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The present paper conducts a scientific review on ionospheric absorption, extrapolating the research prospects of a complex eikonal
model for one-layer ionosphere. As regards the scientific review, here a quasi-longitudinal (QL) approximation for nondeviative
absorption is deduced which is more refined than the corresponding equation reported by Davies (1990). As regards the research
prospects, a complex eikonal model for one-layer ionosphere is analyzed in depth here, already discussed by Settimi et al. (2013). A
simple formula is deduced for a simplified problem. A flat, layered ionospheric medium is considered, without any horizontal
gradient. The authors prove that the QL nondeviative amplitude absorption according to the complex eikonal model is more
accurate than Rawer’s theory (1976) in the range of middle critical frequencies.

1. Introductive Review

Absorption is the process by which ordered energy of the
radio wave is transformed into heat and electromagnetic
(e.m.) noise by electron collisions with neutral molecules and
ionized particles [1].

1.1. Ionospheric Absorption. When the absorption is small
and spatial diffraction is neglected, absorption is given by
the imaginary part 𝛽 of the complex propagation function
𝑘. The absorption loss 𝐿

𝑎
(in decibels) is given by 𝐿

𝑎
=

8.68(− ∫ 𝛽𝑑𝑠). If 𝑊
𝑟
is the received power, 𝑊

𝑢
is the unab-

sorbed power that would have been received in the absence
of absorption, and 𝜌 = (𝑊

𝑟
/𝑊
𝑢
)1/2 is the effective amplitude

reflection coefficient:

𝐿
𝑎
= −10log

10
(
𝑊
𝑟

𝑊
𝑢

) = −20log
10
𝜌. (1a)

In scientific work, absorption is sometimes expressed in Np
(nepers). On the basis of the natural logarithm, 1Np= 8.68 dB.

The wave amplitude 𝐸 decays exponentially with distance;
that is, 𝐸 = 𝐸

0
(− ∫ 𝛽𝑑𝑠). Hence, the absorption in Np is

𝐿
𝑎
= ∫𝛽𝑑𝑠 = − ln 𝜌. (1b)

In the absence of the geomagnetic field, the Appleton-
Hartree formula gives the absorption 𝛽 of a wave of angular
frequency 𝜔, per unit path length, in a medium containing𝑁
electrons per unit volume [1]

𝛽 =
𝑞2
𝑒
/𝜀
0

2𝑚
𝑒
𝑐

1

𝑛
𝑅

𝑁]
𝜔2 + ]2

= 4.6 ⋅ 10−2
1

𝑛
𝑅

𝑁]
𝜔2 + ]2

, (2)

where 𝛽 is expressed in dB/km, 𝑁 in cm−3, and ] in s−1 and
𝑐 is the speed light in vacuum, 𝜀

0
is the constant permittivity

of vacuum, 𝑚
𝑒
is electron mass, 𝑞

𝑒
is the charge of electron,

𝑛
𝑅
is the refractive index, and ] is the electron collisional

frequency. Equation (2) enables us to define two types of
absorption [1]:
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(i) nondeviative absorption, which occurs in regions
where 𝑛

𝑅
is approximately unity but where the prod-

uct 𝑁 ⋅ ] is large. This is the type of absorption of
high frequency (HF) and very high frequency (VHF)
waves that occurs in the D region;

(ii) deviative absorption, which occurs near the top of
the ray-trajectory or anywhere along the path where
marked bending takes place, for example, when 𝑛

𝑅
→

0. Deviative absorption is associated with group
retardation.

In the presence of the geomagnetic field, the nondeviative
absorption coefficient is [1]

𝛽 = 4.6 ⋅ 10−2
𝑁]

(𝜔 ± 𝜔
𝐿
)
2

+ ]2
, (3)

where𝜔
𝐿
= 𝜔
𝐻
cos 𝜃
𝐻
is themagnetic angular gyrofrequency

corresponding to the longitudinal (parallel) component of
the geomagnetic field, 𝜃

𝐻
is the angle between the direction

of wave propagation and the geomagnetic field, 𝜔
𝐻

=
𝐵
0
(𝑞
𝑒
/𝑚
𝑒
), and 𝐵

0
is the amplitude of magnetic induction

field and where the + and − signs refer to the ordinary and
extraordinary waves, respectively. From this, we see that the
nondeviative absorption of the extraordinary wave is greater
than that of the ordinary wave. This is particularly important
on frequencies near the gyrofrequency (i.e. 1 to 2MHz)where
the extraordinary wave is heavily absorbed [1].

1.2. Martyn’s Absorption Theorem. The absorption 𝐿(𝑜𝑏)
𝑎

of a
wave at angular frequency 𝜔 incident on a flat ionosphere

with angle𝜑
0
is related to the absorption 𝐿(V)

𝑎
of the equivalent

vertical wave, at an angular frequency 𝜔 cos𝜑
0
, by

𝐿(𝑜𝑏)
𝑎

𝜔
𝑜𝑏
=𝜔

= 𝐿(V)
𝑎

𝜔V=𝜔 cos𝜑0
cos𝜑
0
. (4)

This theorem shows that the additional absorption of the
oblique wave, caused by the longer ray path, is more than
compensated for by the absorption decrease because of the
higher frequency [2].

1.3. Absorption in Some Model Layers. To provide some
insight into the dependence of absorption on electron density
profiles𝑁, solar zenith angle 𝜒, frequency𝑓, and so forth, the
total absorptions in some simple layers are given in Table 1
(reproduced from Davies [1]). The wave frequency is much
greater than the collision frequency, and the geomagnetic
field is ignored. Of particular interest are equations (b) and
(d) in Table 1. Equation (b) has been used, as a profile of the E
region, to separate D-layer and E-layer absorptions. Equation
(d) shows that absorption varies as cos3/2𝜒. In the cases that
include both deviative and nondeviative absorption, that is,
(b) and (e), the inverse square dependence onwave frequency
does not hold.

2. The Quasi-Longitudinal (QL) Approximation
for Non-Deviative Absorption

The complete treatise of the propagation for e.m. waves
in any magnetoplasma is rather complex; here, we restrict
ourselves to a relatively simple discussion, based on common
assumptions reported by [3].

As well-known, the phase refractive index 𝑛 can be
calculated from the Appleton-Hartree equation [1]:

𝑛2 = (𝑛
𝑅
− 𝑖𝑛
𝐼
)
2

= 1 −
𝑋

1 − 𝑖𝑍 − (𝑌2
𝑇
/2 ⋅ (1 − 𝑋 − 𝑖𝑍)) ± √(𝑌4

𝑇
/4 ⋅ (1 − 𝑋 − 𝑖𝑍)2) + 𝑌2

𝐿

, (5)

where𝑋 = 𝜔2
𝑝
/𝜔2 (𝜔 being the angular frequency of the radio

wave, 𝜔
𝑝
= √𝑁𝑞2

𝑒
/𝑚
𝑒
𝜀
0
the plasma frequency, and 𝑁 the

profile of electron density); 𝑌
𝐿
= 𝑌 cos 𝜃

𝐻
, 𝑌
𝑇
= 𝑌 sin 𝜃

𝐻
(𝜃
𝐻

being the angle between the wave vector and the geomagnetic
field), and 𝑌 = 𝜔

𝐻
/𝜔 (being 𝜔

𝐻
= 𝐵
0
(𝑞
𝑒
/𝑚
𝑒
) the angular

gyrofrequency, and 𝐵
0
the amplitude of magnetic induction

field); 𝑍 = ]/𝜔 (] being the collision frequency).
For the known birefringence of ionospheric plasma, this

relationship allows to derive two refractive indices, for the
ordinary ray 𝑛[ORD] and the extraordinary ray 𝑛[EXT], where
the refractive indices 𝑛[ORD],[EXT] are complex quantities
(being 𝑛[ORD] = 𝑛[ORD]

𝑅
+ 𝑖𝑛[ORD]
𝐼

and 𝑛[EXT] = 𝑛[EXT]
𝑅

+

𝑖𝑛[EXT]
𝐼

, with obviousmeaning of symbols).The two refractive
indices are obtained from (5) through the choice of positive
or negative signs, which must be decided applying the so-
called Booker’s rule [1]. Once defined the critical frequency

𝜔
𝑐
= (𝜔
𝐵
/2) ⋅ sin2𝜃

𝐻
/ cos 𝜃

𝐻
, this rule states that, to achieve

continuity of 𝑛[ORD]
𝑅

(𝑛[EXT]
𝑅

) and 𝑛[ORD]
𝐼

(𝑛[EXT]
𝐼

), if |𝜔
𝑐
/]| > 1,

the positive (negative) sign in (5) must be considered both
for 𝑋 < 1 and for 𝑋 > 1, while, if |𝜔

𝑐
/]| < 1, the positive

(negative) sign for 𝑋 < 1 and negative (positive) for 𝑋 > 1
must be considered.

Referring to a specialized text [3] for the discussion
of applicability of the quasi-transverse (QT) and quasi-
longitudinal (QL) approximations, here we will limit our-
selves to pointing out that, for values of 𝑋 much smaller
than 1 (the wave frequency is much larger than the plasma
frequency), theQL approximation holdswithinwide limits (it
is acceptable, for 𝑍2 ≪ 1, up to values of 𝜃

𝐻
tending to 𝜋/2).

The application of QT-QL criterion leads to the conclusion
that, in the D-layer, the QL propagation occurs if the waves
are propagating at relatively high frequencies (usually, an
ionospheric radio-link works at frequency 𝑓 ≥ 2MHz).
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Table 1: Total absorption in model layers (reproduced from Davies [1]).

Electron-density profile Collision profile Type of
absorption Absorption Comments

𝑁 = 𝑁
0

] = ]
0

Nondeviative ∫𝛽𝑑𝑠 = 1.2 ⋅ 10−7𝑓−2𝑁
0
]
0
𝑇(a) T is slab thickness

Parabolic:

𝑁 = 𝑁
0
[1 − (

ℎ − ℎ
0

2𝐻
)
2

]
] = ]
0

Deviative and
nondeviative ∫𝛽𝑑𝑠 =

]
0
𝐻

𝑐
(
1 + 𝑥2

2𝑥
ln 1 + 𝑥
1 − 𝑥

− 1) (b)
c is light speed in
vacuum; H is scale
height; 𝑥 = 𝑓/𝑓

𝑐
, 𝑓
𝑐
is

critical frequency

𝑁 = 𝑁
0

] = ]
0
exp (−𝑧) Nondeviative ∫𝛽𝑑𝑠 = 1.2 ⋅ 10−7𝑓−2𝑁

0
]
0
𝐻[1 − exp(− 𝑇

𝐻
)] (c) 𝑧 =

ℎ − ℎ
0

𝐻

Chapman:
𝑁 = 𝑁

0
exp[1 − sec𝜒 exp(−𝑧)] ] = ]

0
exp (−𝑧) Nondeviative ∫𝛽𝑑𝑠 = 4.13

]
0
𝐻

𝑐

cos3/2𝜒
𝑥2

(d) Double traverse

𝑁 = 𝑎 (ℎ − ℎ
0
) ] = ]

0

Deviative and
nondeviative ∫𝛽𝑑𝑠 =

2

3
𝑓2

]
0

𝑐

1

𝑎𝑘
(e) Wave reflected,

𝑘 = 80.5

If theQL approximation is applied for𝑍2 ≪ 1, then 𝜃
𝐻
≪

1 ⇒ 𝑌
𝐿
≅ 𝑌 and (5) reduces to [1]

𝑛2 = (𝑛
𝑅
− 𝑖𝑛
𝐼
)
2

≅ 1 −
𝑋

1 − 𝑖𝑍 ± 𝑌
. (6)

After some manipulation, (6) is divided into two equations,
one for the real part and one for the imaginary part:

𝑛2
𝑅
− 𝑛2
𝐼
≅ 1 −

𝑋 (1 ± 𝑌)

(1 ± 𝑌)2 + 𝑍2
, (7a)

2𝑛
𝑅
𝑛
𝐼
≅

𝑋𝑍

(1 ± 𝑌)2 + 𝑍2
≅

𝑋𝑍

(1 ± 𝑌)2
, (7b)

and under the simplifying condition 𝑛
𝐼
≪ 𝑛
𝑅
, the imaginary

part of the refractive index is derived by coupling the previous
two equations (7a)-(7b):

𝑛
𝐼
≅
1

2

1 − 𝑛2
𝑅

𝑛
𝑅

𝑍

1 ± 𝑌
[1 + (

𝑍

1 ± 𝑌
)
2

]

=
1

2

1 − 𝑛2
𝑅

𝑛
𝑅

]/𝜔
1 ± 𝜔
𝐻
/𝜔
[1 + (

]/𝜔
1 ± 𝜔
𝐻
/𝜔
)
2

] .

(8)

In the case of nondeviative absorption, occurring far from the
reflection level, that is, with real refractive index near unity,
𝑛
𝑅
→ 1, the local absorption coefficient can be expressed as

𝛽 = 𝑛
𝐼

𝜔

𝑐

≈
𝜔

𝑐

1

2
(1 − 𝑛2

𝑅
)

]/𝜔
1 ± 𝜔
𝐻
/𝜔
[1 + (

]/𝜔
1 ± 𝜔
𝐻
/𝜔
)
2

]

=
1

2
(1 − 𝑛2

𝑅
)
]
𝑐

𝜔

𝜔 ± 𝜔
𝐻

[1 + (
]

𝜔 ± 𝜔
𝐻

)
2

] .

(9)

Note that the present paper has deduced aQL approxima-
tion for nondeviative absorption (9) which is more refined
than the corresponding equation reported by Davies [1]. In
fact, Davies’ equation is deduced, in the right limit 𝑛

𝑅
→ 1,

only from (7b), and without accounting also (7a).

3. The Variation of Collision Frequency
with the Altitude

The average number of collisions ] which an electron makes
per unit time with the atmosphere molecules depends upon
the number density of the molecules and, therefore, on
the density and composition of the atmosphere. Then, a
decreasing exponential law holds in an atmosphere which is
constant in composition [4]:

] (ℎ) = ]max exp(−
ℎ − ℎmax
𝐻

) , (10)

where 𝐻 is the atmospheric scale height, ]max is a constant,
that is, ]max = ](ℎmax), and ℎmax is the height corresponding
to the maximum electron density 𝑁max; that is, 𝑁max =
𝑁(ℎmax). The constant ]max is not the maximum collision
frequency but the collision frequency at the “maximum
height” ℎmax. On equal terms, this maximum occurs for a
null solar zenith angle 𝜒; that is, 𝜒 = 0. In practice, 𝐻 takes
different values at different levels, and the law can only be
expected to hold over ranges of ℎ so small that 𝐻 may be
treated as constant. A useful summary of the factors which
affect the value of ] have been made by [5].

It is found that changes of the value of ] affect the
propagation of radio waves far less than changes of the
electron density profile𝑁. Formany purposes, it is, therefore,
permissible to treat ] as constant over a small range of height
ℎ. This is especially true at high frequencies (HFs) (greater
than 2MHz), where the wavelength is small compared with
the scale height𝐻, which is approximately 10 km. Here, more
generally, considering a short range of heights ℎ, that is, |ℎ −
ℎmax| ≪ 𝐻, the collision frequency (10) can be expanded in a
Taylor’s series at the first order:

] (ℎ) ≅ ]max (1 −
ℎ − ℎmax
𝐻

) → ]max, (11)

so that the collision frequency ](ℎ) is approximately a
function decreasing linearly with the height ℎ.

The scale height𝐻 is defined as [4]

𝐻 =
𝑘
𝐵
⟨𝑇⟩

𝑚 ⟨𝑔⟩
, (12)
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where 𝑘
𝐵
is the Boltzmann’s constant and 𝑚 is the mean

molecular mass, varying with the atmospheric composition
and, therefore, with the altitude (on the ground,𝑚 is assumed
to be about 29 times the mass of a hydrogen atom, which is
approximately equal to 4.7⋅10−26 kg) [3].

The Earth’s gravity acceleration 𝑔 can be expressed as
function of the geographic colatitude angle 𝜃 and height ℎ,
applying, if necessary, the free air correction (FAC) which
accounts for altitudes above sea level, by the International
Gravity Formula (IGF) 1967 [6]:

𝑔 (ℎ, 𝜃)

= 𝑔
0
[1 + 𝐾

1
sin2 (𝜋

2
− 𝜃) − 𝐾

2
sin22 (𝜋

2
− 𝜃)] − 𝐾

3
ℎ,

(13)

where 𝑔
0
= 9.780327m/s2,𝐾

1
= 5.3024⋅10−3,𝐾

2
= 5.8⋅10−6,

and 𝐾
3
= 3.086 ⋅ 10−6 s−2, so that, for a one-layer ionosphere

between the heights ℎ
1
and ℎ

2
, being |ℎ

1
− ℎ
2
| ≪ ℎmax, the

mean value of gravity acceleration is

⟨𝑔⟩ =
1

𝜋

1

ℎ
2
− ℎ
1

∫
𝜋

0

𝑑𝜃∫
ℎ
2

ℎ
1

𝑔 (ℎ, 𝜃) 𝑑ℎ

= 𝑔
0
(1 +

𝐾
1
− 𝐾
2

2
) − 𝐾

3

ℎ
1
+ ℎ
2

2
,

(14)

and the mean absolute temperature can be calculated as
[Appendix A]

⟨𝑇⟩ = 𝑇max [1 − 𝛾
𝑚⟨𝑔⟩

2𝑘
𝐵
𝑇max

(ℎ
1
+ ℎ
2
− 2ℎmax)] , (15)

where 𝛾 = 2/7 and 𝑇max is not the maximum temperature
but the temperature at the “maximum height” ℎmax; that is,
𝑇max = 𝑇(ℎmax).

This paper has deduced (15) as mean value ⟨𝑇⟩ of the
absolute temperature profile 𝑇 = 𝑇(ℎ) for a one-layer
ionosphere between the heights ℎ

1
and ℎ
2
. This average value

can be used as an effective value representing the temperature
profile of layer ionosphere. The formula (15) results in more
accuracy than assuming the temperature to be constant on
the whole layer; that is, 𝑇(ℎ) = 𝑇(ℎ

1
) = 𝑇(ℎ

2
) = const.

4. A Dipole Model of Geomagnetic Field

The Earth, as a whole, is source of a magnetic field, the
geomagnetic field, which as a first-order acceptable approxi-
mation can be assimilated to the field of a dipole located in the
Earth’s centre, with magnetic moment equal to 8.1⋅1022 A⋅m2
and tilted of approximately Δ𝜃 = 11∘ compared to the Earth’s
rotation.

An ionospheric model of the Earth’s magnetic field
consists of an eccentric dipole. The magnetic gyrofrequency
𝜔
𝐻
is a function of the height ℎ above the ground and the

geomagnetic colatitude 𝜆 [7]:

𝜔
𝐻
(ℎ, 𝜆) = 𝜔

𝐻0
(
𝑅
𝑇

𝑅
𝑇
+ ℎ
)
3

(1 + 3cos2𝜆) , (16)

where 𝜔
𝐻0

is the gyrofrequency at the equator on the ground
and 𝑅

𝑇
the Earth’s mean radius (𝑅

𝑇
= 6371 km).

The magnetic dip angle 𝐼(𝜆) is given by [7]

tan 𝐼 = 2cot𝜆. (17)

The dipole model of the Earth’s magnetic field uses the
axis of a computational coordinate system as the axis for
dipole field. When using this dipole model, the computa-
tional coordinate system is a geomagnetic coordinate system,
and the Earth’s magnetic field is defined in geomagnetic
coordinates. Reference [8] describes the transformations
between the geographic and geomagnetic coordinate systems,
respectively, with colatitudes 𝜃 and 𝜆 = 𝜃 − (𝜋/180∘)Δ𝜃.

For a one-layer ionosphere between the heights ℎ
1
and ℎ
2
,

the mean value of magnetic gyrofrequency is

⟨𝜔
𝐻
⟩

=
1

𝜋

1

ℎ
2
− ℎ
1

∫
𝜋

0

𝑑𝜆∫
ℎ
2

ℎ
1

𝜔
𝐻
(ℎ, 𝜆) 𝑑ℎ

= 𝜔
𝐻0

1

𝜋
∫
𝜋

0

(1 + 3cos2𝜆) 𝑑𝜆 1

ℎ
2
− ℎ
1

∫
ℎ
2

ℎ
1

(
𝑅
𝑇

𝑅
𝑇
+ ℎ
)
3

𝑑ℎ

= 𝐾
𝐻
𝜔
𝐻0

𝑅3
𝑇
(ℎ
1
+ ℎ
2
+ 2𝑅
𝑇
)

(ℎ
1
+ 𝑅
𝑇
)
2

(ℎ
2
+ 𝑅
𝑇
)
2
,

(18)

where 𝐾
𝐻
= 0.770982. Thus, the Earth’s magnetic field is

represented by a dipole model, which is eccentric (centred)
in the geographic (geomagnetic) coordinate system, and
the mean value of magnetic gyrofrequency is calculated as
an integral of gyrofrequency referred to the geomagnetic
coordinates. At ionospheric heights, that is, ℎ ≪ 𝑅

𝑇
, the

gyrofrequency 𝜔
𝐻
is almost independent from the height ℎ

and at middle geographic latitudes 𝜋/2 − 𝜃 = 𝜋/2 − 𝜆 −
(𝜋/180∘)Δ𝜃 such that −𝜋/4 < 𝜋/2 − 𝜃 < 𝜋/4, it is almost
constant: 𝜔

𝐻
(ℎ, 𝜆) ≅ ⟨𝜔

𝐻
⟩ (⟨𝑓
𝐻
⟩ = ⟨𝜔

𝐻
⟩/2𝜋 ≅ 1.2MHz)

[9].
The paper has deduced (18) as mean value ⟨𝜔

𝐻
⟩ of the

magnetic gyrofrequency profile 𝜔
𝐻
= 𝜔
𝐻
(ℎ, 𝜆) for a one-

layer ionosphere between the heights ℎ
1
and ℎ
2
. This average

value can be used as an effective value representing the
gyrofrequency profile of layer ionosphere. The formula (18)
results in more accuracy than assuming the gyrofrequency to
be constant for the whole layer; that is, 𝜔

𝐻
(ℎ, 𝜆) ≅ 𝜔

𝐻0
.

5. Chapman’s One-Layer Ionosphere and
QL Nondeviative Absorption

Reference [10] elaborated a theory on the solar photo-
ionization in the Earth’s atmosphere, which still retains a
fundamental importance in the field of ionospheric physics.
As basis of this theory there are common assumptions
reported by [3].

A remarkable simplifying hypothesis is to consider sta-
tionary conditions, which approximately occur around the
true solar noon, when the zenith angle 𝜒 of Sun, and hence
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the electron density 𝑁, varies slowly in time. In dealing
with various issues, stationary condition is approximately
extended to all the daylight hours. Under this hypothesis, it
results in the following [1]:

𝑁(𝑧) = 𝑁ref exp
1 − 𝑧 − sec𝜒 exp (−𝑧)

2

≅ 𝑁ref exp
1 − 𝑧 − exp (−𝑧)

2
, 𝜒 → 0.

(19)

The curve trend of normalized electron density 𝑁/𝑁ref is a
Chapman’s function of the reduced relative height 𝑧 = (ℎ −
ℎmax)/𝐻 and the zenith angle 𝜒.

The nondeviative absorption occurs, for all ray-paths, in
the D-layer and only for those paths with reflection in the
F-layers, also in the E-layer; the Chapman’s theory is a good
approximation for nondeviative absorption on all these ray-
paths, insomuch that the trend of the electron density𝑁with
height ℎ satisfies a well-known implicit relationship [1] and,
in the limit of quasi-stationarity, the explicit relationship (19).

Considering a vertical radio sounding with just one
ionospheric reflection, the amplitude absorption 𝐿(V)

𝑎
(1a)-

(1b) can be expressed as a decreasing exponential function
𝐿(V)
12
= exp[−𝛽(V)

12
] of the integral absorption coefficient 𝛽(V)

12

across the vertical propagation path 𝛾 : ℎ
1
= 0 → ℎ

2
= ℎ,

which is defined as the definite integral 𝛽(V)
12
= ∫
ℎ
2

ℎ
1

𝛽(ℎ)𝑑ℎ

of the local absorption coefficient 𝛽(ℎ) between the heights
ℎ
1
= 0 and ℎ

2
= ℎ (the reader who would like proving

such issue could find an in-depth analysis in Section 4 of
Settimi et al. paper [11]). Applying the QL approximation
for nondeviative absorption as reported by Davies [1], the
variation of collision frequency with the altitude (10), the
dipole model of geomagnetic field (18), and Chapman’s one-
layer ionosphere (19), after somemanipulation [9], this results
in the following:

𝛽(V)
12
= − ln 𝐿(V)

12
= ∫
ℎ
2

ℎ
1

𝛽 (ℎ) 𝑑ℎ

=
√2𝜋𝑒

2

𝑞2
𝑒
/𝜀
0

𝑚
𝑒
𝑐
𝑁maxVmax𝐻

cos3/2𝜒
(𝜔 ± ⟨𝜔

𝐻
⟩)
2

+ ]2max

≅
√2𝜋𝑒

2

𝑞2
𝑒
/𝜀
0

𝑚
𝑒
𝑐

𝑁maxVmax𝐻

(𝜔 ± ⟨𝜔
𝐻
⟩)
2

+ ]2max

, 𝜒 → 0.

(20a)

Instead, considering an oblique radio sounding with one
ionospheric reflection, the Martyn’s absorption theorem [2]
assures that the integral absorption coefficient 𝛽(𝑜𝑏)

12
of a wave

at frequency 𝑓 incident on a flat ionosphere with angle 𝜑
0
is

further dependent on the secant of 𝜑
0
(magnitude order and

units correctly revised with respect to Rawer [12]):

𝛽(𝑜𝑏)
12

≅ 1.344 ⋅ 10−4 [m2/s]

×
106 ⋅ 𝑁max [cm

−3] ⋅ ]max [s
−1] ⋅ 103 ⋅ 𝐻 [km]

{106 (𝑓 ± ⟨𝑓
𝐻
⟩) [MHz]}2 + {(1/2𝜋) ]max [s−1]}

2
sec𝜑
0
.

(20b)

Equations (20a)-(20b) shows that, on equal terms, the QL
nondeviative amplitude absorption [𝐿]dB is inversely propor-
tional to the square of frequency 𝑓2 for the e.m. waves and
increases as the angle of incidence 𝜑

0
; that is, it increases with

the decrease of the elevation angle. Inserting in (20a)-(20b)
the typical values for the D and E layers, it follows that, as to
be expected, the absorption occurs mainly in the D layer and
the amplitude absorption order is a few tens of dB.

6. The Complex Eikonal Model for
One-Layer Ionosphere

6.1. The Complex Eikonal Model. A previous paper of Settimi
et al. [11] conducted a scientific review on the complex
eikonal, extrapolating the research prospects on the iono-
spheric ray-tracing and absorption.

As regards the scientific review, the eikonal equation is
expressed, and some complex-valued solutions are defined
corresponding to complex rays and caustics. Moreover, the
geometrical optics is compared to the beam tracing method,
introducing the limit of the quasi-isotropic and paraxial
complex optics approximations. Finally, the quasi-optical
beam tracing is defined as the complex eikonal method
applied to ray-tracing, discussing the beam propagation in
cold magnetized plasma.

As regards the research prospects, the cited paper
has proposed to address the following scientific problem:
in absence of electromagnetic (e.m.) sources, consider a
material medium which is time invariant, linear, optically
isotropic, generally dispersive in frequency, and inhomoge-
neous in space, with the additional condition that the refrac-
tive index is assumed varying even strongly in space. The
paper continues the topics discussed by [13], proposing a nov-
elty with respect to the other referenced bibliography; indeed,
the absorption is assumed nonnegligible, so the medium
is dissipative. In mathematical terms, the refractive index
belongs to the field of complex numbers.Thedissipation plays
a significant role, and even the eikonal function belongs to
the complex numbers field. Under these conditions, suitable
generalized complex eikonal and transport equations are
derived.

In fact, if the dissipative absorption is supposed to be not
negligible in the 3D space ⃗𝑟 = (𝑥, 𝑦, 𝑧), which is filled by a
materialmediumwith complex refractive index, that is 𝑛( ⃗𝑟) =
𝑛
𝑅
( ⃗𝑟) + 𝑖𝑛

𝐼
( ⃗𝑟), then the approximation of quasi-optics allows

to introduce an e.m. field 𝑉( ⃗𝑟) = 𝐴( ⃗𝑟) exp[𝑖𝑘
0
𝑆( ⃗𝑟)] whereby
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the eikonal is a complex function, that is 𝑆( ⃗𝑟) = 𝑆
𝑅
( ⃗𝑟)+ 𝑖𝑆

𝐼
( ⃗𝑟),

satisfying to the pair of eikonal equations [11]
∇𝑆𝑅


2

− 𝑛2
𝑅
( ⃗𝑟) =

∇𝑆𝐼

2

− 𝑛2
𝐼
( ⃗𝑟) = 𝐶 = const, (21a)

∇𝑆
𝑅
⋅ ∇𝑆
𝐼
= 𝑛
𝑅
( ⃗𝑟) 𝑛
𝐼
( ⃗𝑟) . (21b)

Once assumed the null value to be allowable for the constant
𝐶 = 0 in (21a), and defining the versor 𝑠 = 𝑑 ⃗𝑟/𝑑𝑠 as tangent
to the curvilinear coordinate 𝑠, then the two real scalar
equations (21a)-(21b) can be collected in just one complex
vector equation [11]:

∇𝑆 = 𝑛 ( ⃗𝑟) 𝑠 = 𝑛 ( ⃗𝑟)
𝑑 ⃗𝑟

𝑑𝑠
. (22)

Under the hypothesis 𝐶 = 0, (21a)-(21b) for the complex
eikonal 𝑆( ⃗𝑟) are reduced into two independent equations for
the real and imaginary part of eikonal function, respectively,
𝑆
𝑅
( ⃗𝑟) and 𝑆

𝐼
( ⃗𝑟), the first ∇𝑆

𝑅
= 𝑛
𝑅
( ⃗𝑟)𝑠 solving the ray-

tracing and the second ∇𝑆
𝐼
= 𝑛
𝐼
( ⃗𝑟)𝑠 to derive the amplitude

absorption; in these conditions, the ray-tracing and absorp-
tion problems become uncoupled, and the eikonal equation
(22) belonging in the complex numbers field [𝑛( ⃗𝑟), 𝑆( ⃗𝑟) ∈
C] is formally equal to the corresponding one in the real
numbers field [𝑛( ⃗𝑟), 𝑆( ⃗𝑟) ∈ R] [13].

The present paper does not include the transfer equation
for the field amplitude (see Settimi et al. [11]), from which
one can derive a relationship for the refractive attenuation
of radio wave [14], valid along a ray tube: 𝐼( ⃗𝑟)Δ𝑆 = const,
where Δ𝑆 is the cross-section square of a ray tube, and 𝐼( ⃗𝑟) =
𝑛
𝑅
( ⃗𝑟)𝐴2( ⃗𝑟) the field intensity which is proportional to the

square amplitude of e.m. field 𝐴2( ⃗𝑟) times the real part of
refractive index 𝑛

𝑅
( ⃗𝑟). The transfer equation for the field

amplitude states the intensity law of geometrical optics [13],
which is an evolution of the expression for the intensity in
terms of the flow tubes.The e.m. energy propagates within the
flow tube and the intensity varies in inverse proportion to the
section of tube.The relationship for the refractive attenuation
of radio wave involves just the geometric attenuation due
to the enlargement of wave front with the propagation [15].
The intensity carried by each ray may decreases along the
distance, even if the medium is loss-free, since, as the wave
propagates, the intensity is distributed over an ever-widening
surface.

6.2. One-Layer Ionosphere. In order to solve the ionospheric
ray-tracing and absorption problems, Settimi et al. [11] have
prospected a novel point of view. Equations (21a)-(21b) or
(22) for complex eikonal are derived assuming the material
medium as optically isotropic. However, there exist suitable
conditions in which (21a)-(21b) or (22) can be referred to
the Appleton-Hartree equations (5) or (6) for ionospheric
magnetoplasma, which becomes anisotropic at the presence
of geomagnetic field. Indeed, in agreement with [16–18], the
quasi-isotropic approximation (QIA) of geometrical optics
can be applied for weakly anisotropic inhomogeneousmedia,
so that the eikonal equations hold alternatively for both the
ordinary and extraordinary rays, which propagate indepen-
dently in themagnetoplasma by experiencing each a different
refractive index.

h

xO

𝜑0

𝜑(h)
h0

x0

Figure 1: Flat, layered ionospheric medium described by a lin-
earized profile (25a)-(25b) and (26a)-(26b) (reproduced from Set-
timi et al. [11]).

Let us consider a flat, layered ionospheric medium
(Figure 1, reproduced from Settimi et al. [11]), without any
horizontal gradient, characterized by an electron density
profile dependent only on the altitude, as for the complex
refractive index,

𝑛 = 𝑛 (ℎ) = 𝑛
𝑅
(ℎ) + 𝑖𝑛

𝐼
(ℎ) . (23)

Fix the axis of abscissa 𝑥, orthogonal to the axis of heights ℎ,
which produce the space plane 𝑥ℎ. Initially, a generic optical
ray is passing through a point (𝑥

0
, ℎ
0
), forming an angle 𝜑

0

with the heights axis ℎ. Along the optical path, the ray changes
its angle 𝜑 with respect to the axis ℎ. This angle 𝜑(ℎ) depends
on the initial conditions (𝑥

0
, ℎ
0
) and it is a function of the

height ℎ. In fact, the refraction law of Snell-Descartes states
for the real part of refractive index:

𝑛
𝑅
(ℎ) sin𝜑 (ℎ) = 𝑛

𝑅
(ℎ
0
) sin𝜑

0
= 𝑅. (24)

The ionosphere, in presence of collisions, is assumed to
be weakly interacting with the static geomagnetic field. A
linearized analytic profile can be adopted for the complex
refractive index [11] (Figure 1):

𝑛 (ℎ) = 1, ℎ < ℎ
0
, (25a)

𝑛 (ℎ) = 𝑛
𝑅
(ℎ) + 𝑖𝑛

𝐼
(ℎ) , ℎ ≥ ℎ

0
,

𝑛
𝑅
(ℎ) = 𝑛

0
+ 𝛼
𝑅
(ℎ − ℎ

0
) ,

𝑛
𝐼
(ℎ) = 𝛼

𝐼
,

(25b)

where the coefficients 𝛼
𝑅
and 𝛼

𝐼
are functions of the angular

frequency 𝜔, the collision frequency ]max (11), the atmo-
spheric scale height 𝐻 (12), the mean value of magnetic
gyrofrequency ⟨𝜔

𝐻
⟩ (18), and the height of ionosphere

bottom ℎ
0
, the refractive index across the ionosphere-neutral

atmosphere boundary 𝑛
0
= 𝑛(ℎ

0
). In a first-order approxi-

mation, the boundary refractive index 𝑛
0
could be assumed

as a real number slightly different from 1, that is, in any case
𝑛
0
̸= 1, so that the refractive index 𝑛(ℎ) is a discontinuous

function of height ℎ, that is, crossing ℎ = ℎ
0
.

The linear refractive index (25a), (25b) is sufficient to
highlight that the geometrical attenuation is modelled just
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by the transport equation, and, therefore, the dissipative
absorption just by the complex eikonal equations (21a)-(21b);
in fact if 𝑛(ℎ) ≅ 𝛼

𝑅
ℎ, then 𝐼(ℎ

2
)/𝐼(ℎ
1
) ≅ 𝑛(ℎ

1
)/𝑛(ℎ
2
) = ℎ
1
/ℎ
2

[11].
Inserting the refractive index (25a) to solve the real part

∇𝑆
𝑅
= 𝑛
𝑅
( ⃗𝑟)𝑠 of complex eikonal equation (22), then the

optical path ℎ = ℎ(𝑥) is obtained [11] (Figure 1):

𝑛
𝑅
(ℎ)

𝑅
= cosh [

𝛼
𝑅

𝑅
(𝑥 − 𝑥)] , (26a)

𝑥 = 𝑥
0
−
𝑅

𝛼
𝑅

ln(
1 + cos𝜑

0

sin𝜑
0

) . (26b)

In this case, the optical rays show, unless vertical shifts, the
trend of hyperbolic cosines, known as catenaries, which can
be approximated to parabolas.

Inserting the refractive index (25b) to solve the imaginary
part ∇𝑆

𝐼
= 𝑛
𝐼
( ⃗𝑟)𝑠 of complex eikonal equation (22), if the

height ℎ is not so low, that is, ℎ ≫ ℎ
0
, then the imaginary part

𝑆
𝐼
(ℎ) of eikonal function is approximately independent from

the Snell-Descartes’ constant 𝑅 [11]:

𝑆
𝐼
(ℎ) ≅

𝛼
𝐼

𝛼
𝑅

𝑛
𝑅
(ℎ) , ℎ ≫ ℎ

0
. (27)

Regardless of geometrical attenuation, the amplitude
absorption due to dissipation effects can be calculated from
the imaginary part of complex eikonal function. In fact, in
the ionospheric plasma, recalling that the collision frequency
is a function ](ℎ) of height ℎ, as the complex eikonal 𝑆(ℎ) =
𝑆
𝑅
(ℎ) + 𝑖𝑆

𝐼
(ℎ), the local absorption coefficient 𝛽(ℎ) can be

defined as

𝛽 (ℎ) =
𝜔

𝑐
𝑆
𝐼
(ℎ) ≅

𝜔

𝑐

𝛼
𝐼

𝛼
𝑅

𝑛
𝑅
(ℎ) . (28)

If 𝑛
𝐼
(ℎ) = 𝛼

𝐼
→ 0, then 𝑛(ℎ) → 𝑛

𝑅
(ℎ) ∈ R; moreover

𝑆
𝐼
(ℎ) → 0, so 𝑆(ℎ) → 𝑆

𝑅
(ℎ) ∈ R; and, finally, 𝛽(ℎ) → 0.

Considering a vertical radio sounding with just one iono-
spheric reflection, once applied (28), the integral absorption
coefficient 𝛽(V)

12
= ∫
ℎ
2

ℎ
1

𝛽(ℎ)𝑑ℎ across any vertical propagation
path 𝛾 : ℎ

1
→ ℎ
2
is proportional to the optical path Δ𝑙(V)

12
=

∫
ℎ
2

ℎ
1

𝑛
𝑅
(ℎ)𝑑ℎ; that is [11],

𝛽(V)
12
≅
𝜔

𝑐

𝛼
𝐼

𝛼
𝑅

Δ𝑙(V)
12

=
𝜔

𝑐

𝛼
𝐼

𝛼
𝑅

(ℎ
2
− ℎ
1
) [𝑛
0
+
𝛼
𝑅

2
(ℎ
1
+ ℎ
2
− 2ℎ
0
)] ,

ℎ2 − ℎ1
 ≪ ℎ0 < ℎmax.

(29)

Instead, considering an oblique radio sounding with one
ionospheric reflection, the Martyn’s absorption theorem [2]
assures that the absorption coefficient 𝛽(𝑜𝑏)

12
of a wave at

angular frequency 𝜔 incident on a flat ionosphere with
angle 𝜑

0
is related to the absorption coefficient 𝛽(V)

12
of the

equivalent vertical wave, at an angular frequency 𝜔 cos𝜑
0
, by

𝛽(𝑜𝑏)
12
|
𝜔
𝑜𝑏
=𝜔
= 𝛽(V)
12
|
𝜔V=𝜔 cos𝜑0

cos𝜑
0
.

6.3. A Simple Formula for a Simplified Problem. Settimi et al.
[11] proposed (29), useful to calculate the absorption due to
the propagation across the ionospheric D-layer, which can be
approximately modelled by a linearized complex refractive
index (25a), (25b), covering a short range of heights between
ℎ
1
= 50 km and ℎ

2
= 80–90 km approximately. According to

[4], rocket techniques have evidenced that, in the daytime,
the D-layer shows, almost as a rule, its maximum (and
minimum) of electron density in the vicinity of 80 km (and
85 km). In authors opinion, this evidence is not so strong,
and even if the refractive index 𝑛

𝑅
(ℎ) is not a monotonically

decreasing function of height ℎ along the D-E layers valley,
anyway this is not a substantial correction; 𝑛

𝑅
(ℎ) can be

linearized up to ℎ
2
= 80–90 km approximately.

Thus, the theoretical bases of present paper were laid,
where the further expansion of (29) will lead to a formula
for the ionospheric absorption more accurate than some
theoretical models (20a)-(20b), using the Chapman’s profile
reported by Rawer [12].

Indeed, Appendix B, supposing the analytical continuity
of complex eikonal model (28) with the QL approximation
for nondeviative absorption (9), demonstrates the necessary
and sufficient condition to equate the collision frequency
deriving from the refractive index (25a), (25b) to the variation
of collision frequency with the altitude (11). The QL nonde-
viative absorption (9), deduced in this paper, is more refined
than the corresponding equation reported by Davies [1]; and,
linearizing the involved equations, here are obtained the
coefficients 𝛼

𝑅
and 𝛼

𝐼
as functions of the angular frequency

𝜔, the collision frequency ]max, the scale height𝐻, the mean
magnetic gyrofrequency ⟨𝜔

𝐻
⟩, and the height of ionosphere

bottom ℎ
0
, the refractive index across the ionosphere-neutral

atmosphere boundary 𝑛
0
= 𝑛(ℎ
0
); that is [Appendix B],

𝛼
𝑅
= −

1

2

(1 − 𝑛2
0
) /𝐻

1 + ((ℎmax − ℎ0) /𝐻)
, (30a)

𝛼
𝐼
= −

(1 − 𝑛
0
)
2

𝐻

]max
𝜔 ± ⟨𝜔

𝐻
⟩
[1 + (

]max
𝜔 ± ⟨𝜔

𝐻
⟩
)

2

] . (30b)

A reasonable hypothesis should be assumed for (30a)-(30b);
the boundary refractive index 𝑛

0
is a real number slightly less

than 1; that is, 𝑛
0
< 1, so that both coefficients 𝛼

𝑅
and 𝛼

𝐼
are

negative; that is, 𝛼
𝑅
< 0 and 𝛼

𝐼
< 0.

Therefore, the linearized analytic profile for complex
refractive index (25b) can be rearranged as

𝑛
𝑅
(ℎ) ≅ 𝑛

0
−
1 − 𝑛2
0

2

(ℎ − ℎ
0
) /𝐻

1 + (ℎmax − ℎ0) /𝐻
, ℎ ≥ ℎ

0
, (31a)

𝑛
𝐼
= −

(1 − 𝑛
0
)
2

𝐻

]max
𝜔 ± ⟨𝜔

𝐻
⟩
[1 + (

]max
𝜔 ± ⟨𝜔

𝐻
⟩
)

2

] . (31b)

Just the reasonable hypothesis assumed below equations
(30a)-(30b) could imply the expected conclusions for (30a)-
(30b); the real refractive index 𝑛

𝑅
(ℎ) is a decreasing function

of height ℎ, while the imaginary refractive index 𝑛
𝐼
is

negative, as substantially correct for any ionospheric profile
of the D-layer [4].
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Moreover, considering a vertical radio sounding with just
one ionospheric reflection, once the optical path is calculated

Δ𝑙(V)
12
= ∫
ℎ
2

ℎ
1

𝑛
𝑅
(ℎ) 𝑑ℎ

≅ (ℎ
2
− ℎ
1
) [𝑛
0
−
1 − 𝑛2
0

4

(ℎ
1
+ ℎ
2
− 2ℎ
0
) /𝐻

1 + (ℎmax − ℎ0) /𝐻
] ,

ℎ2 − ℎ1
 ≪ ℎ0 < ℎmax,

(32)

it is proportional to the integral absorption coefficient (29),
re-arranged as

𝛽(V)
12
≅ 2
1 − 𝑛
0

1 + 𝑛
0

Δ𝑙(V)
12
(1 +

ℎmax − ℎ0
𝐻

)
]max
𝑐

×
𝜔

𝜔 + ⟨𝜔
𝐻
⟩
[1 + (

]max
𝜔 + ⟨𝜔

𝐻
⟩
)

2

] .

(33)

Note that the refractive index 𝑛
0
= 𝑛(ℎ

0
) can be computa-

tionally assumed as 𝑛
0
= 1−𝜀max for any ray-tracing program,

where 𝜀max is defined as themaximumallowable relative error
in single step length for any of the equations being integrated
[7].

Instead, considering an oblique radio sounding with one
ionospheric reflection, the Martyn’s absorption theorem [2]
assures that the integral absorption coefficient 𝛽(𝑜𝑏)

12
of a wave

at angular frequency 𝜔 incident on a flat ionosphere with
angle 𝜑

0
is further dependent on the secant of 𝜑

0
. A simple

formula for a simplified problem results:

𝛽(𝑜𝑏)
12

𝜔
𝑜𝑏
=𝜔

= 𝛽(V)
12

𝜔V=𝜔 cos𝜑0
cos𝜑
0

≅ 2
1 − 𝑛
0

1 + 𝑛
0

Δ𝑙(V)
12
(1 +

ℎmax − ℎ0
𝐻

)
]max
𝑐

𝜔

𝜔 + ⟨𝜔
𝐻
⟩

×
cos𝜑
0

cos𝜑
0

[1 + (
]max

𝜔 + ⟨𝜔
𝐻
⟩

1

cos𝜑
0

)

2

] cos𝜑
0

= 2
1 − 𝑛
0

1 + 𝑛
0

Δ𝑙(V)
12
(1 +

ℎmax − ℎ0
𝐻

)
]max
𝑐

𝜔

𝜔 + ⟨𝜔
𝐻
⟩

× [
1

sec𝜑
0

+ (
]max

𝜔 + ⟨𝜔
𝐻
⟩
)

2

sec𝜑
0
] .

(34)

7. Examples

Figure 2 compares two profiles of electron density modelling
the ionospheric D-layer between the heights ℎ

1
and ℎ

2
> ℎ
1
;

the first profile agrees with the linearized complex refractive
index (31a)-(31b), and is defined by a lower limit (ℎ

0
, 𝑁
0
), such

that ℎ
0
< ℎ
1
, while the second profile responds to Chapman’s

(19) and is specified by a relativemaximum (ℎmax, 𝑁max), such
that ℎmax > ℎ2.

Figures 3 and 4 consider an oblique radio sounding,
with just one ionospheric reflection, between the transmitter

h

N(h)

Linearized profile
Chapman’s profile

O

D-layer

hmax

h2
h1

h0

N0 Nmax

Figure 2: Comparison between two profiles of electron density
modelling the ionospheric D-layer between the heights ℎ

1
and ℎ

2
>

ℎ
1
.

Rome, Italy (41.89∘, 12.49∘) and the receiver Chania, Crete
(35.52∘, 24.02∘) stations. The D-layer, represented by a com-
plex eikonal model, covers a short range of heights between
ℎ
1
= 50 km and ℎ

2
= 80–90 km, the absolute temperature

decreasing, respectively, from 𝑇
1
= 273K to 𝑇

2
= 187K [3].

The whole ionosphere, represented by a Chapman’s profile, is
characterized by a maximum of electron density𝑁max which
occurs at height ℎmax = 300 km, corresponding to a collision
frequency ]max = ](ℎmax) = 1.60512 s−1. The linearized
profile of complex refractive index (31a)-(31b) defined by a
height of the ionosphere bottom ℎ

0
= ℎ
1
= 50 km and

a refractive index across the ionosphere-neutral atmosphere
boundary 𝑛

0
= 𝑛(ℎ

0
) = 1 − 𝜀max (𝜀max being the maximum

allowable single step error, that is, 𝜀max ≤ 10−6) is related
to the collision frequency ]max (11), the atmospheric scale
height𝐻 (12), and the mean value of magnetic angular gyro-
frequency ⟨𝜔

𝐻
⟩ (18). The Chapman’s profile (19), specified

by a solar zenith angle approximately null 𝜒 = 0 and a
scale height 𝐻 = 62 km [7], is correlated to the mean
magnetic gyrofrequency 𝑓

𝐻
= 1.2MHz. Suppose that the

critical frequency at the Earth’s equator 𝑓
𝑐0
, calculated as

𝑓2
𝑐0
= 𝐾 ⋅ 𝑁max [being 𝐾 = (𝑞2

𝑒
/𝜀
0
)/(4𝜋2𝑚

𝑒
) = 8.061382 ⋅

10−5MHz2⋅cm3], can assume the following values: 𝑓
𝑐0
=

3.65MHz,𝑓
𝑐0
= 5.65MHz,𝑓

𝑐0
= 6.85MHz,𝑓

𝑐0
= 7.60MHz,

𝑓
𝑐0
= 7.80MHz, 𝑓

𝑐0
= 8.60MHz, 𝑓

𝑐0
= 9.15MHz, and

𝑓
𝑐0
= 10.45MHz.
The paper has proven that the amplitude absorption

according to the Settimi et al. [11] complex eikonal model
(32), (33), and (34) is generally more accurate than Rawer’s
[12] theory (20a)-(20b), since it arises in continuity with the
QL approximation for nondeviative absorption (9), deduced
here, which is more refined than the corresponding equation
reported by Davies [1].

As regards the ordinary ray, the complex eikonal absorp-
tion curve becomes overestimated with respect to the Rawer’s
one, that is, the absorption relative deviation is larger than
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Figure 3: Plots of the QL nondeviative amplitude absorption [dB], according to the Settimi et al. [11] complex eikonal model (32), (33), and
(34) and Rawer’s [12] theory (20a)-(20b), as a function of the frequency 𝑓 (MHz), for both the ordinary and extraordinary rays. The critical
frequency 𝑓

𝑐0
at equator assumes the following values: (a) 𝑓

𝑐0
= 3.65MHz, (b) 𝑓

𝑐0
= 5.65MHz, (c) 𝑓

𝑐0
= 6.85MHz, (d) 𝑓

𝑐0
= 7.60MHz, (e)

𝑓
𝑐0
= 7.80MHz, (f) 𝑓

𝑐0
= 8.60MHz, (g) 𝑓

𝑐0
= 9.15MHz, and (h) 𝑓

𝑐0
= 10.45MHz.

50%, when referring to the low critical frequencies (𝑓
𝑐0
≤

5.65MHz). Indeed, the complex eikonalmodel (32), (33), and
(34) is not numerically reliable for the low critical frequencies,
as the integral absorption coefficient (28) implies tacitly
that not so low altitudes are involved [11]. Moreover, the
complex eikonal absorption curve becomes underestimated
with respect to the Rawer’s one; that is, the absorption relative
deviation is less than −50%, even when referring to the
highest critical frequencies (𝑓

𝑐0
≥ 10.45MHz). Indeed, the

complex eikonal model (32), (33), and (34) is not numerically
reliable even for the highest critical frequencies, when the
linearized complex refractive index (25a)-(25b) fails, having
to be replaced by a parabolic or even cubic profile [11]. Finally,
applying the exclusion principle, necessarily the complex
eikonal absorption curve is more accurate than the Rawer’s
one just when referring to the middle critical frequencies
(6.85MHz ≤ 𝑓

𝑐0
≤ 7.80MHz). The fitting between the

absorption curves becomes optimal; that is, the absorption
relative deviation tends to 0%, when referring to the high
critical frequencies (8.60MHz ≤ 𝑓

𝑐0
≤ 9.15MHz). Indeed,

as proved, the D-layer is generally more carefully defined by
the Settimi et al. [11] complex eikonal model than the Rawer’s
[12] theory. The D-layer is opaque to the middle critical
frequencies, when the optical ray is reflected at altitudes next
to the D-layer (ℎ < 100 km), being so strongly absorbed
([𝐿]dB ≥ 10 dB). In this case, the D-layer plays a primary
role; it follows that a more careful description of the D-
layer concurs to promote the complex eikonal model as more
accurate compared to Rawer’s theory. Instead, the D-layer is
transparent to the high critical frequencies, when the optical

ray is reflected at altitudes well away from the D-layer (ℎ ≫
100 km), being so weakly absorbed ([𝐿]dB ≤ 1 dB). In this
other case, the D-layer plays only a secondary role; it follows
that, even if the D-layer description is more carefully defined
by the complex eikonal model than Rawer’s theory, anyway
the fitting between the corresponding absorption curves is
optimal.

As regards the extraordinary ray, the complex eikonal
absorption curve remains overestimated with respect to the
Rawer’s one for themajority of critical frequencies (3.65MHz
≤ 𝑓
𝑐0
≤ 9.15MHz). The fitting between the complex eikonal

and Rawer’s absorption curve becomes optimal, that is, the
absorption relative deviation tends to 0%, when referring to
the highest critical frequencies (𝑓

𝑐0
≥ 10.45MHz). Indeed,

even if the extraordinary ray is reflected at lower altitudes
than the ordinary ray [3], anyway it is more absorbed [12] and
then is characterized by a higher maximum usable frequency
(MUF). It follows that, with respect to the ordinary ray, the
fitting between the complex eikonal and Rawer’s absorption
curves for the extraordinary ray occurs at higher critical
frequencies.

8. Conclusions and Future Work

The present paper conducted a scientific review on iono-
spheric absorption, extrapolating the research prospects of a
complex eikonal model for one-layer ionosphere.

As regards the scientific review, a quasi-longitudinal (QL)
approximation was deduced for nondeviative absorption
which is more refined than the corresponding equation
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Figure 4: Continued.
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Figure 4: Plots of the percentage relative deviation [%], between the quasi-longitudinal (QL) approximation for nondeviative amplitude
absorption according to the Settimi et al. [11] complex eikonal model (32), (33), and (34) and Rawer’s [12] theory (20a)-(20b), as a function
of the frequency 𝑓 (MHz), for both the ordinary (a) and extraordinary (b) rays [The critical frequency at the Earth’s equator 𝑓

𝑐0
assumes the

following values: 𝑓
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= 3.65MHz, 𝑓
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reported by Davies [1]. Similarly, further improvements were
proposed for calculating more accurately the atmospheric
scale height involved into the variation of collision frequency
with the altitude and the mean value of magnetic angular
gyrofrequency relative to the dipole model of geomagnetic
field. Moreover, the authors reviewed Chapman’s one-layer
ionosphere, referring to the QL approximation for nondevia-
tive absorption reported by Rawer [12].

As regards the research prospects, a complex eikonal
model for one layer ionosphere was analyzed in depth here,
already discussed by Settimi et al. [11]. In order to solve the
ionospheric ray-tracing and absorption problems, a novel
point of view was prospected. The complex eikonal equa-
tions were derived assuming a material medium as optically
isotropic. However, in agreement with the quasi-isotropic
approximation of geometrical optics, these equations can
be referred to as the Appleton-Hartree refractive index for
an ionospheric magnetoplasma, which becomes only weakly
anisotropic in the presence of geomagnetic field.

Finally, a simple formula was deduced for a simplified
problem. A flat, layered ionospheric medium is considered,
without any horizontal gradient. This paper proposed a new
formula, useful to calculate the amplitude absorption due to
the propagation across the ionospheric D-layer, which can
be approximately modelled by a linearized analytic profile of
complex refractive index, covering a short range of heights
between ℎ

1
= 50 km and ℎ

2
= 80–90 km approximately.

The authors proved that the QL nondeviative amplitude
absorption according to the complex eikonal model is more

accurate than Rawer’s theory [12] in the range of middle
critical frequencies.

The theoretical paper explained the bases for an applica-
tive study [19]. The simple complex eikonal equations for
calculating the QL approximation of nondeviative ampli-
tude absorption due to the propagation across the D-
layer were encoded as subroutine of an ionospheric ray-
tracing (IONORT) program [20]. The IONORT program,
which simulates the three-dimensional (3D) ray-tracing for
high frequency (HF) waves in the ionosphere, runs on the
assimilative IRI-SIRMUP-P (ISP) discrete model over the
Mediterranean area [21, 22]. The IONORT-ISP results were
compared to a more elaborate semiempirical formula, that
is, the ICEPAC [23], which refers to various phenomeno-
logical parameters such as the critical frequency of E-layer.
The complex eikonal model for QL nondeviative amplitude
absorption is as reliable as the ICEPAC formula, with the
advantage of being implemented more easily, since the
proposed model depends just on parameters of the electron
density profile, which are numerically determinable, such as
the maximum height.

Appendices

A. Appendix A

Let us model the plasma as an electron gas. The ther-
modynamics of adiabatic (energy conserving) gas parcel
displacements describes expansion cooling or compression
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heating associated with adiabatic processes taking place in
a compressible fluid. A diatomic ideal gas, defining the
Rydberg’s constant 𝑅, is characterized by a specific heat at
constant pressure 𝑐

𝑝
= (7/2) ⋅ 𝑅. Its absolute temperature 𝑇

and pressure 𝑝 are linked by the equation of state [24]

𝑇 = 𝐴𝑝𝛾, (A.1)

where 𝐴 is a constant and 𝛾 = 𝑅/𝑐
𝑝
= 2/7.

Once measured, at the “maximum height” ℎmax [see
Section 3], the temperature 𝑇max and the pressure 𝑝max, the
constant 𝐴 is calculated; that is, 𝐴 = 𝑇max/(𝑝max)

𝛾, so that
(A.1) can be recast as

𝑇 = 𝐴𝑝𝛾 =
𝑇max

𝑝
𝛾

max
𝑝𝛾 = 𝑇max(

𝑝

𝑝max
)
𝛾

. (A.2)

The hydrostatic approximation states that, in the vertical
direction, the most important forces acting on a parcel
of gas are the vertical pressure gradient and gravity. This
simplification is common in dynamical models, although
it neglects some phenomena such as sound waves, and is
not appropriate for high resolution models. Introducing the
atmospheric scale height 𝐻 = 𝑘

𝐵
⟨𝑇⟩/𝑚⟨𝑔⟩, where 𝑘

𝐵
is

the Boltzmann’s constant, 𝑚 the mean molecular mass of
atmosphere, and ⟨𝑔⟩ the mean value of gravity acceleration,
if𝐻 (and the absolute temperature 𝑇) varies little with height
ℎ, the pressure vertical distribution 𝑝 of the ionosphere can
be represented in a convenient form [3]:

𝑝 (ℎ) = 𝑝max exp(−
ℎ − ℎmax
𝐻

) . (A.3)

The scale height 𝐻 represents the altitude which corre-
sponds to a reduction by 1/𝑒 in the pressure. It can be shown
that𝐻 represents twice the distance through which electrons
having the equipartition of translational energy, (1/2)𝑘

𝐵
⟨𝑇⟩,

can rise in the vertical direction against the force of gravity.
Once a short range of heights ℎ is considered, that is, |ℎ −

ℎmax| ≪ 𝐻 [see Section 3], the pressure (A.3) is expanded in
a Taylor’s series at the first-order:

𝑝 (ℎ) ≅ 𝑝max (1 −
ℎ − ℎmax
𝐻

)

= 𝑝max [1 −
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇
(ℎ − ℎmax)] .

(A.4)

Reducing the system of two equations (A.2) and (A.4),

𝑇 = 𝑇max(
𝑝

𝑝max
)
𝛾

≅ 𝑇max[1 −
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇
(ℎ − ℎmax)]

𝛾

≅ 𝑇max [1 − 𝛾
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇
(ℎ − ℎmax)] ,

(A.5)

into the solving equation,

𝑇2

𝑇max
− 𝑇 + 𝛾

𝑚⟨𝑔⟩

𝑘
𝐵

(ℎ − ℎmax) = 0, (A.6)

the temperature distribution of the ionosphere is derived:

𝑇 (ℎ) =
1 ± √1 − 4 (1/𝑇max) 𝛾 (𝑚 ⟨𝑔⟩ /𝑘𝐵) (ℎ − ℎmax)

2/𝑇max

≅
𝑇max
2
[1 + 1 − 2

1

𝑇max
𝛾
𝑚⟨𝑔⟩

𝑘
𝐵

(ℎ − ℎmax)]

= 𝑇max [1 − 𝛾
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇max

(ℎ − ℎmax)] > 0.

(A.7)

Finally, for a one-layer ionosphere between the heights ℎ
1
and

ℎ
2
, being |ℎ

1
−ℎ
2
| ≪ ℎmax, the mean value of temperature can

be calculated:

⟨𝑇⟩ =
1

ℎ
2
− ℎ
1

∫
ℎ
2

ℎ
1

𝑇 (ℎ) 𝑑ℎ

≅
𝑇max
ℎ
2
− ℎ
1

∫
ℎ
2

ℎ
1

[1 − 𝛾
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇max

(ℎ − ℎmax)] 𝑑ℎ

=
𝑇max
ℎ
2
− ℎ
1

[(ℎ − ℎmax) − 𝛾
𝑚 ⟨𝑔⟩

𝑘
𝐵
𝑇max

(ℎ − ℎmax)
2

2
]

ℎ
2

ℎ
1

= 𝑇max [1 − 𝛾
𝑚⟨𝑔⟩

𝑘
𝐵
𝑇max

(ℎ
1
+ ℎ
2
− 2ℎmax)] .

(A.8)

B. Appendix B

Assuming the reader to be familiar with the mathematical
symbols and their physical meaning, let us report the QL
approximation for nondeviative absorption 𝛽(ℎ) (9), where
the magnetic angular gyrofrequency𝜔

𝐻
(ℎ, 𝜃) (16) is assumed

coincident with its mean value ⟨𝜔
𝐻
⟩ (18), being approxi-

mately a constant:

𝛽 (ℎ) ≈
1

2
[1 − 𝑛2

𝑅
(ℎ)]

] (ℎ)
𝑐

×
𝜔

𝜔 ± ⟨𝜔
𝐻
⟩
{1 + [

] (ℎ)
𝜔 ± ⟨𝜔

𝐻
⟩
]

2

} .

(B.1)

Considering a short range of heights ℎ, that is, |ℎ − ℎmax| ≪
𝐻, the variation of collision frequency with the altitude ](ℎ)
(10) can be expanded in a Taylor’s series at the first-order in
(ℎ − ℎmax) (11):

] (ℎ) ≅ ]max (1 −
ℎ − ℎmax
𝐻

) → ]max, (B.2)
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such that the QL nondeviative absorption (B.1) is conve-
niently simplified as

𝛽 (ℎ)

≈
1

2
[1 − 𝑛2

𝑅
(ℎ)]

] (ℎ)
𝑐

𝜔

𝜔 ± ⟨𝜔
𝐻
⟩
{1 + [

] (ℎ)
𝜔 ± ⟨𝜔

𝐻
⟩
]

2

}

≈
1

2
[1 − 𝑛2

𝑅
(ℎ)]

] (ℎ)
𝑐

𝜔

𝜔 ± ⟨𝜔
𝐻
⟩
[1 + (

]max
𝜔 ± ⟨𝜔

𝐻
⟩
)

2

] .

(B.3)

Similarly for the additional mathematical symbols and
their physical meaning, consider the complex eikonal model
for local absorption coefficient 𝛽(ℎ) (28):

𝛽 (ℎ) ≅
𝜔

𝑐

𝛼
𝐼

𝛼
𝑅

𝑛
𝑅
(ℎ) , ℎ ≥ ℎ

0
. (B.4)

Comparing the QL approximation (B.3) and the complex
eikonal model (B.4), an alternative expression is obtained for
the collision frequency as a function of height ](ℎ); that is,

] (ℎ) ≅ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

𝑛
𝑅
(ℎ)

1 − 𝑛2
𝑅
(ℎ)
, (B.5)

which can be expanded in a Laurent’s series close to the
neighbourhood of pole 𝑛

𝑅
(ℎ) → 1, according to the

nondeviative absorption condition:

] (ℎ) ≅ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

𝑛
𝑅
(ℎ)

1 − 𝑛2
𝑅
(ℎ)

≈ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× {−
1

2 [𝑛
𝑅
(ℎ) − 1]

−
1

4
+
1

8
[𝑛
𝑅
(ℎ) − 1]

−
1

16
[𝑛
𝑅
(ℎ) − 1]

2

+ ⋅ ⋅ ⋅ }

≈ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× {−
1

2 [𝑛
𝑅
(ℎ) − 1]

−
1

4
} .

(B.6)

Within the complex eikonal model, consider the lin-
earized analytic profile which is adopted for the complex
refractive index 𝑛(ℎ) (25a)-(25b):

𝑛 (ℎ) = 𝑛
𝑅
(ℎ) + 𝑖𝑛

𝐼
(ℎ) , ℎ ≥ ℎ

0
,

𝑛
𝑅
(ℎ) = 𝑛

0
+ 𝛼
𝑅
(ℎ − ℎ

0
) ,

𝑛
𝐼
(ℎ) = 𝛼

𝐼
.

(B.7)

The collision frequency (B.6), in explicit form

] (ℎ) ≅ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× {−
1

2 [𝑛
0
− 1 + 𝛼

𝑅
(ℎ − ℎ

0
)]
−
1

4
} ,

(B.8)

can be expanded in a Taylor’s series approximately limited at
the first-order in (ℎ − ℎ

0
), for a narrow one-layer ionosphere

covering the short range of heights between ℎ
1
and ℎ

2
, being

|ℎ
2
− ℎ
1
| ≪ ℎ
0
< ℎmax, so that

] (ℎ) ≅ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× {−
1

2 [𝑛
0
− 1 + 𝛼

𝑅
(ℎ − ℎ

0
)]
−
1

4
}

≈ 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× [−
1

4
+
1

2

1

1 − 𝑛
0

+
1

2

𝛼
𝑅
(ℎ − ℎ

0
)

(1 − 𝑛
0
)
2
]

= 2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

× [
1

4

1 + 𝑛
0

1 − 𝑛
0

+
1

2

𝛼
𝑅
(ℎ − ℎ

0
)

(1 − 𝑛
0
)
2
] .

(B.9)

Equating terms in (B.2) and (B.9) gives a system of two linear
equations,

2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2
[
1

4

1 + 𝑛
0

1 − 𝑛
0

−
1

2

𝛼
𝑅
ℎ
0

(1 − 𝑛
0
)
2
]

= ]max (1 +
𝑧max
𝐻
) ,

2
𝛼
𝐼

𝛼
𝑅

𝜔 ± ⟨𝜔
𝐻
⟩

1 + (]max/ (𝜔 ± ⟨𝜔𝐻⟩))
2

1

2

𝛼
𝑅

(1 − 𝑛
0
)
2

= −
]max
𝐻
,

(B.10)

which can be solved for the two variables 𝛼
𝑅
and 𝛼

𝐼
; that is,

𝛼
𝑅
= −

1

2

(1 − 𝑛2
0
) /𝐻

1 + ((ℎmax − ℎ0) /𝐻)
,

𝛼
𝐼
= −

(1 − 𝑛
0
)
2

𝐻

]max
𝜔 ± ⟨𝜔

𝐻
⟩
[1 + (

]max
𝜔 ± ⟨𝜔

𝐻
⟩
)

2

] .

(B.11)
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