URL: http://www.elsevier.nl/locate/entcs/volume32.html 12 pages

Secrecy in Security Protocols as
Non Interference

R. Focardi!

Dipartimento di Informatica, Universita Ca’ Foscari di Venezia, Italy

R. Gorrieri?

Dipartimento di Scienze dell’Informazione, Universita di Bologna, Italy.

F. Martinelli?

Dipartimento di Informatica, Universita di Pisa, Italy.

Abstract

Non Interference [8] has been proposed for modelling and analysing information
flow in systems. In [4,7] we have indeed shown that the Non Interference property
called NDC can be applied also in the area of network security, for the analysis
of typical cryptographic protocol properties (e.g., authentication, non-repudiation).
In this paper we extend the results of [4,7] by showing that NDC can be also easily
adapted to detect secrecy attacks over networks.

1 Introduction

Secrecy is one of the main issues in security. In general, a system (or a
protocol) preserves the secrecy of a set of data if it guarantees that non-
authorized users/entities never gain access to such data.

In [5,6] a non interference property called Non Deducibility on Composi-
tions (NDC) has been proposed for the detection of information flows inside
systems. It is a strong property which guarantees that no information flow is
possible from a set of high level users (representing the authorized users) to
the set of low level ones (who are not authorized to access secret data).

I Partially supported by MURST Progetto “Certificazione antomatica di programmi me-
diante interpretazione astratta”

2 Partially supported by MURST Progetto “Teoria della Concorrenza, Linguaggi di Ordine
Superiore e Strutture di Tipi.”

3 Partially supported by CSP Progetto “ISA: Internet Security trAnsactions”.

(©2000 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

In this paper we show how NDC can be easily adapted for analysing secrecy
in networks. Indeed, the main aim of our current research is to find a uniform
approach for defining the many variants of security properties in such a way
that they can be all seen as specific instances of a general NDC-based scheme
(called GNDC [7]). This is badly needed in order to compare, classify and
evaluate the merits of the various definitions and, possibly, to provide general,
effective proof techniques that can be applied suitably for all properties.

To this aim, in [7] we have presented a process algebra, called CryptoSPA
(in turn an improvement of SPA [6] which borrows some concepts from the
language defined in [13]), that is expressive enough to model a large class of
systems, e.g., (non mobile) security protocols. CryptoSPA has been chosen as
the common model for comparing the various properties through the general,
unifying scheme. The idea behind is essentially non interference, proposed
many years ago [8] in a completely different context to study information flow
in computer systems and widely studied in [5,6,14]. Roughly, a system is
secure if its behaviour cannot be significantly altered (hence, no interference
is possible) when executed in a hostile environment. This property is a direct
generalization of NDC [5,6].

Some security properties (e.g., authentication as in [10,17] and denial of
service as in [16]) have been shown as instances of our general scheme in [7].
The main goal of this paper is to show that also secrecy can be easily defined in
our NDC-based framework. This is interesting as it strengthens our claim that
non interference plays an important role in the specification and analysis of
security protocols. Indeed, non interference seems the strongest property that
can be defined for cryptographic protocols (see also [7]). Moreover, it shows
that non interference, originally proposed for detecting information flows in
systems, is also profitable for revealing secrecy attacks in network security.

The paper is organized as follows: in Section 2 we define the model; in
Section 3 we define secrecy as a NDC-based property; Section 4 reports a
simple example; finally, Section 5 is about future work.

2 The Model

In this section we report from [7] the language we use for the specification
of authentication properties and protocols. It is called Cryptographic Secu-
rity Process Algebra (CryptoSPA for short), and it is basically a variant of
value-passing CCS [15], where the processes are provided with some primitives
for manipulating messages. In particular, processes can perform message en-
cryption and decryption, and also construct complex messages by composing
together simpler ones.

2.1 The CryptoSPA Syntaz

CryptoSPA syntax is based on the following elements:
2

& M AALILLALy AV IAVIALT AW AL LS A raAalv L vy L L

A set I ={a,b,...} of input channels, a set O = {a,b,...} of output ones;

A set M of basic messages and a set K of encryption keys with a function
~1: K — K such that (k7')™' = k. The set M of all messages is defined
as the least set such that M UK € M and Vm € M, Vk € K we have that
(m,m’) and {m} also belong to M;

o A family U of sets of messages and a function Msg(c) : I UO — U which
maps every channel ¢ into the set of possible messages that can be sent and
received on such channel. Msg is such that Msg(c) = Msg(e).

e A set C of public channels; these channels represent the insecure network
where the enemy can intercept and fake messages:

o Aset Act = {c(m)|cel,me Msg(e)yu{em |ce O,me Msg(e)U{r}
of actions (7 is the internal, invisible action), ranged over by a; we also
have a function chan(a) which returns ¢ if a is either ¢(m) or ¢m, and the
special channel void when a = 7; we assume that void is never used within
a restriction operator (see below).

A set Const of constants, ranged over by A.
The syntax of CryptoSPA agents is defined as follows:

E:=0 | c¢(x).E |¢e.E | 7E | E+E | E|E | E\L |
| Almy, ... my) | [e=¢€|E; B | [(e1...€) Frue | E E

where x is a variable, mq, ..., m,, are messages, €, e1,. .., €, are messages (pos-
sibly containing variables) and L is a set of input channels. Both the operators

c(x).E and [{(e1...€) Frue 2]E; E' bind the variable x in E. It is also nec-

essary to define constants as follows: A(xy,...,x,) ' E where E is a Cryp-

toSPA agent which may contain no free variables except zy,...,z,, which
must be distinct.

We basically have all the standard operators of value-passing CCS. In
particular, the synchronization between parallel processes allows to exchange
a value through the following simple mechanism: a system ¢(x).Eq ||ém.E;
can execute an internal 7 action moving to Ey[m/z] || Ez, where Ei[m/x] is the
process E; with all the occurrences of @ replaced by m. Thus, process ¢(x).Eq,
is indeed receiving in variable x the value m sent out by process ¢m.FEs.

Besides the standard value-passing CCS operators, we have an additional
one that has been introduced in order to model message handling and cryp-
tography. Informally, the [(m1...m,) Frue ©]E1; Ey process tries to deduce
an information z from the tuple of messages (my...m,) through one ap-
plication of rule F,; if it succeeds then it behaves like Fq[z/z], otherwise
it behaves like Ey; for example, given a rule kg4 for decryption, process
[({m}r, k') Faee 2] Ey; Ey decrypts message {m}; through key k~! and be-
haves like Ey[m/z] while [({m}, k') Faee x|Ey; By (with & # k™' tries to
decrypt the same message with the wrong inverse key &’ and (since it is not
permitted by Fge.) it behaves like Es.

3

m Ti/L/ (l_pair) (m7 m/) (l_fst) (m77 771/) (l_snd)
(m,m’) m m
m k {mh, k!
- 3 l_enc l_dec
(s (Fenc) — (Faec)

Fig. 1. Message manipulation, where m, m’ € M and k,k~! € K.

We call € the set of all the CryptoSPA terms, and we define sort(E) to be
the set of all the channels syntactically occurring in the term E.

2.2 The Operational Semantics of CryptoSPA

The semantics of CryptoSPA is given through labelled transition systems. A
labelled transition system (1rs) is essentially an automaton with possibly in-
finitely many states. It is defined as a triple (5,7, —) such that S is a set of
states, T is a set of labels (actions) and — C S x T X S is a set of labelled
transitions. (S),a,S;) € — (or equivalently S; — S;) means that the system
can move from the state Sy to the state S, through the action a.

In order to model message handling and cryptography, in Figure 1 we define
an inference system which formalizes the way messages may be manipulated
by processes. It is indeed quite similar to those used by many authors (see,
e.g., [9,12]). In particular it can combine two messages obtaining a pair (rule
Fpair); 1t can extract one message from a pair (rules gy and bgq); it can
encrypt a message m with a key k obtaining {m}; and finally decrypt a
message of the form {m} only if it has the corresponding (inverse) key k™!
(rules Fepe and Fgee). We denote with D(¢) the set of messages that can be
deduced by applying the inference rules on the messages in ¢. Note that we
are assuming encryption as completely reliable. Indeed we do not allow any
kind of cryptographic attack, e.g., the guessing of secret keys. This permits to
observe the attacks that can be carried out even if cryptography is completely
reliable.

The formal behaviour of a CryptoSPA term is described by means of the s
< & Act, {5V aener >, where -2 is the least relation between CryptoSPA
terms induced by axioms and inference rules of Figure 2 (where symmetric
rules for 4, ||; and ||, are omitted for the sake of readability). The operational
semantics for a term E is the subpart of the CryptoSPA 1rs reachable from
the initial state E.

Example 2.1 We present a very simple example of a protocol where A sends
a message m4 to B encrypted with a key ksp shared between A and B. 4

4 For the sake of readability, we omit the termination 0 at the end of every agent specifi-
cations, e.g., we write a in place of a.0. We also write [m = m/]E in place of [m = m/]E;0
and analogously for [{my...m;) Frye 2] E;0.

4

m € Msg(c)

(input)) (output)im S M;ﬂg@(c) (internal) ————
c(z).E — Elm/x] cm.E — F r.E —F
a e(m) em ’ a
5 B F-—F I —SEFE /
() et (Il) et ()

E| B -5 F'|| By VEyvE S E

(=1)

E||E. = F'|| B,

m7ém/ EQL)E% (_) m=m E1L>E/1
[m = m'|Ey; By = B 2 [m = m'|Fy; By -)

Ei}El Chan(a)gl/ (def)E[ml/xla"'amn/xn]L>E/ A($17"'7$n) défE

E\L = E'\L Almy,...omy) = E'

(\L)

)<m1 coomy) Frwe m - Ei[m/2] =5 EY

(D1 LNy
{ma...my) Frue @] Ev; By — EY

Am:{my...m.) Fryie m E2i>Eé
[{myi...mpY Frye 2] FE1; By LN E,

(D2)

Fig. 2. Operational semantics (symmetric rules omitted).

A, k) E [(m, k) Fene 2]
B(k)= c(y).[(y, k) Faee zJout z

def

P'= A(ma,kap) || B(kag)

where k5 = kap, that models a symmetric encryption, and Msg(c) =
{{m}r | m € M,k € K} that declares the type of messages sent over c.
We want to analyze the execution of P with no intrusions, we thus consider

Q.
L

P\ {c}, since the restriction guarantees that ¢ is a completely secure channel.
We obtain a system which can only execute action outm, that represents

the correct transmission of my from A to B. In particular, we have that

c{ma} . .
A(ma, kag) Aan 0 and B(kap) can synchronize on that action by execut-

ing a Blkan) " 2 [(

PA\{e} = (0 || [{matiays kan) Face ZJout 2)\ {c} “25% (0] 0)\ {e}

In the next section we analyze the execution of this simple protocol in a hostile
environment.]

{ma}rrps kaB) Fdee zJout z. So

2.8 Hostile Environments

In this section we report the characterization of hostile environments as given
in [7]. Such a characterization is necessary to analyze protocols where some
information is assumed to be secret, as it always happens in cryptographic
protocols. Basically, a hostile environment is an agent which tries to attack
a protocol by stealing and faking the information which is transmitted on the
CryptoSPA public channels in set C. In principle, such an agent could be mod-
eled as a generic process X which can communicate only through the channels

belonging to C, i.e., X € & where & o {E € &£ | sort(E) C C}. However,
3

in this way we obtain that X is a completely powerful attacker which is able
to “guess” every secret information (e.g., cryptographic keys, nonces, private
messages) and is thus not suitable when analyzing cryptographic protocols.
We show this crucial point through a simple example.

Example 2.2 Consider again the protocol P of Example 2.1. Since only A
and B know kap, this protocol should guarantee the secrecy of my4 even in
the presence of a hostile environment. We assume that ¢, pub € C are public
channels and we consider the following process:

X(k) = c(x).[(2, k) Face m] puby

It intercepts a message sent over channel ¢ and tries to decrypt it using key k.
If it succeeds, then it makes the message public by sending it as plaintext over
channel pub. Note that X (k) belongs to ¢ since sort(X(m,k)) = {c, pub}.
Consider now X(ksp) and the following protocol “under attack” (note that
we put X inside the scope of restriction):

(Pl X(kap))\ C

After one 7 step, X (kap) will be able to execute pubm 4, representing the fact
that m4 is not secret anymore. > This happens since X (kapg) is able to guess
kap, but we would like to forbid such behaviour since, as mentioned above,
we are interested in attacks that can be carried out even when cryptography
is completely reliable. []

This problem can be solved by imposing some constraints on the initial
data that are known by the intruders. Given a process E, we call ID(E) the
set of messages that syntactically appear in E. Intuitively, this set contains
all the messages that are initially known by E. Now, let ¢; C M be the
initial knowledge that we would like to give to the intruder X, i.e., the public
information such as the names of the entities and the public keys, plus some
possible private data of the intruder (e.g., its private key or nonces). For a
certain intruder X, we want that all the messages in ID(X) are deducible
from ¢j.

The set 521 of processes which can communicate on a subset of C' and have
an initial knowledge bound by ¢; can be thus defined as follows:

g _ {X| X €& and ID(X) C D(¢5)}

We consider as hostile processes only those belonging to this particular set. In
the example above, if we require that k4p is not deducible from ¢; (i.e., it is
not public) we can easily see that the behavior of X(ksp) cannot be simulated
by any process in 521.

® Indeed, such an event is not directly observable since pub € C. In Section 3 we will show
how to solve this.

2.4 Trace Equivalence

Most of the security properties that have been proposed for the analysis of
security protocols are based on the simple notion of trace: two processes are
equivalent if they exactly show the same execution sequences (called traces).
In order to formally define it, we need a transition relation which does not
consider internal 7 moves.

Definition 2.3 The expression E == E’ is a shorthand for E(—/=)*E, —
Ey(—=)*E', where (—)* denotes a (possibly empty) sequence of 7 labelled
transitions. Let v = oy ... a, € (Act\ {r})* be a trace; then E == E’ if there
exist By, Es,...,E,_; € € such that F = E, = ... Y2 B, =2 F. =n

We thus define trace preorder (<irace) and trace equivalence (Rprace):

Definition 2.4 For any E € & the set T(E) of traces associated with E is
T(E) = {y € (Act\ {r})* | IE' : E == E'}. F can execute all the traces
of E (notation E <yrgee F) it T(E) C T(F). E and F are trace equivalent
(notation F ~pace F) M E <trace F and F <yrpee B, le, if T(E)=T(F). m

3 Secrecy in Protocols through Non Interference

In this section we show that NDC can be easily adapted for analysing secrecy
in networks. NDC is defined as follows:

Definition 3.1 A process S is NDC iff
VX € &7 (S| X)\C Rpraee S\ C n

In other words S is NDC if every possible enemy X which has an initial
knowledge limited by ¢; is not able to significantly change the behaviour of
the system. Note that S\ C is the system S where the public channels C are
made private, i.e., where no enemy can intercept or introduce fake messages.

Consider now a protocol P(M) and assume that we want to verify if P(M)
preserves the secrecy of message M. This can be done by proving that every
enemy which does not know message M, cannot learn it by interacting with
P(M). Thus, we need a mechanism that notifies whenever an enemy is learn-
ing M. We implement it through a simple process called knowledge notifier
which reads from a public channel ¢, € C \ sort(P(M)) not used in P(M)
and executes a learnt M action if the read value is exactly equal to M. For a
generic message m, it can be defined as follows:

KN(m) o cx(y).[m = y)learntm

We assume that learnt is a special channel that is never used by protocols
and is not public, i.e., learnt & sort(P)U C. We now consider P’(m) o
P(m)|| KN(m), i.e., a modified protocol where the learning of M is now

notified. A very intuitive definition of secrecy can be thus given as follows:

7

& M AALILLALy AV IAVIALT AW AL LS A raAalv L vy L L

Definition 3.2 P(m) preserves the secrecy of m iff for all (secret) messages
M € M\ D(¢r) and for all enemies X € 521 there exist no trace py ...y,
such that pq ... p,learnt M € T((P'(M) || X)\ C).]

In other words, we require that for every secret M and for every enemy X,
process (P'(M) || X) \ C never executes an learnt M action.

This definition models very well the notion of secrecy. On the one hand,
if (P'(M)||X)\ C executes learnt M then M has been sent over the public
channel ¢, by either P(M) or X. In both cases the message is not secret
anymore. In the former situation P(M) is making M public, while in the
latter X has for sure learned M before sending it over ¢x. On the other hand,
if an enemy X is able to learn message M then there also exists an enemy X’
that will send such a message over channel ¢; and thus (P'(M) | X) \ C will
eventually execute learnt M.

We want now to use NDC to perform this check. Note that NDC already
contains the quantification over all the possible enemies. The following holds:

Proposition 3.3 Consider a protocol P(m) such that sort(P(m)) C C\{c}.
Then, P(m) preserves the secrecy of m in the sense of Definition 3.2 iff

VM e M\D(¢;) P'(M) is NDC

Proof. (=) Note that P'(M)\ C ~qce 0, since sort(P(m)) C C\{cx}. Asa
matter of fact, learnt M is the only action that P'(M)\ C could execute (it is
the only one which is not captured by the restriction over C') but P(M) cannot
send messages over ¢ and learnt. Moreover, we have that sort(X) C C, thus
the only action that is executable by (P/(M) || X)\ C is again learnt M. Now
if, by Definition 3.2, (P'(M) || X)\ C never executes an learnt M action, then
we obtain (P'(M) || X)\ C =trace 0 Rirace P'(M)\ C for every X, i.e., P'(M)
is NDC.

(«) If P'(M) is NDC then for all enemies X we have (P'(M)|| X)\ C ~trace
P'(M)\C #244c 0. This of course means that (P'(M) || X)\ C cannot execute
learnt M and holds for every possible M. []

Intuitively, this result means that NDC corresponds to secrecy when (1)
the only action we observe is exactly learnt M and (i¢) channel ¢ is a special
one that cannot be used in P(m).

These requirements are both captured by the condition sort(P(m)) C
C\ {c}, i.e., the specification P(m) can use neither ¢ nor channels that are
not public, thus not restricted in the composition with the enemy. Usually
these particular channels are called observable (e.g. learnt is an observable
channel). Note that such a condition is not restrictive as it only requires a
particular form of the specification. Moreover, it is consistent with the idea of
NDC-based verifications (see, e.g., [4,7]): we fix the property (NDC) and we
capture different properties by just defining different observable actions.

8

4 An Example

In this section we show through a simple example how the NDC-based secrecy
verification works. We consider a simplified version of the Wide Mouthed Frog
Protocol [2].

Consider two processes A and B respectively sharing keys ks and kpg
with a trusted server §. In order to establish a secure channel with B, A
sends a fresh key ksp encrypted with kss to the server S. Then, the server
decrypts the key and forwards it to B, this time encrypted with kgs. Now B
has the key k4p and A can send a message m 4 encrypted with k4p to B. The
protocol is composed of the following three messages:

Message 1 A — S : A, B, {ka}i,s
Message 2 S — B : {A kaptigs
Message 3 A — B : {ma}i,,

The main differences with respect to the original protocol is that here messages
1 and 2 do not contain timestamps (as studied in [1] for authentication).
Moreover, in message 1 the identifier B is sent as plaintext while in the original
protocol it is encrypted with the session key (this modification generates, as
we will show, a secrecy attack). We specify the protocol as follows: ©

Alm, k) E T (A, B), ki) - & {mb

def

B=cy(y) - [y, kps) Face 2] [2 Fsna 5] ea(t) - [t 5) Faee w]

def

S=ci(x) . [x b t] [t Fpse 8] [t Fona 7]
[Fsna €] [(¢, K(8)) Faee #] 6{(5,2)}]((,0) .S

def

P(n) = A(n, ka) || B|| 5
where K(id) is a function that returns the key shared between the server and
entity id (e.g., K(A) returns k4s). Moreover we have that {c1, ¢z, ¢35} C C.

Since P(n) ounly uses channels ¢, ¢y, c3 we have that sort(P(n)) C C '\

{ex}. The condition of Proposition 3.3 is then satisfied and we can prove,
through NDC, that P(m) does not preserve the secrecy of mif A, E, Kgs € ¢5.
Counsider the following enemy:

& def

X = cl(:zi) [l‘ |—5nd y] % intercepts message 1
a (A E),y). % replaces B with E, sends it
CZ(Z) [<Z,kE5> |_dec w] [w |—5nd k] % intercepts msg 2, obtains k

e3(1)[{, k) Faee m] % decrypts msg 3

crm % sends message to KN

6 We encode tuples through a left associative canonical form, e.g., the first message

Aa B, {kAB}kAs becomes ((Aa B)a {kAB}kAs)
9

& M AALILLALy AV IAVIALT AW AL LS A raAalv L vy L L

It is easy to see that process (P'(M) ||)N() \ C %irace P'(M)\ C as the former

process can execute learnt M. The attack performed by X is the following:

Message 1 A— E(S): A B A{KaB}k,q
Message 1" E(A) — S : A E {KuB}K s
Message 2/ S —FE : {A, KuB}Kps
Message 3 A— EB): {M}k,,

By message 2’ the enemy learns K45 and, by message 3 which is addressed to
B, it finally learns M.

Consider now the protocol where, in the first message, B is encrypted with
the session key:

Message 1 A — S : A {B,Kap}k,q

Here the secrecy attack is not possible anymore. We can prove this automat-
ically through the CoSeC/CVS tools [6,4], as discussed in the next section.

5 Future Work

In order to compare various formalizations of security properties, we have
defined in [7] a general scheme that permits to capture a number of properties
(e.g., authentication as in [10] and denial of service as in [16]) as particular
instances of the scheme itself. The results presented in this paper have allowed
us to extend the set of properties defined in the scheme. Our main issue is
now to find comparison results in order to obtain a complete classifications
in the style of [5,10], which could help in evaluating the relative merits of all
such properties.

Another aim of our current research is to provide general, effective proof
techniques that can be suitably applied to a set of security properties. Indeed,
the definition of security properties as instances of the GNDC scheme [7]
allows us to use a uniform analysis technique in order to check all of them.
For example in [4] we show how NDC can be used to check authentication
properties. Moreover, in this paper we have seen that secrecy can be easily
defined as NDC. This permits the reuse of automatic checking techniques for
NDC in order to check secrecy over CryptoSPA protocols; indeed if ¢; is
finite then it is possible to find a most-general intruder Top such that NDC
is reduced to just one check (P'(M)||Top) \ C ~irace P'(M)\ C (see [7] for
more details) that can be verified using the tool in [4].

This kind of verification can be, in principle, applied to all the properties
we have defined in our scheme. Moreover, the flexibility of the GNDC-scheme
makes it possible to verify different properties in just one (NDC) check [3].
An alternative way of analysing security properties with the GNDC scheme
is to apply compositional analysis techniques as done in [13,14]. These can

10

be used even when the most-general intruder approach described above is not
applicable.

An automatic verification can be carried out only if we fix in advance
the maximum number of instances of A and B (as done in the example of
Section 4). Some recent results (see, e.g., [11]) show that the verification of
a fixed number of sessions of a protocol can be, in some cases, sufficient to
prove the general correctness of such a protocol. It would be interesting to
have similar results for GNDC, since they could be applied to all the properties
defined in the scheme.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1-70, 1999.

[2] M. Burrows, M. Abadi, and R. Needham. “A Logic of Authentication”.
Proceedings of the Royal Society of London, 426:233-271, 1989.

[3] A. Durante, R. Focardi, and R. Gorrieri. A compiler for analysing cryptographic
protocols using non-interference. Submitted for publication.

[4] A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler for the analysis
of cryptographic protocols. In Proceedings of CSFW’99, pages 203-212. IEEE
press, 1999.

[6] R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. Journal of Computer Security, 3(1):5-33, 1994/1995.

[6] R. Focardi and R. Gorrieri. The compositional security checker: A tool for
the verification of information flow security properties. IEEE Transactions on
Software Engineering, 23(9):550-571, 1997.

[7] R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proceedings of World Congress on Formal Methods (FM’99),
pages 794-813. Springer, LNCS 1708, 1999.

[8] J. A. Goguen and J. Meseguer. Security policy and security models. In Proc. of
the 1982 Symposium on Security and Privacy, pages 11-20. IEEE Press, 1982.

[9] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Proceedings of TACAS’96, pages 146-166. LNCS 1055, 1996.

[10] G. Lowe. A hierarchy of authentication specification. In Proceedings of the 10th
Computer Security Foundation Workshop, pages 31-43. IEEE press, 1997.

[11] G. Lowe. “Towards a Completeness Result for Model Checking of Security
Protocols”. In Proceedings FEleventh IEEE Computer Security Foundation
Workshop, (CSFW’98), Rockport Massachusetts (USA), June 1998. IEEE

Press.

11

[12] W. Marrero, E. Clarke, and S. Jha. A model checker for authentication
protocols. In Proc. of DIMACS Workshop on Design and Formal Verification
of Security Protocols. Rutgers University, Sep. 1997.

[13] F. Martinelli. Languages for description and analysis of authentication
protocols. In Proceedings of ICTCS 98, pages 304-315. World Scientific, 1998.

[14] F. Martinelli. Partial model checking and theorem proving for ensuring security
properties. In Proceedings of CSFW’98, pages 44-52. IEEE press, 1998.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[16] S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of
CSFW’98, pages 54-65. IEEE Press, 1998.

[17] S. Schneider. Verifying authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9), September 1998.

12

