even because there is a multiplication by 2. The
same holds if Sign(〈x ,y〉) = 〈0−,0−〉. Therefore any possible output value, with a fixed observable
input, has the same observable abstraction in Par , which is ev. Hence [Sign ` (id)P(Par)] holds.



54 Abstract non-interference

The completeness formalization. All the completeness characterizations provided embed the abstrac-
tion in a different position inside the completeness equation. This makes particularly easy to combine all
the completeness characterizations in order to obtain the completeness formalization of DANI.

Theorem 2.12 P satisfies DANI w.r.t. φ ,η ∈ uco(℘(I)) and ρ ∈ uco(℘(O)) iff

Static attack : Dynamic attack :
H ◦ JPKρ

η
◦H φ = H ◦ JPKρ

η
Hρ ◦ JPK ◦H φ = Hρ ◦ JPK

3 Abstract Non-Interference in Language-based Security

In the previous sections we introduced non-interference as a generic notion that can be used/applied in
many fields of computer science, i.e., wherever we have to analyze a dependency relation between two
sets of variables. However, this notion was introduced in the field of language-based security [7]. In
this context we consider the same partition of input and output data into two types: private/confidential
(the set of values for variables of type H is denoted VH ) and public (the set of values for variables L

is denoted VL ). In this case, non-interference requires that by observing the public output, a malicious
attacker must not be able to disclose any information about the private input. It is straightforward to
note that this is an immediate instantiation of the general notion we provided with attribute independent
abstractions, where I◦ =O◦ = VL and I∗ =O∗ = VH .

In the context of language-based security the limitation of the standard notion of non-interference
is even more relevant, in particular we can observe that, in general, it results in a extremely restrictive
policy. Indeed, non-interference policies require that any change upon confidential data must not be
revealed through the observation of public data. There are at least two problems with this approach.
On one side, many real systems are intended to leak some kind of information. On the other side,
even if a system satisfies non-interference, static checking being approximate could reject it as insecure.
Both of these observations address the problem of weakening the notion of non-interference for both
characterizing the information that is allowed to flow, and modeling weaker attackers that can observe
only some properties of public data. Abstract non-interference can provide formal tools for reasoning
about both these kind of weakenings of non-interference in language-based security. There exists a large
literature on the problem of weakening non-interference (see [24] and [25] for a formalization of the
relation between abstract non-interference and existing approaches). In the following, we show how we
can choose and combine the different policies obtaining the different notions of abstract non-interference
introduced in the last years for language-based security.

3.1 Who is attacking?

Let us focus first on the attacker. By attacker we mean the agent aiming at learning some confidential
information by analyzing, to the best of its possibilities, the system under attack. In general the attacker
is characterized by the public observation of both input and output [15]. Depending on the dimension
(observation or protection) we use for modeling the input attacker observation we obtain different notions
of abstract non-interference. In particular, if the attacker selects the computations whose inputs have a
fixed public property, we obtain the so called narrow non-interference [15]. If, instead the attacker



I. Mastroeni 55

performs a static analysis of the code with a generic input observation that may not be the same as the
output observation, then we obtain the so called (strictly) abstract approach. In both cases the attacker
is characterised by means of two abstractions: the abstract observation of the public input δ and the
abstract observation of the public output ρ , both modelled as abstract domains.

3.1.1 The narrow approach to non-interference

In [15, 16] the notion of narrow (abstract) non-interference (NANI for short) represents a first weakening
of standard non-interference relative to a given model of an attacker. The idea behind this notion is to
consider attackers that can only dynamically analyze the program by analysing properties of the collected
executions. In particular the input public observation selects the computations that have to satisfy non-
interference, while the public output observation represents dynamic observational power of the attacker.
Formally, given δ = φL , ρ ∈ uco(℘(VL )), respectively, the input and the output observation, we say that
a program P satisfies narrow non-interference (NANI), written [φL ]P(ρ), if

∀x1,x2 ∈ V .φL (x
L
1 ) = φL (x

L
2 ) ⇒ ρ((JPK(x1))

L ) = ρ((JPK(x2))
L )

This notion is a particular instantiation of DANI where η = id and φ = 〈idH ,φL 〉 (where idH
def
= λx ∈VH .x

and id is defined on V). This notion corresponds to other weakenings of non-interference existing in the
literature (e.g., PERs [32]).

3.1.2 The abstract approach to non-interference

A different abstract interpretation-based approach to non-interference can be obtained by modelling at-
tackers as static analyzers of programs. In this case, we check non-interference by considering the best
correct approximation of the program semantics in the abstract domains modelling the attacker. Formally,
the idea is to compute the semantics on abstract values, obtaining again a notion of non-interference
where only the private input can vary. What we obtain is a policy such that when the attacker is able to
observe the property δ = ηL of public input, and the property ρ of public output, then no information
flow concerning the private input is detected by observing the public output. We call this notion abstract
non-interference (ANI for short). A program P satisfies abstract non-interference, written (ηL )P(ρ), if

∀x1,x2 ∈ V .x L1 = x L2 ⇒ ρ(JPK(x H1 ,ηL (x
L
1 ))

L ) = ρ(JPK(x H2 ,ηL (x
L
2 ))

L )

where we abuse notation denoting by JPK the additive lift, to sets of states, of the denotational semantics
of P . This notion is an instantiation of DANI where φ = id and η = 〈idH ,ηL 〉. Note that (id)P(id)
(equivalent to [id]P(id)) models exactly (standard) non-interference.

Proposition 3.1 The notion of ANI (δ )P(ρ) defined above is equivalent to the standard notion of ANI
[15], i.e., ∀x1,x2 ∈ V .δ (x L1 ) = δ (x L2 ) ⇒ ρ(JPK(x H1 ,δ (x

L
1 ))

L ) = ρ(JPK(x H2 ,δ (x
L
2 ))

L ).

PROOF. We have to prove that ∀x1,x2 ∈ V we have that (1)x L1 = x L2 ⇒ ρ(JPK(x H1 ,δ (x
L
1 ))

L ) =

ρ(JPK(x H2 ,δ (x
L
2 ))

L ) iff (2)δ (x L1 ) = δ (x L2 ) ⇒ ρ(JPK(x H1 ,δ (x
L
1 ))

L ) = ρ(JPK(x H2 ,δ (x
L
2 ))

L ). Suppose
(1) holds, and consider x L1 6= x L2 such that δ (x L1 )= δ (x L2 ). From (1) we have that ρ(JPK(x H1 ,δ (x

L
1 ))

L )=

ρ(JPK(x H2 ,δ (x
L
1 ))

L ), but since δ (x L1 )= δ (x L2 ) we have also ρ(JPK(x H1 ,δ (x
L
1 ))

L )= ρ(JPK(x H2 ,δ (x
L
2 ))

L ).
Suppose (2) holds and that x L1 = x L2 , then trivially δ (x L1 )= δ (x L2 ) and by (2) we have ρ(JPK(x H1 ,δ (x

L
1 ))

L )=

ρ(JPK(x H2 ,δ (x
L
2 ))

L ). 2



56 Abstract non-interference

3.2 What the attacker may disclose?

In this section, we focus on another important aspect: what is released or protected. Again, depending on
which dimension (observation or protection) we use for modeling the information to protect we obtain
different approaches to declassification [15, 25]. In particular, if the observation dimension is specified,
then we are fixing the property that must not be released, namely we model the property whose variation
must not be observable, obtaining the so called block approach to non-interference. On the other hand,
if we use the protection dimension, then we are fixing the property that may be released, namely the
property of private inputs such that non-interference has to be satisfied for all the private inputs with the
same property. In other words, the property whose variation may interfere. In this case we obtain the
so called allow approach to non-interference [15]. Note that in this context, we consider declassification
while ignoring where [33] declassification takes place.

3.2.1 The block approach to declassification

Let us describe the block approach introduced in the original notion of abstract non-interference [15].
Note that in standard non-interference we have to protect the value of private data. If we interpret this
fact from the point of view of what we have to keep secret, then we can say that we want to block the
identity property of the private data domain. In the definition, we make the private input range in the
domain of values and we check if these changes are detectable from the observation of the public output.
Suppose, for instance, that we are interested in keeping secret the parity of input private data. Then we
make the private input range over the abstract domain of parity, so we check if there is a variation in the
public output only when the parity of the private input changes8. Hence, the fact that we want to protect
parity is modelled by observing that the distinction between even and odd private inputs corresponds
exactly to what must not be visible to a public output observer. Formally, consider an abstract domain
ηH ∈ uco(VH ) modelling the private information we want to keep secret. A program P satisfies non-
interference declassified via blocking (B-DNI for short), written (id)P(ηH  []id), if

∀x1,x2 ∈ V .x L1 = x L2 ⇒ JPK(ηH (x
H
1 ),x

L
1 )

L = JPK(ηH (x
H
2 ),x

L
2 )

L

This is a particular instantiation of DANI where φ = id and η = 〈ηH , idL 〉. We can obtain the narrow and
the abstract declassified forms simply by combining this notion with each one of the previous notions
[15]. In this case it is the semantics that blocks the flow of information, exactly as the square operation
hides the input sign of an integer.

3.2.2 The allow approach to declassification

Finally, let us introduce the allow approach to declassification. This is a well-known approach, which
has been introduced and enforced in several ways in the literature [24, 33]. The idea is to fix which
aspects of the private information can be observed by an unclassified observer. From this point of view,
the standard notion of non-interference, where nothing has to be observed, can be interpreted by saying
that only the property T∗ (i.e., “I don’t know the private property”) is declassified. This corresponds to

8This idea was partially introduced in the use of abstract variables in the semantic approach of Joshi and Leino [22], where
the variables represent set of values instead of single values. But in [22] only an example of these ideas is provided.



I. Mastroeni 57

saying that we have to check non-interference only for those private inputs that have the same declassified
property, noting that all the values are mapped to> and hence have the same abstract property. Suppose,
for instance, that we want to downgrade the parity. This means that we do not care if the observer
sees any change due to the variation of this private input property. For this reason, we only check the
variations of the output when the private inputs have the same parity property. Formally, consider an
abstract domain φH modelling the private information that is downgraded. A program P satisfies non-
interference declassified via allowing (A-DNI for short), written (id)P(φH ⇒ id), if

∀x1,x2 ∈ V .x L1 = x L2 ∧ φH (x
H
1 ) = φH (x

H
2 ) ⇒ JPK(x H1 ,x

L
1 )

L = JPK(x H2 ,x
L
2 )

L

Also this notion is an instantiation of DANI where η = id and φ = 〈φH , idL 〉. This is a weakened form of
standard NI where the test cases are reduced, allowing some confidential information to flow.

In order to make clear the differences and the analogies between the several notions introduced, we
collect together, in the next table, all these notions.

OBSERVATION DIMENSION DECLASSIFICATION DIMENSION PROPERTY

Input: Dynamic protection of inputs (φL ) No Declassification NANI

Output: Dynamic analysis of computations (ρ) [φL ]P(ρ)

Static analysis of code: No Declassification ANI

ηL in input, ρ in output (ηL )P(ρ)

No abstraction ηH to protect B-DNI

(id)P(ηH  []id)

No abstraction φH declassified A-DNI

(id)P(φH ⇒ id)

3.3 Where the attacker may observe?

In this section, we show that we can exploit the semantic dimension in order to model also where the
attacker may observe public data. In particular, we need to consider trace-based NI for fixing also
the observable program points, where the attacker in some way can access the intermediate observable
computations. Let us recall trace-based NI for language-based security

∀j ∈ O.∀s1,s2 ∈ Σ`. sL1 = sL2 ⇒ postjP (s1)
L = postjP (s2)

L

and its completeness characterization in terms of weakest precondition semantics:

H ◦ p̃rej ◦H = p̃rej ◦H .

These results say that, in order to check DNI on traces, we would have to make an analysis for each
observable program point j , combining, afterwards, the information disclosed. In order to make only one
iteration on the program even when dealing with traces, our basic idea is to combine the weakest pre-
condition semantics, computed at each observable point of the execution, together with the observation
of public data made at the particular observation point.

We will describe our approach on our running example, Ex. 3.2, where oi and pi denote respectively
the observation and the protection points of the program P .



58 Abstract non-interference

Example 3.2

P =



p0→ {h2 mod 2 = a} ← o0

h1 := h2;
h2 := h2 mod 2;
l1 := h2;
h2 := h1

l2 := h2;
l2 := l1

{l1 = l2 = a} ← o6

In this example, the observation in output of l1 or l2 allows us to derive the information about the parity
of the secret input h2.

In the presence of explicit declassifications, it allows a precise characterization of the relation between
the where and the what dimensions of non-interference policies. The idea is to track (by using the wlp
computation) the information disclosed in each observation point till the beginning of the computation,
and then to compare it with the corresponding declassification policy. The next example shows how we
track the information disclosed in each observable program point. We consider as the set of observable
program points, O, the same set used for gradual release, namely, the program points corresponding to
low events. However, in general, our technique allows O to be any set of program points. When there is
more than one observation point, we will use the notation [Φ]O to denote that the information described
by the assertion Φ can be derived from the set of observation points in O .

Example 3.3

P =



p0→ {[h2 = b]o5 , [h2 mod 2 = a]o3,o5,o6 , [l2 = c]o3,o0 ,[l1 = d ]o0} ← o0

h1 := h2;
{[h1 = b]o5 , [h2 mod 2 = a]o3,o5,o6 , [l2 = c]o3}

h2 := h2 mod 2;
{[h1 = b]o5 , [h2 = a]o3,o5,o6 , [l2 = c]o3}

l1 := h2;
{[h1 = b]o5 , [l1 = a]o3,o5,o6 , [l2 = c]o3} ← o3

h2 := h1

{[h2 = b]o5 , [l1 = a]o5,o6}
l2 := h2;
{[l1 = a]o5,o6 , [l2 = b]o5} ← o5

l2 := l1
{l1 = l2 = a} ← o6

For instance, at observation point o5, [l1 = a]o5,o6 is obtained either via wlp calculation of l2 := l1 from o6,
or via the direct observation of public data in o5, while [l2 = b]o5 — where b is an arbitrary symbolic value
— is only due to the observation of the value l2 in o5. The assertion in o3 — [h1 = b]o5 , [l1 = a]o3,o5,o6 —
is obtained by computing the wlp semantics Wlp(h2 := h1,([h2 = b]o5 , [l1 = a]o3,o5,o6)), while [l2 = c]o3

is the observation in o3. Similarly, we can derive all the other assertions.



I. Mastroeni 59

It is worth noting, that the attacker is more powerful than the one considered in Example 3.2. In fact,
in this case, the possibility of observing l2 in the program point o5 allows to derive the exact (symbolic)
value of h2 (h2 = b where b is the value observed in o5). This was not possible in Example 3.2 based on
simple input-output, since the value of l2 was lost in the last assignment.

Now, we can use the information disclosed in each observation point, characterized by computing
the wlp semantics, in order to check if the corresponding declassification policy is satisfied or not. This
is obtained simply by comparing the abstraction modelling the declassification with the state abstraction
corresponding to the information released in the lattice of abstract interpretations. In the sequel, we will
consider a slight extension of a standard imperative language with explicit syntax for declassification as in
Jif [29] or in the work on delimited release [30]. Such syntax often takes the form l := declassify(e(h)),
where l is a public variable, h is a secret variable and e is an expression containing the variable h . This
syntax means that the final value of e(h), corresponding to some information about h , can safely made
public assigning it to a public variable l .

Example 3.4 Consider the program in Example 3.3, with the only difference that in o3 the statement
l1 := h2 is substituted with l1 := declassify(h2). In this case, the corresponding declassification policy
is φ3 = idh2 . Now we can compare this policy with the private information disclosed in o3, which is
h2 mod 2 = a (h2’s parity) and therefore we conclude that the declassification policy in o3 is satisfied
because parity is more abstract than identity. Nevertheless, the program releases the information h2 = b

in the program point o5. This means that the security of the programs depends on the kind of localized
declassification we consider. For incremental declassification the program is secure since the release is
licensed by the previous declassification since the observation point o5, where we release information
corresponds to the declassification policy φ5 = φ3 = idh2 , while for localized declassification the program
is insecure since there isn’t a corresponding declassification policy at o5 that licenses the release.

3.4 Certifying abstract non-interference

In this section we briefly recall the main techniques proposed for certifying different aspects of ANI in
language-based security.

Characterizing attackers. In [15], a method for deriving the most concrete output observation for a
program, given the input one, is provided. In particular, we have interference when the attacker observes
too much, namely when it can distinguish elements due to different confidential inputs. The idea is to
collect together all such observations. We don’t mean here to enter in the details of this characterization
(see [15] and [16]), we simply describe the different steps we perform in order to characterize the most
concrete harmless output (dynamic) observer. By dynamic we mean that we can only characterize the
output observation ρ but we cannot characterize the input one, η , which remain fixed.

1. First of all we define the sets of elements that, depending on the fixed (abstract) input, must not be
distinguished. In other words, if the inputs have to agree simply on the public part, then we collect
in the same set all the outputs due to the variation of the confidential inputs. For instance, for the
property ANI (δ )P(ρ) we are interested in the elements of

ϒ
P
ANI(δ )

def
=
{ {

JPK(h,δ (l))
∣∣∣ h ∈ VH

}∣∣∣ l ∈ VL
}



60 Abstract non-interference

Namely, each Y ∈ ϒP
ANI(δ ) is a set of elements indistinguishable for guaranteeing non-interference.

2. Let Π the property to analyze (ANI for instance), the maximal harmless observation is the set of
all the elements satisfying the predicate SecrΠ

P :

∀X ∈℘(VL ) .SecrΠ
P (X ) ⇔ (∃Z ∈ ϒ

P
Π
.Z ⊆X ⇒ ∀W ∈ ϒ

P
Π
.W ⊆X )

Namely the maximal subset of the power set of program states such that any of its elements can
only completely contain sets in ϒP

Π
, namely does not break indistinguishable sets.

Characterizing information released. Abstract non-interference can be exploited also for character-
izing the maximal amount of confidential information released, modelled in terms of the most concrete
confidential property that can be analyzed by a given attacker [15]. The idea is to find the maximum
amount of information disclosed by computing the most abstract property on confidential data which has
to be declassified in order to guarantee secrecy. In other words, we characterize the minimal aggregations
of confidential inputs that do not generate any variation in the public output.

1. We collect together all and only the confidential values that do not generate a variation in the output
observation, for instance for ANI we consider

ΠP(δ ,ρ)
def
= {〈{h ∈ VH | ρ(JPK(〈h,δ (l)〉)L ) =A},δ (l)〉 | l ∈ VL , A ∈ ρ}

which, for each public input l and for each output observation A gathers all the confidential inputs
generating precisely the observation A.

2. We use this information for generating the abstraction Φ, of confidential inputs such that any pair
of inputs in the same set does not generate a flow, while any pair of inputs belonging to different
sets do generate a flow:

ΠP(δ ,ρ)|L
def
= {H | 〈H ,L〉 ∈ΠP(δ ,ρ)} Φ

def
= P(

d
L∈δ

M (ΠP(δ ,ρ)|L))

This domain is the most abstract property that contains all the possible variations of confidential
inputs that generate insecure information flows, and it is the most concrete such that each variation
generates a flow. It uniquely represents the confidential information that flows into the public
output [15].

A proof system for Abstract non-interference In the previous sections, we start from the program
and in some way we characterize the abstract non-interference policy that can be satisfied by adding
some weakenings, in the attacker model or in the information allowed to flow. In the literature, we can
find another certification approach to abstract non-interference. In particular, in [17] the authors provide
a proof system for certifying ANI in programming languages. In this way, they can prove, inductively on
the syntactic structure of programs, whether a specific ANI policy is or not satisfied.

4 A promising approach in other security fields

In this section, we provide the informal intuition of how interference properties pervade two challenging
IT security fields and therefore of how approaches based on abstract non-interference may be promising
into these fields and deserve further research.



I. Mastroeni 61

var cookie = document.cookie; /*initialisation of the cookie by the server*/

var dut;

if (dut == undefined) {dut = "";}

while(i<cookie.length) {

switch(cookie[i]) {

case ’a’: dut += ’a’; break;

case ’b’: dut += ’b’; break;

...

}

} /* dut contains now copy of cookie*/

document.images[0].src = "http://badsite/cookie?" + dut;

/* When the user click on the image dut is sent to the web server under the attackers control */

Figure 5: Code creating a XSS vulnerability.

Code injection. Among the major security threats in the web application context we have code injec-
tion attacks. Typically, these attacks inject some inputs, interpreted as executable code, which is not
adequately checked and which interfere with the surrounding code in order to disclose information or to
take the control of the system. Examples of these kinds of attacks are: SQL injections, Cross-site script-
ing (XSS), Command injections, etc. In order to protect a program from these kind of attacks we first can
verify whether the code coming from potentially untrusted sources may interfere with the sensible com-
ponents of the system. The idea of tainted analysis is that of following the potentially untrusted inputs
(tainted) checking whether they get in contact with sensible containers or data. Instead, the idea based on
(abstract) non-interference [4] uses the weakest precondition approach due to completeness characteri-
zation of non-interference [16, 25] introduced in Sect. 3.3 in order to characterize which variables, i.e.,
information, the injected code may manipulate in order to guarantee the absence of insecure information
flows. The idea in this case is to take into account also the implicit protection that the code itself may
provide. In [4] this idea is precisely formalized and here we describe it by using a XSS attack example.
Suppose a user visits an untrusted web site in order to download a picture, where an attacker has inserted
his own malicious Javascript code (Fig. 5), and execute it on the clients browser [34]. In the following
we describe a simplified version. The Javascript code snippet in Fig. 5 can be used by the attacker to send
cookies9 of the user to a web server under the attackers control. By performing the analysis proposed in
[4] we can show that confidentiality is violated since there is a (implicit) flow of information from private
variable cookie towards the public variable dut. This corresponds to the sensitive information disclosed
when dut is initialised to the empty string. We can also formally show that an attacker can exploit dut for
disclosing other user confidential information. Suppose, for instance, the attacker to be interested in the
history object together with its attributes10.

9A cookie is a text string stored by a user’s web browser. A cookie consists of one or more name-value pairs containing bits
of information, sent as an HTTP header by a web server to a web browser (client) and then sent back unchanged by the browser
each time it accesses that server. It can be used, for example, for authentication.

10The history object allows to navigate through the history of websites that a browser has visited.



62 Abstract non-interference

An attack could loop over the elements of the his-
tory object and pass through variable dut all the web
pages the client has had access to. Consider for ex-
ample the injection code on the right.

<script language="JavaScript">

var dut = "";

for (i=0; i<history.length; i++){

dut = dut + history.previous;

} </script>

Hence the ANI-based analysis detect a code vulnerability that the attacker can exploit by inserting the
code above just before the malicious code (Fig. 5) in the untrusted web page, getting both history and
cookie through the variable dut. It is worth noting that this approach provides a theoretical model for the
existing techniques used in practice for protecting code from XSS attacks [34].

Code obfuscation. Code obfuscation is increasing its relevance in security, providing an effective way
for facing the problem of both source code protection and binary protection. Code obfuscation [8]
aims at transforming programs in order to make them more difficult to analyze while preserving their
functionality.
In [14], the authors introduce a generalized notion of obfuscation which, while preserving denotational
semantics, obfuscates, namely transforms, an abstract property of interest, the one to protect (this is a
further generalization of the obfuscation defined in [12]). Let P be a program, JPK its denotational
semantics, and JPKρ the abstract semantics to obfuscate, namely ρ is the abstract semantic property to
protect, then t̂ is an obfuscator w.r.t. ρ if

JPK = Jt̂(P)K and JPKρ 6= Jt̂(P)Kρ

Based on this notion of obfuscation, in [14] the authors propose to exploit the analysis of code fragments
dependencies in order to obfuscate precisely the code relevant in the computation of the information to
protect. This idea is based on the awareness that the effect of replacing code in programs can only be
understood by the notion of dependency [1]. Hence, the idea is to model the effect of substituting pro-
gram fragments with equivalent obfuscated structures by indirectly considering the ANI framework. This
is an indirect application since it goes through the dependency analysis instead of the non-interference
analysis, namely it is more related with slicing, which can be weakened in the so called abstract slicing
[27, 26], strongly related to ANI11.
The idea is to characterize the dependency between the computation of the values of the different vari-
ables xi and the observable semantics of the program P. For this reason the notion of stability is defined
[14], which specifies that a program P is stable w.r.t. the variables xi , when any change of their abstract
(computed) values does not change the observable semantics of the program.

The notion of stability corresponds to ANI, considering xi as internal, and observing the whole output.
In code obfuscation, we are interested in the negation of this property which is instability, i.e., there exist
abstract values for xi that cause a variation in the output observation. In other words, a variation of a fixed
internal property η∗ induces a variation in the observable output. This means that the code computing the
variables xi inducing instability is the portion of code that it is sufficient to obfuscate in order to modify
the observation of the whole program, deceiving any observer. This is a sufficient condition since, due
to instability, we guarantee that the output observation changes. Again this is a new approach to code
obfuscation that surely deserves further research.

11Program slicing [35] is a program manipulation technique which extracts, from programs, statements relevant to a particular
computation.



I. Mastroeni 63

5 Conclusions

In this paper we provide a survey on the framework of abstract non-interference developed in the last
years. This generalization of language-based non-interference was introduced in 2004 [15] as a semantic-
based weakening of non-interference allowing some information to flow in order to accept programs,
such as password checking, that even if considered acceptable where rejected w.r.t. standard non-
interference. We have also shown that this new approach to non-interference was indeed strongly re-
lated with the main existing approaches to non-interference [24]. Since then, we realized that abstract
non-interference was a powerful theoretical framework where it was possible to model and understand
several aspects of non-interference policies, modeling also declassification and formally relating differ-
ent non-interference policies, usually independently introduced [25]. This is proved also by the fact that
our approach was probably of inspiration in different recent works such as [6], where declassification
policies are modeled in a weakest precondition style, as we’ve done in [5], or in [3] where the authors
model declassification as a weakening of what the attacker can observe of the input data.
Concluding, we believe that abstract non-interference is a really general framework that can provide use-
ful theoretical bases for understanding “interactions” in different fields of security, as briefly shown in the
last section of this paper. For instance, a challenge for the abstract non-interference approach is to extend
it in order to cope with other security policies, such as those proposed by McLean [28] and or by Mantel
[23], which would allow to consider interactions between functions instead of between variables. This
kind of properties could be interesting, for instance, in malware detection for analyzing the interference
between a malware and the execution environment [13].
Finally, we are obviously aware also of existing limitations of this approach. Among all, our approach is
still quite far from a practical exploitation: it is powerful for understanding interference phenomena, but
the cost of this power is the distance from a real implementation which is our next big challenge to face.

Acknowledgements. I would like to thank Dave Schmidt for the time he dedicated to me during my
postdoc in Manhattan and for being so inspiring for the research I developed since then.
This work was partially supported by the PRIN 2010-2011 project ”Security Horizons”

References

[1] M. Abadi, A. Banerjee, N. Heintze & J. Riecke (1999): A core calculus of dependency. In: Proc. of the
26th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL ’99), ACM-
Press, pp. 147–160. doi:10.1145/292540.292555

[2] A. Askarov & A. Sabelfeld (2007): Gradual Release: Unifying Declassification, Encryption and Key Re-
lease Policies. In: Proc. IEEE Symp. on Security and Privacy, IEEE Comp. Soc. Press, pp. 207–221.
doi:10.1109/SP.2007.22

[3] M. Balliu, M. Dam & G. Le Guernic (2011): Epistemic Temporal Logic for Information Flow Secu-
rity. In: Proc. of the 2011 workshop on Programming languages and analysis for security, ACM Press.
doi:10.1145/2166956.2166962

[4] M. Balliu & I. Mastroeni (2010): A Weakest Precondition Approach to Robustness. LNCS Transactions on
Computational Science 10, pp. 261 – 297. doi:10.1007/978-3-642-17499-5 11

http://dx.doi.org/10.1145/292540.292555
http://dx.doi.org/10.1109/SP.2007.22
http://dx.doi.org/10.1145/2166956.2166962
http://dx.doi.org/10.1007/978-3-642-17499-5_11


64 Abstract non-interference

[5] A. Banerjee, R. Giacobazzi & I. Mastroeni (2007): What you lose is what you leak: Information leak-
age in declassifivation policies. In: Proc. of the 23th Internat. Symp. on Mathematical Foundations of
Programming Semantics (MFPS ’07), Electronic Notes in Theoretical Computer Science 1514, Elsevier.
doi:10.1016/j.entcs.2007.02.027

[6] A. Banerjee, D. A. Naumann & S. Rosenberg (2008): Expressive Declassification Policies and Modular
Static Enforcement. In: IEEE Symp. on Security and Privacy, pp. 339 – 353. doi:10.1109/SP.2008.20

[7] E. S. Cohen (1977): Information transmission in computational systems. ACM SIGOPS Operating System
Review 11(5), pp. 133–139. doi:10.1145/1067625.806556

[8] C. Collberg, C. D. Thomborson & D. Low (1998): Manufactoring Cheap, Resilient, and Stealthy Opaque
Constructs. In: Proc. of Conf. Record of the 25st ACM Symp. on Principles of Programming Languages
(POPL ’98), ACM Press, pp. 184–196. doi:10.1145/268946.268962

[9] P. Cousot (2002): Constructive design of a hierarchy of semantics of a transition system by abstract interpre-
tation. Theor. Comput. Sci. 277(1-2), pp. 47–103. doi:10.1016/S0304-3975(00)00313-3

[10] P. Cousot & R. Cousot (1977): Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In: Conference Record of the 4th ACM Symposium on
Principles of Programming Languages (POPL ’77), ACM Press, pp. 238–252. doi:10.1145/512950.512973

[11] P. Cousot & R. Cousot (1979): Systematic design of program analysis frameworks. In: Conference Record of
the 6th ACM Symposium on Principles of Programming Languages (POPL ’79), ACM Press, pp. 269–282.
doi:10.1145/567752.567778

[12] M. Dalla Preda & R. Giacobazzi (2009): Semantic-based Code Obfuscation by Abstract Interpretation. Jour-
nal of Computer Security 17(6), pp. 855–908. doi:10.1007/11523468 107

[13] M. Dalla Preda & I. Mastroeni (2013): Chasing Infections by Unveiling Program Dependencies. In: 1st
International Workshop on Interference and Dependence (ID ’13).

[14] R. Giacobazzi, N. D. Jones & I. Mastroeni (2012): Obfuscation by Partial Evaluation of Distorted In-
terpreters. In O. Kiselyov & S. Thompson, editors: Proc. of the ACM SIGPLAN Symp. on Par-
tial Evaluation and Semantics-Based Program Manipulation (PEPM’12), ACM Press, pp. 63 – 72.
doi:10.1145/2103746.2103761

[15] R. Giacobazzi & I. Mastroeni (2004): Abstract Non-Interference: Parameterizing Non-Interference by Ab-
stract Interpretation. In: Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages (POPL ’04), ACM-Press, pp. 186–197. doi:10.1145/964001.964017

[16] R. Giacobazzi & I. Mastroeni (2010): Adjoining classified and unclassified information by Abstract Interpre-
tation. Journal of Computer Security 18(5), pp. 751 – 797. doi:10.3233/JCS-2009-0382

[17] R. Giacobazzi & I. Mastroeni (2010): A Proof System for Abstract Non-Interference. Journal of Logic and
Computation 20, pp. 449 – 479. doi:10.1093/logcom/exp053

[18] R. Giacobazzi & E. Quintarelli (2001): Incompleteness, counterexamples and refinements in abstract model-
checking. In P. Cousot, editor: Proc. of The 8th Internat. Static Analysis Symp. (SAS’01), Lecture Notes in
Computer Science 2126, Springer-Verlag, pp. 356–373. doi:10.1007/3-540-47764-0 20

[19] R. Giacobazzi, F. Ranzato & F. Scozzari. (2000): Making Abstract Interpretation Complete. Journal of the
ACM 47(2), pp. 361–416. doi:10.1145/333979.333989

[20] J. A. Goguen & J. Meseguer (1982): Security policies and security models. In: Proc. IEEE Symp. on Security
and Privacy, IEEE Comp. Soc. Press, pp. 11–20.

http://dx.doi.org/10.1016/j.entcs.2007.02.027
http://dx.doi.org/10.1109/SP.2008.20
http://dx.doi.org/10.1145/1067625.806556
http://dx.doi.org/10.1145/268946.268962
http://dx.doi.org/10.1016/S0304-3975(00)00313-3
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1007/11523468_107
http://dx.doi.org/10.1145/2103746.2103761
http://dx.doi.org/10.1145/964001.964017
http://dx.doi.org/10.3233/JCS-2009-0382
http://dx.doi.org/10.1093/logcom/exp053
http://dx.doi.org/10.1007/3-540-47764-0_20
http://dx.doi.org/10.1145/333979.333989


I. Mastroeni 65

[21] S. Hunt & I. Mastroeni (2005): The PER model of Abstract Non-Interference. In C. Hankin & I. Siveroni,
editors: Proc. of The 12th Internat. Static Analysis Symp. (SAS ’05), Lecture Notes in Computer Science
3672, Springer-Verlag, pp. 171–185. doi:10.1007/11547662 13

[22] R. Joshi & K. R. M. Leino (2000): A semantic approach to secure information flow. Science of Computer
Programming 37, pp. 113–138. doi:10.1016/S0167-6423(99)00024-6

[23] H. Mantel (2000): Possibilistic definitions of security – an assemply kit –. In: Proc. of the IEEE Computer
Security Foundations Workshop, IEEE Comp. Soc. Press, pp. 185–199. doi:10.1109/CSFW.2000.856936

[24] I. Mastroeni (2005): On the Rôle of Abstract Non-interference in Language-Based Security. In K. Yi, editor:
Third Asian Symp. on Programming Languages and Systems (APLAS ’05), Lecture Notes in Computer
Science 3780, Springer-Verlag, pp. 418–433. doi:10.1007/11575467 27

[25] I. Mastroeni & A. Banerjee (2011): Modelling Declassification Policies using Abstract Do-
main Completeness. Mathematical Structures in Computer Science 21(6), pp. 1253 – 1299.
doi:10.1017/S096012951100020X

[26] I. Mastroeni & D. Nikolic (2010): An Abstract Unified Framework for (Abstract) Program Slicing. In: 12th
International Conference on Formal Engineering Methods, ICFEM 201, Lecture Notes in Computer Science
6447, Spinger-Verlag, pp. 452–467. doi:10.1007/978-3-642-16901-4 30

[27] I. Mastroeni & D. Zanardini (2008): Data dependencies and program slicing: From syntax to abstract se-
mantics. In: Proc. of the ACM SIGPLAN Symp. on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM’08), ACM Press, pp. 125 – 134. doi:10.1145/1328408.1328428

[28] J. McLean (1996): A general theory of composition for a class of “possibilistic” properties. IEEE Transac-
tions on Software Engineering 22(1), pp. 53 – 67. doi:10.1109/32.481534

[29] A. C. Myers, S. Chong, N. Nystrom, L. Zheng & S. Zdancewic: Jif: Java information flow. Software release.
Available at http://www.cs.cornell.edu/jif.

[30] A. Sabelfeld & A. C. Myers (2004): A model for delimited information release. In N. Yonezaki K. Futatsugi,
F. Mizoguchi, editor: Proc. of the International Symp. on Software Security (ISSS’03), Lecture Notes in
Computer Science 3233, Springer-Verlag, pp. 174–191. doi:10.1007/978-3-540-37621-7 9

[31] A. Sabelfeld & A.C. Myers (2003): Language-based information-flow security. IEEE J. on selected ares in
communications 21(1), pp. 5–19. doi:10.1109/JSAC.2002.806121

[32] A. Sabelfeld & D. Sands (2001): A PER Model of Secure Information Flow in Sequential Programs. Higher-
Order and Symbolic Computation 14(1), pp. 59–91. doi:10.1023/A:1011553200337

[33] A. Sabelfeld & D. Sands (2007): Declassification: Dimensions and Principles. J. of Computer Security.
doi:10.3233/JCS-2009-0352

[34] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel & G. Vigna (2007): Cross Site Scripting Prevention
with Dynamic Data Tainting and Static Analysis. In: NDSS.

[35] M. Weiser (1981): Program slicing. In: ICSE ’81: Proceedings of the 5th international conference on
Software engineering, IEEE Press, pp. 439–449.

http://dx.doi.org/10.1007/11547662_13
http://dx.doi.org/10.1016/S0167-6423(99)00024-6
http://dx.doi.org/10.1109/CSFW.2000.856936
http://dx.doi.org/10.1007/11575467_27
http://dx.doi.org/10.1017/S096012951100020X
http://dx.doi.org/10.1007/978-3-642-16901-4_30
http://dx.doi.org/10.1145/1328408.1328428
http://dx.doi.org/10.1109/32.481534
http://www.cs.cornell.edu/jif
http://dx.doi.org/10.1007/978-3-540-37621-7_9
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1023/A:1011553200337
http://dx.doi.org/10.3233/JCS-2009-0352

	1 Introduction
	2 A general framework for Abstract Non-Interference
	2.1 An abstract domain completeness problem
	2.2 Tuning Non-Interference: Three dimensions of Non-Interference
	2.2.1 The semantic dimension
	2.2.2 The observation dimension
	2.2.3 The protection dimension

	2.3 All together...

	3 Abstract Non-Interference in Language-based Security
	3.1 Who is attacking?
	3.1.1 The narrow approach to non-interference
	3.1.2 The abstract approach to non-interference

	3.2 What the attacker may disclose?
	3.2.1 The block approach to declassification
	3.2.2 The allow approach to declassification

	3.3 Where the attacker may observe?
	3.4 Certifying abstract non-interference

	4 A promising approach in other security fields
	5 Conclusions

