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This paper explores the connection between software contracts and smart contracts.

Despite the assonance, these two terms denote quite different concepts: software

contracts are logical properties of software components, while smart contracts are

programs executed on blockchains. What is the relation between them? We answer this

question by discussing how to integrate software contracts in the design of programming

languages for smart contracts.
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1. INTRODUCTION

Smart contracts (Szabo, 1997) are pieces of software which regulate the exchange of resources
(assets—including money—and services) between participants. The execution of smart contracts
can take advantage of blockchain technologies, which allow mutually untrusted participants to
agree on a global state, without the intermediation of a trusted authority. Smart contracts have
been redefined and popularized by Ethereum, a public permissionless blockchain through which
users can exchange a cryptocurrency, and tokens representing a multitude of other crypto-assets.
Ethereum features a Turing-equivalent programming language for writing code that is stored on the
blockchain, and which is called smart contract in Ethereum’s terminology. Once a smart contract
is published, its code cannot be changed, and anyone can interact with it. Hence, adversaries may
try to exploit security vulnerabilities in the contract to steal crypto-assets, or cause other harm. The
history of Ethereum is studded with attacks to its smart contracts, which overall have causedmoney
losses in the order of hundreds of millions of dollars.

Could these attacks have been avoided? To answer this question, we must consider the
vulnerabilities that have made them possible. These vulnerabilities are mainly attributable to design
issues in the programming language used to write smart contracts (Luu et al., 2016; Atzei et al.,
2017). One of the tools that have been used by software engineers to address similar issues is
that of software contracts. Intuitively, a software contract is a formal specification of the behavior
of a software component, which describes the duties that must be fulfilled by the users of the
component, as well as the obligations of the component to its callers.

The main similarity between software contracts and smart contracts is that both are a form of
commitment between a piece of software and its callers. For software contracts, the commitment is
that the piece of software respects some properties, provided that the caller feeds it with correct
inputs. For smart contracts, the commitment is somehow weaker: it just requires that all the
executions of the piece of software are coherent with its semantics (i.e., code cannot be changed).

This difference is due to the diverse assumptions on the execution environment. In software
contracts, the caller is typically assumed to control the environment where the piece of software
is run: so, coherence with the semantics can be taken for granted. Instead, in smart contracts, the
piece of software is concurrently executed by a network of mutually untrusted nodes, which may
have economic incentives to cheat. In this setting, guaranteeing coherence with the semantics is
not trivial: complex network protocols are in order to ensure that the only rational behavior for a
node is not to cheat. The most significant outcome of the Bitcoin protocol was indeed to show that
trusted executions in trustless environments were possible.
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Other remarkable differences between software contracts
and smart contracts emerge. While software contracts may
describe arbitrary properties of a software component,
smart contracts typically define the rules through which
participants exchange resources (crypto-currencies or other
crypto-assets). This is why the participants of a smart
contract can be considered as adversaries, as they may try
to steal or freeze the resources controlled by the contract.
Instead, in most incarnations of software contracts (with
the exceptions discussed below), participants are assumed to
behave honestly.

Given the above differences, which ideas from software
contracts can be applied to make smart contracts more
reliable? In this paper, we discuss some possible research
directions to answer this question. We start by providing a
brief overview of software contracts, and then we discuss a few
research perspectives.

2. SOFTWARE CONTRACTS

The idea of software contract dates back at least to Hoare’s
seminal paper (Hoare, 1969), that introduced the axiomatic
approach to computer programming. Since then, software
contracts have been developed over the past three decades
both in the academy and in the industry. In Hoare’s approach,
the semantics of a programming language is formalized as
a set of axioms, and the behavior of a program is given
in terms of a precondition and a postcondition. These are
logical assertions which describe, respectively, the properties that
must hold before and after executing the program. Assertions
can be interpreted as contracts: the precondition establishes
the obligations that the caller must fulfill before running
the program, while the postcondition dictates the obligations
of the program. For instance, for a program which merges
two arrays, the precondition requires that the values of two
input arrays are sorted, while the postcondition is that the
output array contains, sorted, the elements of the two arrays
in input.

Although the original goal of the axiomatic approach was
to prove the correctness of programs, in software development
practice the use of assertions as contracts has become widespread
for a weaker goal, that is to make program testing more
rigorous. Assertions are spread over large programs, dynamically
checked in massive tests, and possibly removed before the
actual deployment. In particular, the design by contract principle
fostered by Meyer since the late eighties (Meyer, 1986, 1992)
requires that the interfaces between modules of safety-critical
software systems should be governed by contracts. These
contracts are decoupled from the rest of the program logic, so
that they can be easily discharged after the testing phase. Another
landmark feature of contracts is that they enable to assign blame
in case of contract violations. Assume that a programmodule has
a precondition P and a postcondition Q. During the execution
of the program, if P is violated then the blame is assigned to
the caller; instead, if P is respected but Q is violated, then the
blame is assigned to the callee. The first programming language

with native support for design by contract was Eiffel, in the
object-oriented paradigm (Meyer, 1991). Since then, almost all
mainstream programming languages offer some support for
contracts, either natively (e.g., Scala and Clojure), or through
external libraries (e.g., JML for Java, Code contracts for C#).

In the functional paradigm, where program modules can be
higher-order functions, contract checking and blame assignment
are more complex than in the procedural and object-oriented
paradigms. For instance, assume that a function g takes as input
a function f from integers to integers, and produces an integer as
output.While the postcondition of g can be a first-order predicate
R on integers, its precondition cannot: rather, it should consist
of a predicate P restricting the acceptable arguments passed to f ,
and a predicate Q restricting its possible outputs. So, the contract
of f can be rendered as a function P → Q, and that of g as a
higher-order function (P → Q) → R. By decidability issues
it is not possible, in general, to determine whether f respects
its contract or not when g is applied. A possible way to tackle
this problem, first explored in Findler and Felleisen (2002), is
to check f ’s contract when f is applied. At that moment it is
possible to know if the argument passed to f respects P, and if the
value produced by the application of f respects Q, and to assign
the blame accordingly. Findler and Felleisen’s seminal work has
given rise to a proliferation of studies on higher-order contracts,
leading to a wide variety of languages and analysis techniques.
The most notable functional language supporting the design by
contract approach is Racket (Flatt and PLT, 2010), a dialect of
Scheme with higher-order assertions.

Going beyond the incarnation of contracts as pre- and post-
conditions on programmodules, Beugnard et al. (1999) proposed
a taxonomy of software contracts consisting of four kinds
of contracts:

• basic contracts, which describe the syntactic constraints that
must be respected to use a program module (e.g., the basic
contract of a function that takes as input an integer and
produces as output a string is a type int→ string);

• behavioral contracts, which impose semantic constraints on
program modules, in the form of pre- and post-conditions as
discussed so far;

• sequencing contracts, which impose constraints on how the
different modules offered by a software component can be
used (e.g., the withdraw method of a BankAccount object
cannot be executed concurrently with the depositmethod);

• quality of service contracts, which impose time, space, and
precision constraints on the execution of a program module
(e.g., any call to the openAirbag procedure must terminate
within 10 ms).

In the setting of concurrent programming models, contracts
are used to describe the possible sequences of messages
that can be processed by concurrent components (Hüttel
et al., 2016). For instance, the contract of a payment
service may require that the service first receives a
cardDetails message, then either a proceed or an
abort message; in case of proceed, the service sends
back to the client either a message paymentOk or a message
paymentError. Using a syntax inspired to that of Web Service
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contracts (Castagna et al., 2009), we can express this contract
as follows:

?cardDetails .
(

?abort + ?pay

. (!paymentOk ⊕ !paymentError)
)

where ? denotes a received message, ! a sent message,
. sequencing, + a choice made by the client, and ⊕ a choice
made by the service. In this setting, a typical goal is to
determine if two contracts are compliant: intuitively, compliance
between contracts guarantees the absence of certain kinds of
communication errors in any execution of services which respect
their contracts. Many different notions of compliance can be used
for this purpose, based e.g., on deadlock-freedom, on may- and
must-testing relations, etc. (Bordeaux et al., 2004; Bartoletti et al.,
2015b).

Starting from Honda’s seminal paper on dyadic session types
(Honda, 1993), many works address the problem of statically
verifying if a service (formally specified in some calculus for
concurrency) respects its contract. The overall result is that if
two services are statically verified to respect their contracts, and
these contracts are compliant, then no communication errors can
happen at runtime. Extensions of this kind of results to the multi-
party setting have been studied by Honda et al. (2008) and many
subsequent works.

The work (Bocchi et al., 2010) nicely integrates assertion-
based contracts with concurrency contracts. The idea is to
project a service choreography decorated with assertions to a
set of local assertions: services abiding these local assertions
are guaranteed to have correct interactions at run time. A dual
approach is to start from an arbitrary set of services, and to
dynamically compose those with compliant contracts (Bartoletti
et al., 2012). A remarkable difference between this approach and
the other approaches to concurrency contracts discussed before
is that the latter assume that all services are trusted, in that
they will not change their code after deployment (as this would
invalidate their static verification). Instead, in Bartoletti et al.
(2012) this assumption can be limited to a subset of services,
while all the others are considered as adversaries. Under this
weaker hypotheses it is no longer possible to ensure the absence
of contract breaches, as an adversary could diverge from the
declared contract, or just stop cooperating at any time. Rather, the
goal of the static analysis is to guarantee that the trusted services
always respect their contracts, whatever the behavior of the
adversaries. This property, called honesty, becomes relevant when
services interact through communication middlewares which
sanction those not abiding to their contracts (Bartoletti et al.,
2015a). In this setting, honest services are guaranteed to never
be sanctioned.

3. CONTRACTS FOR SMART CONTRACTS

We now discuss some possible research directions on connecting
software contracts with smart contracts.

Route #1: Embedding Assertions Into

Existing Smart Contract Languages
A straightforward idea would be to add assertions to existing
smart contract languages, in the spirit of the design by
contract methodology.

A first step towards this direction has been taken by Solidity,
the mainstream high-level language for writing smart contracts
for the Ethereum platform. Starting from version 0.4.101, Solidity
features two functions (called assert and require), which
throw a state-reverting exception if the given conditions are not
respected. The two functions slightly differ on the handling of
gas (i.e., the fee paid by participants for the execution of contract
calls). When the condition of assert is violated, all the gas
provided by the caller is consumed; instead, a failing require
refunds any remaining gas. Although these functions provide
useful syntactic sugar for the if-throw pattern, they do not
really capture the essence of assertions in the design by contract
methodology. For instance, they do not separate the duties
between the caller and the smart contract: in design by contract,
preconditions and postconditions represent, respectively, duties
of the caller and of the callee; instead, both assert and
require punish the caller in case of violations, by consuming
the gas he provided to perform the call.

Design by contract extensions of Solidity have been proposed
by external tools, like e.g., SOLC-VERIFY (Hajdu and Jovanovic,
2020). This tool allows developers to annotate Solidity code with
contract invariants, loop invariants, pre- and post-conditions.
These conditions can be arbitrary Solidity expressions without
side effects. A static analysis of the annotated code, based on SMT
solving techniques, discharges the conditions which are found to
be always satisfied.

A limitation of working with general-purpose languages like
Solidity is that they make it difficult to specify and verify
properties which capture high-level properties of smart contracts
(for instance, that a participant loses at most a certain amount
of money in every maximal interaction with the contract). One
of the reasons of this difficulty is that the interaction between
the participants and the contract is not rigidly structured,
since participants can call any contract method, at any time.
Using more structured smart contract languages would allow to
increase the level of abstraction of contract properties.

Route #2: Designing Domain-Specific

Languages for Smart Contracts and

Assertions
Going beyond Ethereum and Solidity, a more radical research
direction is the study of new domain-specific languages for smart
contracts, with native support for design by contract. When
following this direction, two crucial choices are the primitives
of the smart contract language, and the formalism for describing
assertions and contract properties.

The choice of the smart contract language may be dictated by
the choice of the underlying blockchain platform: for instance, it

1https://solidity.readthedocs.io/en/develop/control-structures.html#error-
handling-assert-require-revert-and-exceptions
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would be inappropriate to design a Turing-equivalent language
for Bitcoin contracts, since the current restrictions on Bitcoin
scripts and transactions make the expressiveness of Bitcoin
contracts quite limited (Atzei et al., 2019). Even when the
underlying blockchain supports Turing-equivalent contracts, like
e.g., in Ethereum and Cardano, it could still be useful to restrict
the expressiveness of high-level contract languages, since this
would improve their verification capabilities, besides making it
simpler for humans to understand programs. Several contract
languages have been proposed along these lines, with different
expressiveness degrees: see e.g., Harz and Knottenbelt (2018),
Tikhomirov (2020), and Miller et al. (2018) for some references.

To clarify how design by contract may take advantage
of restricted domain-specific languages, consider a financial
contract involving three participants: an investor, a bank and
an insurance company. The contract behaves like a zero-coupon
bond: the investor pays (say) EUR 1000 upfront to the bank, and
the bank returns EUR 2000 to the investor after a maturity date
(say, 10 years). To mitigate the risk that the bank fails to repay
the investor, the insurance company guarantees to cover the full
amount of EUR 2000 for an annual premium of EUR 100 paid
by the bank. Focussing on the investor, the desired high-level
behavior is that, in any possible interaction with the contract, the
investor will gain EUR 1000 within 10 years. In restricted smart
contract languages like those proposed by Atzei et al. (2019) and
Seijas et al. (2020) it is possible to craft a contract that is statically
verified to respect this high-level property. The actual contract
actually depends on the assumptions on the other participants
(e.g., if the bank, or the insurance company, or none of them
is considered honest), and on the amounts initially deposited in
the contract.

Route #3: Taking Into Account Participants’

Strategies
Most current analysis tools for smart contracts assume that,
at any time, any participant can do any action. While this
assumption perfectly makes sense when one wants to detect
certain vulnerabilities of smart contracts (e.g., re-entrancy
bugs in Ethereum), taking into account the strategies followed
by participants may substantially improve the precision of
the analysis.

For instance, consider a two-players gambling game with the
following rules. First, each player puts a bet and commits to
a move. Within 1 week, each player must reveal his move, or
otherwise lose the bet. Once both moves have been revealed,
the game determines the winner, according to some logics. A
desirable property of this game is fairness, i.e., each player has
a strategy that guarantees him to have at least the same winning
probability of the other player. From the point of view of a player,
it would be irrational to follow a strategy where he waits more
than 1 week before revealing, since doing so would make him
loses the bet. Rather, he would like to verify that the game is fair,
assuming that his strategy is to reveal within the deadline, while
not making any assumptions on the strategy of the other player
(who should be considered as an adversary).

This kind of properties can be verified on Bitcoin contracts
expressed in BitML, by exploiting the property-preserving
reduction of contracts to finite state systems proposed in
Bartoletti and Zunino (2019). Since considering all the possible
strategies of the adversaries may lead to an exponential number
of states, alternative analysis techniques to pure model checking
are a possible goal for future research.

Another research direction is that on formal models for
participant’s strategies. For instance, Laneve et al. (2019) specify
both smart contracts and participants in a unified process
calculus. Given a system containing a smart contract and all the
involved participants, they devise a static analysis which evaluates
the maximum profit of each participant.

Route #4: Projecting Global Contracts to

Participants’ Strategies
Another inspiration for further research comes from the
literature on concurrency multi-party contracts. There, the idea
is that there is a global type which describes the overall behavior
of a set of components, and we want to guarantee that, at run-
time, the point-to-point interactions between these components
respect the global type. One way to achieve this goal is to project
the global type into a set of local types, and then verify that each
component respects its local type (Honda et al., 2008).

We can transpose this approach to the realm of smart
contracts, by imagining that the global type is a contract among
a set of participants, and that the components are participant
strategies. A crucial difference with the setting of concurrency
contracts is that, in that of smart contracts, one can no longer
assume participants to be honest, i.e., their run-time behavior
may diverge from the local types against which they have been
verified. One way to tackle this problem, inspired by earlier works
on concurrency contracts (Bartoletti et al., 2012), is to make
the projection construct only the strategies of the participants
we are considering honest, guaranteeing that some desirable
properties hold (e.g., that the honest participants never lose
money), whatever the behavior of the other participants.

4. CONCLUSIONS

Current designs of smart contract languages seem to have been
influenced more by marketing principles like “time-to-market,”
than by technical principles like reliability and security. This
paper discusses some research directions to incorporate design
by contract principles in the development of smart contracts.

To conclude, I would like to quote C.A.R. Hoare from his
Turing Award Lecture (Hoare, 1981). In this lecture, Hoare was
criticizing the design of the programming language PL/I, but I
believe that his warning against a poor software design is always
appropriate, also in the setting of smart contracts:

“At first I hoped that such a technically unsound project would
collapse but I soon realized it was doomed to success. Almost
anything in software can be implemented, sold, and even used
given enough determination. There is nothing amere scientist can
say that will stand against the flood of a hundred million dollars.
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But there is one quality that cannot be purchased in this way–
and that is reliability. The price of reliability is the pursuit of the
utmost simplicity. It is a price which the very rich find most hard
to pay.”
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