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The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and
still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In
this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens
of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin
and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc
psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the
memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB
color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the
membership values of any other point in the color space. Model validation is performed both directly, through the comparison of
the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and
indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both
cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically
meaningful color-based segmentation map.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Color is a complex issue. Color research is intrinsically inter-
disciplinary, and as such gathers the efforts of many different
research communities, ranging from the medical and psy-
chological fields (neurophysiology, cognitive sciences) to the
engineering fields (image and signal processing, robotics).
Color naming implies a further level of abstraction, going
beyond the field of vision-related sciences. The strong depen-
dency on the development of the language implies a progres-
sive evolution of the mechanisms responsible for color cate-
gorization and naming [1–3]. Accordingly, the definition of
a computational model must account for the dynamics of the
phenomenon, in the form of an updating of the labels used
to describe a given color as well as of the location of the cor-
responding colors in the considered color space.

Color categorization is intrinsically related to color nam-
ing, which lies at the boundary between different fields of
cognitive sciences: visual perception and linguistics. Color
naming is about the labelling of a given set of color stimuli
according to their appearance in a given observation condi-
tion. Pioneering this field, the work of Berlin and Kay [4]
traces back to the early 1970’s, and has settled the ground for

the proliferation of the next wave of cognitive studies, like
those of Sturges and Whitfield [5, 6] and Lammens [7]. In
particular, Berlin and Kay found that there are semantic uni-
versals in the domain of color naming, especially in the ex-
tension of what they call basic color terms.

The cornerstones of such a vast investigation can be sum-
marized as follows:

(i) the best examples of basic color categories are the same
within small tolerances of speakers, in any language,
that has the equivalent of the basic color terms in ques-
tion;

(ii) there is a hierarchy of languages with respect to how
many and which basic color terms they possess (i.e., a
language that has i+ 1 basic color terms features all the
basic terms of any language with i color terms, and any
language with i basic color terms has the same ones);

(iii) basic color categories are characterized by graded
membership functions.

A corollary of such findings is that a set of color foci can be
identified and, what is most important for image processing,
measured, as being the best representative of the naming cat-
egory they pertain according to psychophysical scaling. In
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other terms, color foci represent the best examples of a named
color out of a set of color samples.

As very well pointed out in [7], the color naming process
consists in a mapping N from the color representation do-
main to a multidimensional naming space which associates
to a given color stimulus (i) a color name; (ii) a confidence
measure, and (iii) a goodness or typicality measure.

The set of color terms that can be considered as universal
constants (among the languages that have at least the neces-
sary number of color terms) are the following: white, black,
red, green, yellow, blue, brown, pink, purple, orange, gray.

Based on this, it is possible to derive the same number of
equivalent classes, while keeping into account the fuzzyness
of the categorical membership.

The interest of color categorization in the image process-
ing framework is that it enables the identification of “color
naming fuzzy clusters” in any color space, establishing a di-
rect link between the name given to a color and its location in
the color space. This goes beyond the classical partitioning of
the color space by clustering techniques based on color ap-
pearance models, because the color descriptors are no more
uniquely dependent on the (suitably defined) tristimulus val-
ues and colorimetric model.

Linking semantic features with numerical descriptors is
one of challenges of the multimedia technology. Computa-
tional models of color naming naturally lead to the design of
automatic agents able to predict and reproduce the perfor-
mance of human observers in sensing (through cameras or
other kind of equipments), identifying, and classifying colors,
as pertaining to one out of a set of predefined classes with a
certain degree of confidence and in a reproducible manner.

The potential of color naming models has triggered a
considerable amount of research in recent years follow-
ing the way opened by Lammens [7]. Among the more
recent contributions are those of Belpaeme [1, 2], Bleys
[8], and Mojsilović [9]. Designing a color naming system
hides very difficult problems. The many possible choices
for the set of control parameters (color naming system,
reference color space, standard illuminant, model features)
make it difficult to gather all this knowledge into a uni-
fied framework. Different color naming systems often re-
fer to different uniform color spaces, for which a closed
form or exact transformation to a “usable” color space (like
XYZ, Lab, LMS) is usually not available. Roughly speak-
ing, there is a great deal of uncertainty in managing colors,
which makes it difficult to gain a clear and unified perspec-
tive.

The extraction of high-level color descriptors is gaining
an increasing interest in the image processing field due to its
intrinsic link to the representation of the image content. Se-
mantic annotations for indexing, image segmentation, object
recognition, and tracking are only few of the many examples
of applications that would take advantage of an automatic
color naming engine. When the exploitability of the model
for image processing is an issue, the outcomes of the model
must be some measurable quantities suitable for feature ex-
traction and analysis, and, as such, eligible as image descrip-
tors.

In this paper, we propose a discrete computational model
for color categorization. Given the tristimulus value of a
color randomly picked in the CIELAB space, the so-defined
ideal observer provides the estimation of the probability of
that color being classified as pertaining to each of the 11
predefined categories. This corresponds to a smooth parti-
tioning of the color space, where the membership functions
of each category are shaped on the data collected by an ad
hoc psychophysical experiment (Experiment 1). The model
is subsequently validated by comparing the estimated mem-
bership values of a color sample with the corresponding rel-
ative frequencies measured via another subjective test (Ex-
periment 2). The model exploitability for image processing
is assessed by the characterization of its performance for se-
mantic color-based segmentation.

This paper is organized as follows. Section 2 describes
the subjective experiments; Section 3 illustrates the dis-
crete model. The performance is discussed in Section 4, and
Section 5 derives conclusions.

2. METHODS

2.1. Color system

In this study, we used the OSA-UCS color system as in Boyn-
ton and Olson [10]. The data obtained by Boynton and Ol-
son cannot be directly applied to our purpose because of two
reasons. First, only the centroids and foci are provided for
each color category and for each subject, while the whole set
of subjective data is needed for fitting our model. Second, in
that study the samples were observed in completely different
conditions, namely, they were mounted on 5-inch squares of
acid free Bristol board seen by the subject through a 3.8 cm-
square aperture in a table slanted 20◦ upwards from horizon-
tal. The source of illumination was a 200 Watts photoflood
lamp at 3200 K mounted above the subject’s head [10].

The OSA-UCS is a color appearance system that has been
developed by the Optical Society of America (OSA) [11].
Color samples are arranged in a regular rhombohedral lat-
tice in which each color is surrounded by twelve neighbor-
ing colors, all perceptually equidistant from the considered
one. Figure 1 shows the solid centered at a point in the L, g,
j space.

The color chips illustrated in the atlas closely reproduce
the appearance of a set of colors of given CIE 1964 coordi-
nates when viewed under the daylight (D65) illumination on
a middle gray surround (30% reflectance). The CIE 1964 and
OSA-UCS L, g, j coordinates are related by a nonlinear trans-
formation [11].

The OSA-UCS system has the unique advantage of equal
perceptual spacing among the color samples. Such a supra-
threshold uniform perceptual spacing is the main reason be-
hind the choice of using the OSA-UCS space instead of an-
other color dataset more suitable for the applications to be
used as reference. The main inconvenience of this choice is
that the volume of the color space corresponding to the OSA
samples fails to extend to highly saturated regions. In conse-
quence, this constrains the applicability of the model only to
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the region of the color space that is represented by the OSA
samples, of course limiting its exploitability from the image
processing perspective. Accordingly, after having verified the
potential of the proposed approach in the current prototyp-
ing phase, the next step of our work will be to extend the set
of color samples to adequately represent the entire region of
the color space that is concerned with the foreseen applica-
tions by designing a suitable color sampling scheme.

2.2. Color naming model

After choosing the color system, the color naming model
must be specified. Attributing a label to a color requires
a color vocabulary that is expression of both the cultural
background (implicitly) of the speakers and the application
framework. For instance, the Munsell color order system [11]
is extensively used in the production of textiles and paint-
ings, allowing a highly detailed specification of colors. The
ISCC-NBS [12] dictionary was developed by the NBS fol-
lowing a recommendation of the Inter-Society Council. It
consists of 267 terms obtained by combining five descrip-
tors for lightness (very dark, dark, medium, light, very light),
four for saturation (grayish, moderate, strong, vivid), three for
brightness and saturation (brilliant, pale, deep), and twenty-
eight for hues constructed from a basic set (red, orange, yel-
low, green, blue, violet, purple, pink, brown, olive, black, white,
gray).

However, as pointed out in [9], such dictionaries often
suffer from many disadvantages like the lack of both a well-
defined color vocabulary and an exact transform to a differ-
ent color space. This is the case for the Munsell system for in-
stance, and to a certain extent also of the ISCC-NBS one. As it
is usually the case, colors are described in terms of hue, light-
ness, and saturation. Noteworthy, since the language evolves
in time, many terms of the dictionary become obsolete and
as such are not adequate for color description.

In our work, we constrain the choice of the color names
to the 11 basic terms of Berlin and Kay. The reasons is
twofold. First, we want to set up a framework as simple as
possible in order to design and characterize a prototype sys-
tem and check its usefulness in a given set of applications
(like image segmentation and indexing). It is worth men-
tioning that the more names are allowed, the more subjec-
tive data are needed for both model fitting and validation,
in order to have an acceptable estimation of the categoriza-
tion probabilities of each data sample. Second, we foresee
to follow a multiresolution approach, allowing for a progres-
sively refinable description of the color features generating
a nested partitioning of the color volume. Accordingly, the
color space will be initially split into a set of 11 regions cor-
responding to the 11 basic colors. Such regions will overlap
due to the intrinsic fuzzyness of the categorization process
and will serve for the automatic naming of color samples at
the first coarser level. Next step will be the definition of a set
of descriptors for each color attribute (as exemplified above
referring to the ISSC-NBS color naming system) jointly with
a syntax allowing to combine them in a structured way, as
in [9]. Again, we will follow the multiscale approach and
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Figure 1: In the OSA color system, color samples are arranged in
a regular rhombohedral lattice in which each point is surrounded
by twelve neighboring colors, all perceptually equidistant from the
central one.
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Figure 2: The 424 OSA-UCS samples represented in the xy space.

allow for a progressive refinement of the granularity in the
description of the color features. This will end up with a se-
quence of nested subvolumes that will result in the descrip-
tion of a color in the form 80% light bluish green and 20%
light blue.

Though, this is left for future work and goes beyond the
scope of this paper.

2.3. Experiment 1

As mentioned above, the first experiment aimed at the cate-
gorization of the 424 OSA-UCS color samples. Figures 2 and
3 illustrate the positions of the OSA samples in the xy and
CIELAB spaces, respectively.

2.3.1. Subjects

Six subjects aged between 25 and 35 years participated in this
experiment (5 males and 1 female). Two of them were famil-
iar with color imaging and the others were naives. All of them
were volunteers. They were screened for normal color vision
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through the Ishihara test. Each subject repeated the test three
times.

2.3.2. Procedure

The 424 OSA samples were displayed on a CRT calibrated
monitor in a completely dark room. Each color sample was
shown in a square window of size 2 × 2 cm2 in a mid lu-
minance gray background. The visual angle subtended by
the stimulus was about 2 degrees in order to avoid the in-
terference of rod mechanisms. The viewing distance was
of 57 cm. The OSA samples were presented one at a time
in random order. The order was different for each block
of trials (three for each subject) and within trials for the
same subject. Standard instructions were provided in writ-
ten form in the center of the screen using white charac-
ters on the same gray background used for the experi-
ment. The task consisted in naming each color sample us-
ing one of the 11 basic terms. To this purpose, the labels
were shown using the corresponding string of characters en-
closed in a square of the same size of the sample. Both the
characters and the square sides were light-gray. The squares
were arranged along a circle centered on the sample loca-
tion. The ray of the circle was such that the average dis-
tance of the squares resulted in about 2 cm. The location
of the squares along the circle was randomized, in order to
avoid bias effects on the judgement related to the relative
distance of the squares from the starting gaze direction. No
time constraints were given. When ready, the subject made
her/his choice by clicking on the corresponding square with
the mouse. Figure 4 shows an example of the test stimu-
lus.

2.4. Experiment 2

The second experiment was aimed at the model validation.
The same experimental setting as in Experiment 1 was used,
the difference being in the set of color samples the subject
was asked to classify.

2.4.1. Subjects

The same six subjects that participated in Experiment 1 also
took part to Experiment 2. This allows limiting the fluctua-
tions in color categorization due to intersubject variability. A
larger number of subjects would be needed for a more precise
fitting, or, equivalently, model training.

2.4.2. Procedure

A total of Nc = 100 colors were randomly sampled from the
volume enclosed by the OSA outer (more saturated) sam-
ples at each luminance level following a uniform probability
distribution. Figure 5 illustrates the resulting color set. The
same paradigm as in Experiment 1 was followed: the sub-
jects were shown each color sample and asked to name it by
clicking on the corresponding square. The same set of colors
was shown three times to each observer in random order to

Figure 3: The 424 OSA-UCS samples represented in the CIELAB
space.

estimate its probability of classification within each of the 11
categories.

The outcome of this experiment is the estimation of the
category membership of each color sample.

3. THE DISCRETE MODEL

In our model, each point in the color space is represented
by an 11-component feature vector. Each component rep-
resents the estimated membership value of the sample to
one category. For points corresponding an OSA-UCS sample
such values coincide with the measured relative frequencies
of classification of the point in the different categories. The
membership values for the rest of the colors are estimated by
linear interpolation. The discrete model consists of a three-
dimensional Delaunay triangulation [13] of the color space
which associates each OSA sample to a vertex of a 3D tetrahe-
dron. The Delaunay triangulation is particularly suitable for
our purpose because it provides a well-balanced partitioning
of the space, according to a predefined criterion.

The membership value of any color lying inside of the
tetrahedron is estimated as a linearly weighted sum of the
analogous values of the four vertexes of the enclosing tetra-
hedron.

Let fC(−→x ) be the feature vector associated to color C at
position −→x , −→x = {L, a, b} in the CIELAB space. For the
points corresponding to the OSA samples, the ith compo-
nent of the feature vector represents the relative frequency of
classification of color C in the category i:

f iC(−→x ) = Ni
C

N
, (1)

where Ni
C is the number of times C has been classified as per-

taining to class i evaluated over the whole set of subjects and
blocks, and N is the total number of times that the color was
displayed (number of subjects×3). Setting such membership
values amounts to fitting the model to the actual data gath-
ered by the subjective experiment.
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Figure 4: Stimulus example. The test color is pasted at the center of
the image, on a gray background.
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Figure 5: Set of color samples used for model validation.

For any color c inside the tetrahedron, the components
of the feature vector are estimated as follows:

f ic =
4∑

j=1

λj f
i
Cj

, (2)

where λj , j = 1, . . . , 4, are the centroidal coordinates of the
point within the tetrahedron and f iCj

is the ith component
of the feature vector of the OSA color Cj located at the jth
vertex of the tetrahedron. The λj coordinates satisfy the fol-
lowing equations by construction:

λj ≥ 0 ∀ j,
∑

j

λ j = 1. (3)

The resulting model provides a prediction for the feature vec-
tor associated to any point in the space, at a very low compu-
tational cost. Furthermore, the normalization of the feature

Figure 6: Surfaces delimiting the 11 color categories corresponding
to a membership value p = 1.

vectors is preserved by construction

∑

i∈Nc

4∑

j=1

λj f
i
Cj
=

4∑

j=1

λj

∑

i∈Nc

f iCj
=

4∑

j=1

λj = 1, (4)

where Nc = 11 is the number of color categories.

4. RESULTS AND DISCUSSION

4.1. Model fitting

The proposed model provides a very effective mean for the
visualization of the color categorization data in any 3D space.
In this paper, we have chosen the CIELAB space, whose per-
ceptual uniformity makes it exploitable for image processing.
The first goal of this study was the estimation of the proba-
bility of choosing a color name given the color sample, irre-
spectively of the observer, for each color of the OSA system.
The model performance was characterized by measuring the
number of times each OSA sample was given the label i, as in
(1). This implicitly qualifies as consistent and consensus col-
ors [10] those samples for which there exists a i, i =∈ [1, 11]
such that

f iCj
=
⎧
⎨
⎩

1 for i = i,

0 ∀i �= i.
(5)

It might be useful to recall here the definitions of consistency
and consensus, the two parameters used by Boynton and Ol-
son to analyze their data. They regard the agreement on color
naming by a single subject for two presentations of the same
color as consistency, while consensus is reached when all sub-
jects name a color sample consistently using the same basic
color term. Such colors are those that have been attributed
the same name by all the subjects in all the trials.

The surface representing the consensus colors can be ef-
fectively rendered by the marching cube algorithm [14].

Figure 6 illustrates the result of the rendering. Each sur-
face inscribes the volume of the CIELAB space which en-
closes all the OSA samples that were given the name of the
basic color represented by the surface color, consistently and
with consensus. The solids in general are not convex, and



6 EURASIP Journal on Advances in Signal Processing

a

(a)

a

L

b

(b)

Figure 7: Surfaces delimiting the 11 color categories corresponding
to a membership value (a) p = 0.8; (b) p = 0.5.

some isolated points appear to be located outside the sur-
faces. Such a topology is due to the fact that the surfaces
enclose all and only the color samples featuring both con-
sistency and consensus by construction. Points in-between
color samples of this kind, which do not hold the same
property, unavoidably produce a discontinuity in the sur-
face, and may result in the presence of isolated points. This is
emphasized by rendering the surfaces enclosing all the sam-
ples whose membership value is above a certain threshold p
for each category. Figure 7 illustrates the cases p = 0.8 and
p = 0.5, respectively. For membership values smaller than
one, the fuzzy nature of the categories generates an over-
lapping of the surfaces. This is illustrated in Figure 8, which
shows the level sets for the membership values in an equilu-
minance plan for the green and blue categories.

4.2. Model validation

The model validation was performed by the comparison of
the membership values as predicted by the model, by lin-
ear interpolation, with those estimated on the basis of Ex-

1
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0.3

1 0.9 0.7 0.5 0.3

Figure 8: Level sets of the membership function in an equilumi-
nance plan for the green and blue categories.

periment 2. Using 100 random samples, each displayed three
times to all the 6 observers, bounds the accuracy of the es-
timation to about 0.056. The accuracy of the model-based
estimation of the membership values is only subject to the
precision bounds set by the fitting. Accordingly, the charac-
terization of the performance of the model must account for
such an intrinsic limitation. In order to overcome it, an ex-
tended set of color samples will be used for both fitting and
validation in the future developments of this work.

Even though the number of samples used is not large
enough to completely characterize the model performance,
and the simple linear interpolation is not expected to be
the best choice in general, the results are quite satisfying.
This emphasizes the potential of the proposed model. The
CIELAB space was designed such that equal perceptual dif-
ferences among color stimuli (in specified observation con-
ditions) would correspond to equal intersample distances
according to the Euclidean metric. Though, the uniformity
property does not hold exactly, such that equidistant color
samples, in general, do not correspond to equidistant per-
cepts. Accordingly, an interpolation scheme aiming at map-
ping geometrical positions in the CIELAB space to per-
ceptual differences should account for such nonuniformity
through the definition of an ad hoc nonlinear metric. The
reason why we believe the linear interpolation scheme is nev-
ertheless a good starting point is twofold. First, the OSA-UCS
color system consists of a relatively large number of perceptu-
ally equidistant samples. Therefore, their spatial distribution
in the CIELAB space corresponds to a fine sampling of the
color space, with a relatively small intersample distance (see
Figure 3). Jointly with the uniformity properties of CIELAB,
this justifies the assumption of the OSA-UCS samples be-
ing evenly distributed in the color space within small vari-
ations. Within the limits of such an approximation, it is then
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Figure 9: The nine OSA-UCS samples that were not correctly named by the model.

reasonable to assume that the linear interpolation scheme is
able to provide a good prediction of the appearance of the
samples lying in-between the OSA-UCS ones. Second, the
Euclidean distance between a test sample and each of the
OSA-OCS samples located at the vertexes of the tetrahedron
it belongs to is smaller than the distance between the vertexes.
Overall, the fine granularity of the sampling grid and the lo-
cality of the model led us to consider linear interpolation as
a good first-order estimator of the values of the membership
function of the test samples in the color naming space. The
analysis of the limitations of such an assumption requires the
investigation of the distribution of the intersample distances
among the OSA samples leading to the definition of a new
metric, or, equivalently, a local deformation of the space al-
lowing to recover the uniformity properties.

On top of this, it is worth mentioning that how color ap-
pearance differences map to color naming differences is still
an open issue. Such information is of the first importance
for the design of the ideal interpolation scheme. This implies
the investigation of the (fuzzy) boundaries among color cat-
egories and subcategories, as well as the modeling of their re-
lations with color descriptors. We leave both of these subjects
for future investigation.

As mentioned above, the precision bound is the same for
both the fitting and the validation. In both cases, each color
sample was shown to each of the six subjects three times.
In consequence, all the observed values of the membership
functions are multiples of 1/18. For the validation, the mem-
bership values estimated by the model are issued from the
linear interpolation (2) thus can take any possible real value.
Nevertheless, the precision bound is set by the fitting. The
variability of the categorization data (i.e., quantified here
through the membership functions) is due partly to the in-
trinsic fuzzyness of the categorization process, and partly to
intersubject variability. The detailed investigation of this very
interesting issue is beyond the scope of this contribution, and
it is left for future research.

However, an indication of the goodness of the model in
predicting the values of the membership function is given by
the fact that the absolute value of the estimation error (i.e.,
the L1 difference between the predicted and the observed val-
ues of the membership function) is above the accuracy of the
estimation only in 16.5% of the cases. An extended set of re-
sults would lead to a more robust and accurate estimation as
well as to a more precise characterization of the system.

The performance was also evaluated in terms of the abil-
ity of the model to predict the human behavior in the naming
task. Automatic naming was obtained by assigning a given
test color the label corresponding to the maximum among
the associated membership values. Agreement with the av-
erage observer (i.e., the subjective data) was reached in 91%

of the cases. Figure 9 shows the color samples that were not
correctly labelled by the model. Importantly, five out of nine
of these test colors have a very weak chromaticity, and were
named as gray. This is most probably due to the fact that the
gray category was not adequately represented in the training
set, such that we expect this shortcoming to be overcome by
an extended training color set.

Overall, these first results show that the basic color com-
ponents of the test samples are almost always correctly iden-
tified. The model is thus able to provide a good estimation of
the perceived amount of basic color in the test color samples,
allowing the definition of the corresponding color naming
label.

Before concluding this section, it is important to men-
tion that the proposed model also holds a great potential as
an imaging tool for vision research. The availability of a dis-
crete model allows a very effective visualization of the match
between color names and chromaticity coordinates, in any
color space. As pointed out by Cao et al. [15], the possibility
to map color appearance with the coordinates of the stimu-
lus in the cone chromaticity space and the inclusion of color
appearance boundaries in such space allow to link the physi-
cal and perceptual characterization of a chromaticity shift. In
their work, they take a first step in this direction and provide
an illustration of the regions covered by OSA color samples
corresponding to the set of nondark appearing colors blue,
purple, white, pink, green, yellow, orange, red. Though, a two-
dimensional representation is chosen, where all the samples
are represented irrespectively of the L value. The proposed
model allows overcoming such a limitation, providing a very
effective representation of the OSA named samples in any 3D
color space that can be reached through a numerical trans-
formation.

4.3. Image segmentation

An indirect way to validate the model consists in evaluat-
ing its exploitability for image processing. Here we have cho-
sen to characterize its performance for image segmentation.
The fact that the model was shaped on the OSA samples
constrains its usability for images whose color content is
bounded by the corresponding enclosing surface in the color
space. Accordingly, the chosen images were preprocessed in
order to satisfy such a condition.

The segmentation algorithm requires the definition of
the color of the different regions of interest by the user.
In the current implementation, an interface allows defining
the color of a given object (or, equivalently, image region)
through its naming attributes: the basic color components
and the lower bounds of the corresponding membership
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Figure 10: Matisse, Les danseurs. (a) Preprocessed image; (b) brown-orange-rose region; (c) green region; (d) blue region.

values. This allows a fuzzy definition of the color attributes,
that provides a very natural way of identifying and segment-
ing the different objects. To illustrate the concept, the color
attributes of a region are specified as 30% green and 40% blue.
Only basic colors are allowed in the current version, but the
model can be very naturally generalized to a multiscale hier-
archical framework in the color naming space.

From an implementation point of view, the segmentation
algorithm selects the concerned tetrahedron for each image
pixel and estimates the membership values. The segmenta-
tion map results from the aggregation of all the pixels shar-
ing the same naming attributes, namely whose membership
values are above the predefined threshold.

Figure 10 shows the segmentation map of the paint-
ing Dance (1910) by Henry Matisse. The dancers are cor-
rectly identified by setting the membership values as fol-
lows: pbrown ≥ 0.1, ppink ≥ 0.1, and porange ≥ 0.3, as il-
lustrated in Figure 10(b). Similarly, Figures 10(c) and 10(d)
show the green and blue regions, that were obtained by set-
ting pgreen ≥ 0.3 and pblue ≥ 0.6, respectively. The level of
detail in the color description is not constrained by the ap-
plication. The user can choose to describe the object of in-
terest by either all or only one of its basic color components.
Once the color of interest has been described at a satisfying
level of detail (as indicated by the corresponding segmenta-
tion map), such a description can be used for image indexing.
Among the many applications that could take advantage of
such a semantic definition of the image content, of particular

interest are those in the fields of medical imaging and cultural
heritage. As for the first, it could for instance be exploited
for characterizing the color content of particular lesions, like
melanomas, as well as to pick up the set of images sharing
a common feature within a database to support diagnosis
as well as epidemiological studies. Concerning cultural her-
itage, the model could be used to characterize the pigments
used by a given painter, such that a color signature could be
derived and used for both data mining in arts databases and
to identify counterfeits.

The segmentation algorithm was also tested on sport im-
ages (see Figure 11). The grass color of the football field is
spread over many different luminance levels, as illustrated in
Figure 12. Setting the membership value pgreen ≥ 0.9 leads to
the results shown in Figure 11. Even though in the current
implementation the algorithm is not able to deal with high-
lights, changes in illumination and shadows, the results are
quite satisfying, the field is correctly segmented and the play-
ers are not merged with the background. It is worth outlin-
ing that this algorithm provides a pixelwise resolution, since
it does not use any statistical information about the neigh-
borhood. Further improvements can be reached with the in-
tegration of color appearance models. We leave this issue for
future investigation.

5. CONCLUSIONS

We presented a novel discrete model for color naming. The
model was trained by fitting the parameters to the data



G. Menegaz et al. 9

(a) (b)

Figure 11: Football. (a) Original image; (b) green region pgreen ≥ 0.9.

L

a
b

Figure 12: CIELAB illustration of the pixels featuring a green com-
ponent whose membership value is above 0.9.

gathered by an ad hoc psychophysical experiment (Experi-
ment 1) and validated by comparing the estimated member-
ship values of a color sample with the corresponding rela-
tive frequencies measured via another subjective test (Exper-
iment 2). First results show that the resulting ideal observer is
able to provide an accurate estimation of the probability of a
given color to be classified as pertaining to each of the 11 pre-
defined categories. Due to the close match of the predicted
and measured membership values, the model has proven to
be effective in mimicking the average human observer, and
thus to be suitable for the definition of an automatic color
naming system. The model performance for color-based se-
mantic segmentation was evaluated on both a painting and a
sport image. The good performance and the high computa-
tional efficiency qualify it as a powerful tool for color-based
computer vision applications. Among the many open issues
that deserve further investigation are the definition of a new
sampling criterion for a more complete set of color samples
for both training and validation, the investigation of different

interpolation techniques accounting for the nonuniformity
of the color space, and an extended set of subjective tests for
improving the accuracy of the estimations. On top of this,
the generalization to a multiscale formulation will enable a
finer granularity in the labelling increasing its potential for
multimedia applications.
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