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Abstract
Sedimentary ancient DNA (SedaDNA) is an emerging tool to reconstruct past bio-
diversity with high taxonomic resolution. Its growing popularity has stimulated an 
increasing complexity of SedaDNA data production (e.g., DNA extraction, amplifi-
cation, and sequencing; authentication of molecules; bioinformatics). Conversely, 
less attention has been devoted to how appropriate statistical analyses can help to 
extract ecological information from SedaDNA. Until now, ecological studies based 
on SedaDNA have taken limited advantage of the multiple statistical and numerical 
methods available for analysis. Here, we present a range of numerical approaches 
that can be particularly useful to multispecies ecological analysis on SedaDNA, with a 
special focus on biodiversity studies on macroorganisms. We discuss the advantages 
and complexity of such methods and describe how some of them can be optimized 
for ecological analyses of SedaDNA-based metabarcoding data, with a special focus 
on SedaDNA studies. First, site occupancy-detection models can help to better as-
certain the variation through time of the occurrence of target species and to identify 
the factors determining their detection through time. Second, several approaches 
can be used to estimate variation of relative abundance. Even though methods for 
abundance estimation have major limitations, they can provide useful information on 
temporal variation of ecosystem functions. Third, approaches exist to obtain better 
measures of species diversity, while taking into account the uncertainties of species 
abundance and identification. Fourth, techniques of clustering, ordination, and con-
strained ordination allow identification of temporal trends and testing of candidate 
drivers of community variation. Finally, structural equation models can be used to 
assess complex causal relationships among biodiversity, human activities, and envi-
ronment. SedaDNA studies can make use of a broad panel of analytical approaches, 
which can improve our understanding of long-term biodiversity changes, maximizing 
the information we can obtain from past ecosystems.
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1  | INTRODUC TION

The DNA of organisms living in the past can be successfully ex-
tracted and amplified from a variety of sediments, and this has 
greatly boosted our understanding of environmental changes, 
providing unprecedented reconstructions of past biodiversity at 
high taxonomic resolution (Bálint et al., 2018; Parducci, Bennett, 
Ficetola, Alsos, Suyama, Wood, Pedersen, et al., 2017). Thanks to 
the rapid technological advancement in high-throughput sequenc-
ing (HTS), the last decade has seen a growing number of studies 
based on sedimentary ancient DNA (SedaDNA), with increasingly 
complex approaches for data production and analysis. As paleo-
ecological records, SedaDNA opens a new window on past bio-
diversity and offers invaluable opportunities to test ecological 
hypotheses over large temporal span and at multiple levels, rang-
ing from population genetics (Parducci et al., 2012) to community 
ecology (Capo et al., 2016), to ecosystem functioning (Giguet-
Covex et al., 2014).

Like other environmental DNA studies, SedaDNA studies follows 
a succession of six steps (Zinger et al., 2019): (a) sampling and con-
servation of the starting material; (b), extraction of DNA; (c) ampli-
fication or capture of target genomic regions; (d) high-throughput 
DNA sequencing; (e) bioinformatics analyses for sequence filtering 
and taxonomic assignation; and (f) application of appropriate statis-
tical tools, often taken from numerical ecology, to understand pat-
terns of biodiversity change and identify drivers and processes. It is 
increasingly evident that the quality of a study strongly depends on 
the application of appropriate approaches at each of these steps. 
The number of available techniques is quickly growing, with refined 
and dedicated tools particularly designed for the steps of molecular 
and bioinformatics analyses (e.g., Taberlet, Bonin, Zinger, & Coissac, 
2018; Zinger et al., 2019). The final step (downstream analysis of 
data) is equally important, as it is essential for correct interpretation 
of data and ecological inference.

Biostatisticians are developing a rich and ever-growing arsenal 
of statistical techniques, which allow dealing with increasingly com-
plex data analysis scenarios. Nevertheless, only a few of these tech-
niques are routinely adopted for analyzing SedaDNA data. Failing 
to use the most appropriate tools may prevent harnessing the full 
potential of SedaDNA and/or lead to erroneous conclusions. For ex-
ample, it is widely acknowledged that autocorrelation is a common 
feature of most spatial/temporal ecological data, and this must be 
taken into account for correct estimation of, for example, environ-
mental drivers behind ecological patterns (Dormann, 2007; Ives & 
Zhu, 2011). Yet, the complexity of spatial/temporal autocorrelation 
is rarely considered in SedaDNA analyses (but see Chen & Ficetola, 
2019; Dougherty et al., 2016; Ficetola et al., 2018). In the last years, a 
growing number of studies are showing the potential and benefits of 
appropriate numerical approaches to the analysis of environmental 
DNA. These studies have demonstrated how such combination can, 
for instance, provide better estimates of biodiversity parameters 
(Sommeria-Klein, Zinger, Taberlet, Coissac, & Chave, 2016), trace 
shifts of interspecific interactions (Zobel et al., 2018), and reveal the 

ecosystem-level consequences of biological invasion (Ficetola et al., 
2018).

The recent blossoming of SedaDNA research has stimulated re-
view papers summarizing ongoing trends and issues of this complex 
research topic (e.g., Bálint et al., 2018; Parducci, Bennett, Ficetola, 
Alsos, Suyama, Wood, & Pedersen, 2017). However, these reviews 
have mostly focused on the issues of SedaDNA data production 
(e.g., DNA extraction; amplification and sequencing; authentication 
of ancient molecules; bioinformatics analyses) and on the application 
of SedaDNA data within the ecological framework. The numerical 
aspects of ecological analyses based on SedaDNA have been rarely 
discussed, in spite of the needs and benefits discussed above. In this 
review, we focus on the ecological analysis of SedaDNA, which is per-
formed after the bioinformatics steps (Parducci, Bennett, Ficetola, 
Alsos, Suyama, Wood, & Pedersen, 2017; Zinger et al., 2019). The 
aim of this work was to present a range of statistical approaches 
that can be particularly useful to multispecies ecological analysis 
on SedaDNA, especially for biodiversity studies on macroorganisms 
(e.g., animals, vascular plants), and to discuss how these methods 
can improve the analysis of SedaDNA. The approaches discussed are 
particularly relevant for SedaDNA studies (Figure 1), yet they can 
be also useful for other eDNA and metabarcoding approaches. We 
first describe the use of site occupancy-detection models to deal 
with imperfect detections (Section 2.1). We subsequently discuss 
how to map DNA data to taxon abundance (Section 2.2) and diver-
sity (Section 2.3). We then focus on multivariate statistical methods 
to characterize multispecies assemblage changes, beginning with 
measuring the differences among objects (Section 3.1); then, we 
introduce some statistical methods for further ecological analyses: 
sample clustering (Section 3.2), detecting trends (Section 3.3), at-
tributing change to drivers (Section 3.4), and testing complex causal 
networks (Section 3.5). In each section, we also present potential 
issues specific to SedaDNA data and potential solutions.

2  | FROM C ALLING TA XON PRESENCE TO 
ESTIMATING SPECIES DIVERSIT Y

2.1 | Assessing the presence of taxa and the use of 
site occupancy-detection models

For many SedaDNA research projects, ecological analyses are based 
on a list of taxa and their presence/absence in each sample. Often, 
SedaDNA is used to ascertain whether a given taxon was present at 
some time (e.g., Giguet-Covex et al., 2014; Pedersen et al., 2016). 
However, species that were actually present can go undetected, so 
it is important to estimate the reliability of SedaDNA-derived pres-
ence/absence data. SedaDNA analyses usually start with a limited 
amount of DNA, and stochastic processes determine whether PCR 
amplifies a given DNA molecule; thus, it is essential to replicate 
analyses to validate patterns of species detection/ nondetection 
(Ficetola et al., 2015). In eDNA experiments with a multiple-rep-
lication setting, presence calling of a taxon [or more precisely, a 
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molecular operational taxonomic unit (MOTU)] is often based on the 
number of positive replicates (Ficetola et al., 2015).

The reliability of species occurrence patterns can then be as-
sessed in a probabilistic manner. The most often advocated ap-
proach is through site occupancy-detection models [SODMs, or 
site occupancy models, SOMs (Guillera-Arroita, 2017; MacKenzie 
et al., 2018)]. SODMs involve the modeling of one or several taxa's 
presence/absence (occupancy) in each sample (or site) as a proba-
bility φ. When present, a taxon is detected with probability p11 (i.e., 
the probability of detecting a true presence) and not detected with 
probability 1-p11 (i.e., the probability of obtaining false negatives). 
In SedaDNA, the situation is even more complex, because several 
processes can also lead to the detection of false positives, with 
probability p10. False positives can arise from contamination, “tag 
jumps,” or issues during the bioinformatics steps (e.g., inappropri-
ate filtering) (Ficetola et al., 2015; Zinger et al., 2019). By fitting a 
statistical model that links these parameters to observed data (via 
maximum-likelihood or Bayesian approaches), one can estimate 
those parameters, as well as the probability of the actual presence/
absence of each taxon in each sample (Ficetola et al., 2015; Kéry, 
2010; Lahoz-Monfort, Guillera-Arroita, & Tingley, 2016; Schmidt, 
Kéry, Ursenbacher, Hyman, & Collins, 2013). Both false negatives 
and false positives can be determined by processes occurring during 
different steps of analyses (e.g., sampling, extraction, and PCR).

SODMs can be expanded with a multilevel structure taking into 
account both false positives and false negatives (i.e., modeling spe-
cies occurrence and detection at different levels: site, sample, DNA 
extraction, PCR) (Davis, Williams, Snow, Pepin, & Piaggio, 2018; 
Guillera-Arroita, Lahoz-Monfort, van Rooyen, Weeks, & Tingley, 
2017). However, since error rates occurring at the different stages 
are not identifiable without additional information beyond the 

observed—and imperfect—data, such multilevel SODMs require 
additional information from (a) an unambiguous survey method 
without false positives and/or (b) from a calibration experiment 
that provides direct estimations of the false positive/negative rates 
(Chambert, Miller, & Nichols, 2015; Guillera-Arroita, Lahoz-Monfort, 
Rooyen, Weeks, & Tingley, 2017). Unambiguous detections (ap-
proach a) are rarely available in paleoecological studies. On the 
other hand, calibration experiments (approach b) can be performed 
to estimate the false positive rate during each step. For example, the 
rate of false positive occurring during the DNA extraction process 
can be estimated by introducing extraction blanks and PCR controls 
(Ficetola et al., 2015; Pansu, Giguet-Covex, et al., 2015). The result-
ing data can then be used to inform prior distributions (e.g., through 
a binomial model setting) for the corresponding rates in a Bayesian 
parameter estimation approach. We note that it is not always clear 
how many control replicates are needed to provide a prior distribu-
tion that is sufficiently informative, for the purpose of resolving the 
identification issue [see (Griffin, Matechou, Buxton, Bormpoudakis, 
& Griffiths, 2019) for a discussion on using informative priors to ad-
dress the identifiability issue). This may depend on the actual error 
rate; therefore, some “test drives” on simulated data may help prior 
to the actual experiments.

SODMs provide key ecological information on species distribu-
tion and on ecological processes. First, SODMs allow estimation of 
the probability that a site is occupied (occupancy, φ). Occupancy is 
a parameter of key ecological significance, which is used, to name 
a few, to trace the shift in a species’ presence in a particular area 
through time (Schmidt et al., 2013) and to estimate the habitat 
patchiness of a species at multiple locations within a particular time 
span (Bailey et al., 2004). Second, the detection probability of target 
DNA generally increases with its concentration; thus, the frequency 

F I G U R E  1   Ecological analysis to study past biodiversity based on sedimentary ancient DNA (SedaDNA). Rounded squares represent data 
forms that can be generated from SedaDNA data, with background colors indicating the related section (blue for those with Section 2 and 
green for Section 3). Arrows indicate data processing flow. Each arrow is accompanied by squares indicating possible approaches, with the 
related subsection numbers in parentheses at the end, to the respective data analysis step
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of successful PCR amplifications increases with eDNA abundance. 
Therefore, the posterior probability of presence in each sample, a 
value that can be calculated from model parameters and observed 
data, may be used as a proxy of target DNA abundance (Ficetola, 
Manenti, & Taberlet, 2019; Ficetola, Taberlet, & Coissac, 2016; 
Furlan, Gleeson, Hardy, & Duncan, 2016; Lahoz-Monfort et al., 
2016). Third, SODMs can incorporate covariates, which can be re-
lated to both the detection probability and the occupancy of taxa. 
This provides a means to take into account variation of detectability 
of species and might also help to identify the environmental factors 
that may affect the presence of species and/or the preservation of 
eDNA (e.g., Dougherty et al., 2016; Willoughby, Wijayawardena, 
Sundaram, Swihart, & DeWoody, 2016). Finally, additional random 
processes can be specified in SODMs to model ecological mech-
anisms. For instance, Olajos et al. (2018) used SODM to estimate 
the colonization date of whitefish in two Scandinavian lakes, based 
on lake sediment DNA. They modeled the colonization/extinction 
events of whitefish in each lake as random processes that eventu-
ally affected the presence/absence of the species and presented 
their results as posterior probability distributions of whitefish DNA 
presence.

Until now, SODMs of SedaDNA have often been based on tech-
niques developed for other types of ecological studies. However, 
some aspects of SedaDNA may require the application of dedicated 
tools. In SedaDNA metabarcoding, as in all paleoecological records 
extracted from sediment cores, samples may be temporally autocor-
related. Furthermore, samples can be taken from multiple spatially 
interconnected sites, thus also leading to spatial autocorrelation. 
Autocorrelation can arise because intrinsic processes influence spe-
cies distribution (e.g., dispersal between nearby patches; intrinsic 
autocorrelation) and because species distribution is related to en-
vironmental variables that are in turn autocorrelated (e.g., habitat, 
climate; extrinsic autocorrelation). The spatial and temporal depen-
dence among SedaDNA samples must be addressed in order to obtain 
unbiased estimation of site occupancy, detection probability, rate of 
false positives, etc. On the other hand, population processes can 
be taken into account through extensions of SODMs explicitly es-
timating colonization and extinction processes (MacKenzie, Nichols, 
Hines, Knutson, & Franklin, 2003), as in the case of Olajos et al. 
(2018). Alternatively, Chen & Ficetola (2019) introduced a SODM 
setting with conditionally autoregressive model, or CAR model, 
adapted for eDNA metabarcoding studies, taking into account both 
temporal and spatial autocorrelations in a unified manner.

Another issue with occupancy inference is that the surface rep-
resented by the SedaDNA content may depend on the geomorpho-
logical settings of the study site, and might vary through time. The 
source area of SedaDNA is a key issue that very few studies have 
been dedicated to address. Studies in Scandinavian lakes showed 
that around 70% of contemporary sedimentary plant DNA records 
correspond to taxa found within 2 m from the lakeshore, whereas 
only a small part of the DNA records correspond to taxa only 
found far from the lake (Alsos et al., 2018; Edwards et al., 2018). 
Conversely, the analysis of Alpine lakes suggested that SedaDNA 

can represent the whole catchment from which the sediments origi-
nated, but erosive processes and structure of the hydrographic net-
work may heavily affect the representation of SedaDNA within the 
sediments (Giguet-Covex et al., 2019). Insufficient knowledge of the 
precise area represented by SedaDNA can make data analysis and in-
terpretation difficult, as multiple, spatially distinct communities can 
coexist in a catchment area. Therefore, it is important to carefully 
discuss the potential spatial coverage of DNA samples.

Several R packages and independent software are currently 
available to run SODM on eDNA data, such as unmarked (Fiske 
& Chandler, 2015) and EDNAOCCUPANCY (Dorazio & Erickson, 
2018). EDNAOCCUPANCY was specifically designed for eDNA 
data analysis and provides tools to fit multiscale occupancy models 
with various settings, in a Bayesian framework. Furthermore, sev-
eral authors provided scripts and examples to run Bayesian analy-
ses in dedicated software such as WINBUGS (Schmidt et al., 2013), 
JAGS (Guillera-Arroita, Lahoz-Monfort, Rooyen, et al., 2017), or Stan 
(Chen & Ficetola, 2019). The great flexibility of these tools allows 
researchers to fine-tune their models in order to meet the specific 
aims, and to address the particular issues of their datasets.

2.2 | Measuring abundance

Measures of abundance can provide more complete information for 
ecological studies, compared to mere presence/ absence of taxa. 
However, the possibility to obtain reliable estimates of abundance 
through eDNA and metabarcoding remains highly debated. Some 
studies have found positive relationships between species abun-
dance and eDNA concentration. For example, for eDNA researches 
targeting one single or a few species, a quantitative PCR approach 
can be used to quantify the DNA abundance of the species in ques-
tion (e.g., Dougherty et al., 2016; Dunker et al., 2016; Ficetola et al., 
2019), but see also Goldberg et al., 2016).

When real-time quantification is not an option, as in multispe-
cies metabarcoding studies, an alternative approach to quantita-
tively analyze PCR results is to use the number of final sequence 
reads as an index of abundance. In fact, studies on modern eDNA 
have shown that the relative abundance of the eDNA of a taxon in 
a sample (measured as the proportion of reads) is often positively 
correlated to the relative abundance (e.g., biomass) of species within 
the community (Evans et al., 2016; Yoccoz et al., 2012); thus, some 
SedaDNA studies have used the proportion of reads as a measure of 
species abundance. Nevertheless, such relationship can be biased 
by multiple factors, such as gene copy number variation (Vasselon 
et al., 2018), different match with primers among species, differ-
ences in eDNA shedding, and multiple technical parameters (e.g., 
GC content, polymerase mixes, and number of PCR cycles); there-
fore, all the results must be interpreted with caution (Elbrecht & 
Leese, 2015; Fonseca, 2018; Nichols et al., 2018). Furthermore, the 
relationship between proportion of reads and abundance may vary 
across functional groups (Yoccoz et al., 2012); therefore, it is highly 
recommended to calibrate such relationship over the target groups 
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in each study before further analysis. In principle, the abundance of 
a given taxon can be compared across different samples if the sto-
chastic nature of DNA sequence amplification by PCR is addressed 
by replication, and controlled through appropriate data transforma-
tion. Some authors used nth (usually second or fourth) root transfor-
mation on the relative proportion of eDNA reads, which has been 
shown as an effective way to reduce the impact of unevenness in 
such data, and allowed the authors to characterize the vegetation 
changes in an arctic permafrost environment during Late Quaternary 
(Zimmermann et al., 2016).

A different approach to estimate abundance is to consider a mul-
tiple-replication experiment setting, using the number of positive 
replications as a measure of relative abundance, in addition to the 
number of reads (Pansu, Giguet-Covex, et al., 2015). The strength 
of this approach lies in the assumption that the probability of a 
sequence being amplified in a given PCR replication is positively 
correlated with its abundance (Furlan et al., 2016). Ficetola et al., 
(2018) used the number of PCR replicates obtained from lake core 
sediments as a proxy of rabbit abundance in the Kerguelen Island. 
This abundance measure was strongly correlated with the spore 
abundance of coprophilous fungi, which in turn is an indicator of the 
abundance of wild and domestic herbivores like rabbits (Richardson, 
2001). Such correspondence between abundance measures orig-
inated from independent sources partially supports the idea that 
SedaDNA can provide some measure of abundance, at least in simple 
environmental settings.

Given the many uncertainties in the meaning of sequence 
abundance (Taberlet et al., 2018), any abundance measurement 
based on eDNA metabarcoding data should be interpreted with 
caution. Further studies are required to validate abundance ob-
tained from SedaDNA with different approaches (e.g., macrofossils 
and historical records) and across a range of environmental condi-
tions. Unfortunately, this can be particularly challenging, because 
SedaDNA is, in most cases, used to obtain information on past eco-
systems, for which alternative measures of species abundance are 
rarely available. Furthermore, as discussed in Section 2.1, the spatial 
ranges that SedaDNA represents are not always clear, further com-
plicating comparison of relative abundances through time.

2.3 | Quantifying species diversity

Species diversity is a major determinant of ecosystem stability and 
functioning (Loreau & de Mazancourt, 2013; Loreau et al., 2001) 
and is a key topic of ecological studies. Still using eDNA to estimate 
diversity is challenging. As previously discussed (see Section 2.2), 
uncertainties remain in the interpretation of sequence abundance 
and in the representativeness of the number of sequence reads. 
Several approaches can be adopted to mitigate the unfavorable con-
sequences of those uncertainties. For species richness estimation 
from a limited number of SedaDNA samples, rarefaction analyses 
generate a curve relating the number of species to the number of 
samples through random resampling (e.g., Bellemain et al., 2013; 

Zimmermann et al., 2016). Recent statistical advances also provide 
opportunities to cope with uncertainties pertaining to eDNA me-
tabarcoding data. For example, Hill numbers represent a param-
eterized diversity index that generalizes the three most important 
diversity indices—species richness (i.e., number of species), the 
Shannon index, and the Simpson index—by varying the value of a pa-
rameter q, which specifies the importance attributed to rare species 
(Chao, Chiu, & Jost, 2014; Hill, 1973). This can be very useful to limit 
the impact of artifact MOTUs, to weight common and rare species, 
and to systematically decompose and estimate diversity, in a sys-
tematic manner. It is even possible to calculate the Hill number from 
a species distance matrix (taxonomic, phylogenetic, or functional 
distance), with an extra parameter to adjust for the effect of closely 
related species, therefore allowing control of the impact of PCR and 
sequencing errors. All these features suggest that Hill number has 
a great potential to obtain fine-tuned biodiversity measures from 
eDNA data, despite that fact that this approach is not yet widely 
used in SedaDNA analysis.

3  | MULTIVARIATE METHODS TO 
CHAR AC TERIZE A SSEMBL AGE CHANGES

3.1 | Measuring sample (dis)similarity

Measuring the similarity or dissimilarity between species (taxon) as-
semblages across different samples is a key step in many analyses of 
ecological communities. For instance, this is the basis of clustering 
samples, extracting trends of biodiversity change, and establishing 
causal relationships between environmental drivers and biodiver-
sity. Some previous applications of SedaDNA used only presence/
absence data in comparing samples (e.g., Pansu, Giguet-Covex, et al., 
2015), as a conservative way to avoid the challenges of abundance 
estimation. However, comparisons based on relative abundance can 
often provide more insight to the biodiversity change than the mere 
presence–absences, because two species can remain present along 
the study period; still, their abundance can fluctuate in response to 
environmental stressors (Box 1). Therefore, researchers often use 
proxies of relative abundance of species, such as the proportion of 
read number of each taxon or the number of positive replicates.

In all cases, raw presence/absence or abundance data must be 
properly transformed before calculating (dis)similarities, in order 
to prevent the double-zero issue, wherein the simultaneous ab-
sence of a taxon in both samples is erroneously considered a sign 
of similarity between them (Legendre & Legendre, 2012). A variety 
of transformations and distance/(dis)similarity measures have been 
proposed to deal with different data types and purposes (Borcard 
et al., 2011; Legendre & Borcard, 2018). For presence/absence data, 
measures such as the Bray–Curtis dissimilarity (Bray & Curtis, 1957) 
can be used. For relative abundance data estimated from eDNA, 
a potentially favorable choice is the Euclidean distance computed 
on Box–Cox-chord-transformed data (Legendre & Borcard, 2018). 
This approach is a generalization of traditional data transformations 
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designed to simultaneously solve the double-zero problem and im-
prove the multinormality of data [or multivariate normality, which is 
assumed by some multivariate extensions of linear models such as 
multivariate analysis of variance and discriminant analysis (Williams, 
1983), although many analyses use permutation tests to avoid para-
metric assumption (Legendre & Legendre, 2012)]. With a parameter 
to adjust for different degree of data skewness (Legendre & Borcard, 
2018), this approach provides a flexible way to compare community 
compositions recorded in eDNA and avoids the double-zero issue.

3.2 | Clustering samples to find hidden structure

In many biodiversity studies, a key objective is to find hidden struc-
ture of species assemblages across multiple sites or samples, by 
comparing them along some spatial/temporal or environmental gra-
dients. Such comparisons can be performed using two major types of 
techniques: clustering and ordination (Legendre & Legendre, 2012).

Cluster analysis is the partitioning of a collection of objects 
(e.g., species assemblages) under study, with the aim to find dis-
continuities in a dataset. Generally speaking, the main purpose of 

cluster analysis is to bring out unseen structures in data, although 
the ecological relevance of the result clusters is subject to the us-
er's interpretation (Borcard et al., 2011). There is a plethora of clus-
tering methods, each of which adapts to some specific data types 
and meets specific needs. In SedaDNA metabarcoding studies, the 
stratigraphically ordered nature of samples usually poses a temporal 
constraint to the clustering. A solution widely used in pollen analysis 
is the Constrained Incremental Sums of Squares (CONISS) algorithm 
(Grimm, 1987), while it has seldom been applied to SedaDNA data 
(e.g., Zimmermann et al., 2016). This algorithm works by iteratively 
merging the two stratigraphically neighboring clusters that give the 
least increase in within-cluster variance (compared to the sum of 
the dispersions of the two original clusters), which is calculated as 
sum of squares of a chosen dissimilarity coefficient (e.g., a distance 
measure). The result of a CONISS analysis is a hierarchical structure 
of sample clusters, which can be represented as a tree. One of the 
advantages of CONISS is that the clusters always comprise samples 
representing neighbor periods, thus maximizing interpretability of 
results. Like most clustering methods, CONISS does not provide a 
test to determine the optimal number of clusters (or zones). This 
task is usually done by comparing the variance reduction by each 

Box 1. When presence/absences are not enough

SedaDNA often just focuses on the detection of target taxa, given the complexity of obtaining reliable estimates of abundance. 
However, the ecological function of species is often correlated to abundance or biomass, therefore abundance estimate would ideally 
provide extremely useful information. A species can remain present for a very long period, even though environmental modifications 
can determine heavy abundance shifts. For instance, Ficetola et al. (2018) used SedaDNA to evaluate long-term trends of plants 
in the Kerguelen Island (Southern Indian Ocean), and how they are affected by the introduction of rabbits. The DNA of two plant 
species (Azorella selago and Acaena magellanica) was detected in all sediment samples from the period 1820-present. However, their 
relative abundance (measured as the proportion of reads) showed huge variation through time. The two species showed compara-
ble abundance until 1945, when the SedaDNA of invasive rabbits was first detected. Rabbit detection corresponded with a spike 
of Azorella abundance (which in 1945 accounted for >90% of plant SedaDNA reads), and then quickly declined. In recent samples, 
Azorella accounts for just 10% of plant SedaDNA, and this matches well the rarity of this plant in the present landscape. Such strong 
abundance change has been interpreted as the effect of rabbit grazing and borrowing: rabbits directly consume Azorella, and heavy 
grazing and burrowing explain the Azorella peak around 1945, when rabbits first invaded the ecosystem. Then Azorella declined be-
cause of overgrazing, making this plant a threatened species (Chapuis, Boussès, & Barnaud, 1994). In this case, the mere presence/
absence would not provide any information on changes of plant communities. However, it is also pivotal validating abundance esti-
mates. In this example, both species showed no mismatches in the priming regions, suggesting that primers amplify well both species. 
Furthermore, analyses of present-day landscapes showed an excellent match between eDNA relative abundance and above-ground 
cover (Pansu, Winkworth, et al., 2015).
Figure I. Change of the relative abundance of SedaDNA of two native plant taxa, Azorella selago (blue) and Acaena magellanica (red), 
found in the Kerguelen Island through the last two centuries. Note the shift of the relative abundances between the two taxa after 
the rabbit invasion occurring around 1945.
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level of clustering to those expected from a randomly splitting with 
the same number of zones [e.g., those resulted from a broken-stick 
model (Bennett, 1996)].

A more recent technique, namely the multivariate regression tree 
(MRT) analysis (De'ath 2002), allows clustering samples under the 
control of one or multiple, quantitative or categorical, explanatory 
variables. Like the output of CONISS, the resulting MRT is also a hi-
erarchical tree, of which the “leaves” are subsets of samples chosen 
to minimize the within-group variance, but with each consecutive 
partitioning defined by a threshold value (for the case of a quanti-
tative explanatory variable) or a binary state (for the case of a cate-
gorical variable) (Borcard et al., 2011). A cross-validation process can 
be applied to determine to the most reasonable partition size, that 
is, to decide at which level to retain the clustering. The process is a 
prediction-oriented method that randomly splits the set of samples 
into a training set to construct a MRT, and a smaller testing set to val-
idate the predictive power of the constructed MRT. The optimal par-
tition size is defined as the level that minimizes the predictive error. 
Alternatively, a smaller partition size can be retained, if its predictive 
errors are one standard error above the minimal predictive error, 
which is called the one-standard-error rule (Breiman, Friedman, 
Olshen, & Stone, 1984). The MRT analysis is an efficient tool to 
partition stratigraphic samples and has been successfully applied to 
SedaDNA data (Ficetola et al., 2018). Although the MRT analysis has 
been originally developed as a prediction-oriented machine-learning 
technique (Borcard et al., 2011), it can also serve as explanatory tool 
to investigate biodiversity–environment relationships.

3.3 | Looking for main trends by ordination

In contrast to cluster analysis, which identifies discontinuities in a 
dataset, ordination analysis arranges object points along one or more 
continuous axes, each of which representing an ordered relationship 
(Legendre & Legendre, 2012). Ordination methods are a group of 
multivariate techniques that, in ecology, can be applied to a species-
site matrix or on a distance/dissimilarity matrix. These methods ar-
range objects (i.e., sites or samples) along one or more axes based 
on their compositions and then display them in a coordinate frame 
so that the higher-dimensional relationships among them are easy 
to inspect (Legendre & Legendre, 2012; Pielou 1984). Therefore, 
ordination methods provide a convenient way to visualize multidi-
mensional biodiversity datasets such as a species abundance-site 
matrices. As for clustering analysis, plenty of ordination methods are 
available, adapted for different data types and for different assump-
tions on the data. For instance, principal component analysis (PCA) 
works on species-site matrices, with the aim to find a series of mutu-
ally orthogonal linear combinations of species (i.e., axes) that suc-
cessively maximize the variance of scatter points, while preserving 
the Euclidean distance among sites. Therefore, PCA brings out linear 
relationships among variables. On the other hand, correspondence 
analysis (CA) works on non-negative, frequency-like matrices and 
aims to find successive axes that maximize the similarity (measured 

as “correspondence”), but instead preserves the chi-square distance. 
Accordingly, CA can be a good choice when a unimodal response 
of species to the environmental gradient is expected (Legendre & 
Legendre, 2012; ter Braak, 1985). Both PCA and CA, together with 
other eigenvalue-based methods such as principal coordinates anal-
ysis (PCoA), seek to represent a matrix in a series of axes ordered 
by their “importance,” at the same time preserving the distances of 
a particular type (e.g., Euclidean in the case of PCA) among objects.

Researchers need to choose among these methods according 
to the data type and the expected relationships among variables. 
The choice is, however, not necessarily restricted by the nature of 
the raw data, because a large number of transformation techniques 
enable adjustments of raw data to meet the requirement of particu-
lar ordination methods; Legendre & Gallagher (2001) discussed the 
data transformation techniques most relevant to ecological analysis 
based on species data. There are nevertheless some specific con-
siderations for the case of SedaDNA. First, SedaDNA detection can 
be difficult for rare species, and thus, their estimation may be bi-
ased (Alsos et al., 2018); therefore, it may not be appropriate to use 
methods that emphasize the role of rare species in the ordination 
plot, such as CA (Legendre & Legendre, 2012; but see Greenacre, 
2013). Second, appropriate transformations are needed to mitigate 
the effect of overdispersion among taxa, especially if it is applied to 
complex measures of relative abundance such as PCR-based read 
number data [e.g., 4th root transformation (Zimmermann et al., 
2016); the Box–Cox-chord family of transformation, i.e., the com-
bination of a Box–Cox transformation with exponent within [0, 1], 
and the chord transformation (Legendre & Borcard 2018)]. When 
presence/absence data are preferred over read numbers, Hellinger 
distance or chord distance transformation before ordination analy-
sis is often recommended (Legendre & Borcard, 2018; Legendre & 
Gallagher, 2001; see, e.g., Epp et al., 2015).

In contrast, nonmetric multidimensional scaling (nMDS) works 
by an optimization process that tries to place objects in a space 
of a given number of dimensions, in a way that minimizes the total 
squared differences between the between-object distances in this 
space and those in the original space. In other words, nMDS does not 
preserve any particular between-object distance and finds instead 
a configuration of points (objects) in a space of a lower number of 
dimensions with least changes possible in the distance relationships 
among points (Kruskal, 1964). Therefore, nMDS works on resem-
blance (including distance, dissimilarity, or similarity) matrices and 
is not optimized for any particular relationship among variables, in 
contrast to PCA and CA. In all, nMDS is suitable for analyses that aim 
to reconstruct community composition as well as possible, especially 
when one does not desire to preserve any particular distance mea-
sure among objects (Borcard et al., 2011).

Given its flexibility and robustness, nMDS is often used in 
SedaDNA metabarcoding studies as the first step to character-
ize the similarity of communities (e.g., Ficetola et al., 2018; Pansu, 
De Danieli, et al., 2015; Pansu, Winkworth, et al., 2015). Most im-
portantly, since the relationship between DNA data (represented 
by number of reads or of number of positive replicates) and taxon 
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abundance remains unclear, there is to date no formal evaluation on 
how it will interfere with linear (by PCA) or unimodal (by CA) re-
sponses. nMDS is thus favored over parametric methods such as 
PCA. Despite its advantages, a successful nMDS analysis should be 
conducted with care.

First, an appropriate similarity or dissimilarity coefficient is 
needed to transform the raw matrix, and the choice of such coef-
ficient is dependent on the data and the scientific context. In some 
metabarcoding applications, the Bray–Curtis dissimilarity is pre-
ferred, since it avoids the double-zero problem, and can deal with 
both presence/absence and abundance data (e.g., Pansu, De Danieli, 
et al., 2015; Pansu, Giguet-Covex, et al., 2015). Some other options 
are available. For instance, Legendre & Borcard, 2018 suggested the 
abovementioned Box–Cox-chord family of transformations to deal 
with the double-zero problem. The Renkonen (dis)similarity is an al-
ternative option when dealing with relative abundances, because of 
its density invariance [i.e., not being sensitive to raw abundances, 
but only to relative ones (Jost et al., 2011)]. This feature may be fa-
vorable for comparing taxonomic compositions of sediment samples 
with different amounts of DNA, as different degrees of DNA degra-
dation that create such disparity are common in sediment samples. 
Second, there is no simple rule to determine in advance how many 
dimensions need to be retained in nMDS. Usually, two to three axes 
are enough, but it is recommended to check the stress (the penalty 
function minimized by the nMDS algorithm) in several alternatives 
in order to help deciding. Third, although its goodness of fit can be 
assessed by the abovementioned stress, nMDS provides no intuitive 
measure of the representativeness of its axes upon the original data-
set, in contrast with PCA, which comes with the amount of variance 
explained by each of its axes (indicated by the respective eigenval-
ues). Therefore, the interpretation of the axes of nMDS requires dif-
ferent strategies. For example, environmental variables can be fitted 
on the nMDS by linear regression. The passive explanation of axes 
using environmental variables is a post hoc approach that can be ap-
plied to both nMDS and PCA, and allows the interpretation of an or-
dination using external variables. This procedure also allows testing 
the significance of environmental variables fitted on the ordination 
plots, as well as measuring the amount of variation they explain (see 
Borcard et al., 2011 for details). Finally, in most of cases the axes of 
an initial nMDS result do not lie in parallel with any environmental 
gradient. If needed, one can rotate the axes so that the first axis is 
parallel to an external variable without changing the configuration of 
points [e.g., using the MDSrotate function in vegan (Oksanen et al., 
2017)]. This provides an effective way to compare the order of sites 
(samples) and the external variable.

Finally, due to the noisy nature of eDNA (Taberlet et al., 2018), 
the results of ordination might be overwhelmed by random disper-
sions. It is therefore crucial to effectively reduce the noise and keep 
the signals at the same time, by taking appropriate data transforma-
tion and dissimilarity measure. In the special case of SedaDNA, an 
even greater challenge is to deal with the unevenness of data quality 
along time, usually caused by DNA degradation (Parducci, Bennett, 
Ficetola, Alsos, Suyama, Wood, & Pedersen, 2017; Pedersen et al., 

2015). A potential solution could be to statistically model the deg-
radation process and compensate (e.g., weight the data along a 
degradation gradient) its effects on the final dataset. Unknown 
taphonomy of SedaDNA may also confound the interpretation of 
results (Bálint et al., 2018; Giguet-Covex et al., 2019); therefore, in-
specting the sedimentological and geochemical data of the sediment 
core(s) is a necessary (but not always sufficient) step to control for 
such effects.

3.4 | Testing the effects of environmental variables 
on community composition

The abovementioned unconstrained ordination methods do not 
provide statistical tests of factors related to community variation; 
they only serve to represent the major features of the data within 
a reduced number of dimensions. To statistically test specific hy-
potheses about biodiversity–environment relationships, other ap-
proaches can be used. Constrained ordination is a popular choice to 
assess the impact of environmental factors on community composi-
tion. Constrained ordinations are a class of statistical methods that 
generally combines the analysis of eigenvalues and eigenvectors 
(as in PCA, PCoA, CA, etc.) and regression (Legendre & Legendre, 
2012). They produce explanatory vectors that are related in a cer-
tain manner to the matrix of explanatory factors. Such manner is the 
defining feature of different types of analysis. In the case of redun-
dancy analysis (RDA), a constrained ordination technique often used 
in eDNA data analysis, the ordination vectors are the PCA axes of 
the fitted values from a linear regression of environmental variables 
on (species) response data (Borcard et al., 2011). RDA can therefore 
be considered as an extension of PCA. On the other hand, in con-
strained correspondence analysis [CCA, (ter Braak, 1986)], fitted 
values from the linear regression are further ordinated by CA. Again, 
the expected relationship between explanatory variables and com-
munity composition is essential in choosing between RDA and CCA, 
and appropriate data transformations are needed before performing 
either one on SedaDNA data (see Section 3.3). Usually, the signifi-
cance of the ordination vectors resulting from a constrained ordina-
tion cannot be tested with classical parametric tests, because there 
is in general no reference distribution for the obtained statistics 
(“pseudo-F”) (Legendre & Legendre, 2012). Therefore, permutation 
tests are needed, which randomly permute certain elements of the 
data to generate a distribution of the chosen statistic under the null 
hypothesis. The RDA/CCA approach has provided valuable insights 
on the environment–community relationships in the past through 
SedaDNA. For example, using RDA on SedaDNA data, Pansu, Giguet-
Covex, et al., 2015 showed that plant community changes, occur-
ring in an alpine lake area through the past six thousand years, were 
mainly driven by livestock farming and not by temperature changes.

Ecological phenomena often involve multiple tangled links. It is 
therefore crucial to resolve their confounding effects in analysis. 
In linear regression, it is possible to estimate the effects of some 
explanatory variables, while controlling for the effects of some 
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covariates. Similar approaches exist in constrained ordination, for 
example, partial RDA and partial CCA (Legendre & Legendre, 2012; 
ter Braak, 1988). Especially, SedaDNA data are often temporally 
structured, so that some parts of the variation may have originated 
from intrinsic temporal processes. Such processes may generate ef-
fects that confound with those caused by extrinsic environmental 
factors, that is, resulting from niche-based processes (Legendre & 
Legendre, 2012). Using partial constrained ordinations, it is possible 
to partition the variance of the composition dataset into four catego-
ries: (a) environmental variance independent of temporal structure; 
(b) variance shared between temporal variation and environmental 
drivers; (c) variance explained by the temporal structure only; and 
(d) variance explained neither by the temporal structure nor by the 
environmental factors (Borcard et al., 1992). Different approaches 
have been proposed to take into account the temporal (or spatial) 
autocorrelation structure. (Borcard et al., 1992) suggested to include 
the coordinates of samples as additional predictors, but this ap-
proach has drawbacks since it does not directly address the problem 
of autocorrelation, but merely takes into account trends in the data 
across the largest distances (Dormann et al., 2007).

Furthermore, ecological processes often have a scale-dependent 
structure that cannot be captured by a simple analysis on the coor-
dinates (Legendre & Legendre, 2012). In the case of paleoecology, 
it is widely acknowledged that even the same environmental fac-
tor can have different effects on ecosystem on different time scale 
(Mills et al., 2016). Recent developments in spatial/temporal anal-
yses provide a series of methods to assess the multiscale spatial/
temporal patterns in multivariate data. Moran's eigenvector maps 
(MEMs) (Legendre & Gauthier, 2014) are family of models that can 
be used as a tool to assess nondirectional patterns. MEMs work by 
extracting eigenvectors that maximize autocorrelation, out of the 
spatial/temporal weighting matrix that summarizes the spatial/tem-
poral relationships between samples. On the other hand, directional 
patterns across space/time can also be assessed, with asymmetric 
eigenvector maps (AEMs) modeling, the directional counterpart of 
MEMs (Blanchet et al., 2008). In practice, the resulting eigenvectors 
from both MEMs and AEMs can be tested as explanatory variables in 
a constrained ordination analysis, in which the most relevant eigen-
vectors can be selected (Legendre & Gauthier, 2014). Selecting the 
appropriate number of eigenvectors to include into analyses can be 
nevertheless challenging. Several approaches have been proposed 
to the selection of appropriate eigenvectors, and the outcome can 
be strongly different among approaches. Importantly, adding many 
eigenvectors can inflate the amount of variance explained by tempo-
ral (or spatial) structure, while selecting eigenvectors correlated to 
the independent variables can lead to overfitting, and in turn reduce 
the power to detect the effects of other environmental variables 
(Bauman et al., 2018). Therefore, special care should be devoted to 
the selection of the eigenvectors to be incorporated into constrained 
ordination. Suggested approaches include forward selection with a 
double-stopping criterion after testing the significance of the global 
model to prevent overfitting (the FWD approach), and selecting the 
eigenvectors minimizing the autocorrelation in the model residuals 

(the MIR approach). The FWD approach is preferred when an accu-
rate description of the spatial/temporal patterns is the main purpose, 
whereas the MIR approach is more appropriate when one wants to 
control for autocorrelation (Bauman et al., 2018). Unfortunately, to 
our knowledge, these methods are not yet adopted in SedaDNA-
based studies.

Species–environment relationships may hold true in a certain 
timescale but not so in others, or their strength may vary accordingly 
(Mills et al., 2016). An effective way to highlight the essential scales 
of spatial/temporal variation is to look into the ecological variabil-
ity through different “scale filters” (Jombart, Dray, & Dufour, 2009). 
This can be done by multiscale pattern analysis (MSPA), which ap-
plies RDA to the MEMs or AEMs [as in Legendre & Gauthier (2014)] 
and then performs a variation of PCA (called %PCA) on the matrix of 
resulting centered R2 (Jombart et al., 2009). Analyzing such scale-de-
pendent relationships with SedaDNA data however demands finer, 
and eventually more regular, temporal sampling intervals than simple 
constrained ordinations, in order to detect as much scale-dependent 
effects as possible. Furthermore, inappropriate use of these multi-
variate-partitioning methods to model spatial/temporal or environ-
mental processes can produce statistical artifact, such as inflated R2 
statistics with raw-data-based ordinations, and under-fitting with 
distance-based regressions (Gilbert & Bennett, 2010). Therefore, 
they must be applied with caution.

The methods presented so far in this section essentially are ex-
tensions of multivariate analysis of variance (MANOVA) (Borcard 
et al., 2011), which partitions multivariate variance into compo-
nents that are attributable to different explanatory variables, 
through the comparison of multivariate sample means. This ap-
proach by itself is not able to account for all potential response 
modes of ecosystem to environmental variables. For example, the 
variability of community composition can be altered as a result of 
change in disturbance regime (Collins, 2000). Insuch cases, envi-
ronmental changes can lead to changes in the variance of some 
properties of the system, in addition to the average properties 
themselves. Tests for homogeneity of variance such as Levene's 
test (Levene, 1961) can be applied to evaluate such effects for 
univariate response data, given that the explanatory variables 
divide the samples into several distinct groups. When the focus 
is on multivariate responses (e.g., community composition), multi-
variate analogues of these tests can be used, such as the test for 
homogeneity of multivariate dispersions (Anderson, 2006). This 
can be done by firstly performing principle coordinate analysis [or 
PCoA, an ordination technique to illustrate similarities or dissimi-
larities among objects with an Euclidean representation (Borcard 
et al., 2011)] on a distance matrix. Subsequently, the centroid or 
spatial median of each object group in the representation is cal-
culated, and the method calculates the distance from each object 
to its group centroid or spatial median. Finally, the distances are 
compared across groups with a multivariate version of Levene's 
test (Anderson, 2006). Although promising, this approach has not 
been frequently applied to SedaDNA data. Importantly, SedaDNA 
data often are noisy, and the degree of “noisiness” may depend 
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on multiple factors such as frequency of geomorphological events 
and DNA degradation, leading to confounded inference of vari-
ance change (Giguet-Covex et al., 2019). One must therefore care-
fully check the data to control any confounding effects before 
comparing.

Here, we have presented some of the most promising applica-
tions of multivariate statistical methods to SedaDNA data. Paliy 
& Shankar 2016 provided a further guidance on the application 
of abovementioned techniques (PCA, CA, nMDS, CCA, RDA, 
etc.), as well as some others not discussed here, to the ecologi-
cal analysis of data obtained through metabarcoding, with a chart 
to guide the choice of methods (see figure 8 in Paliy & Shankar 
2016). Although their main focus was on the applications for mi-
crobial ecology, these discussions are broadly applicable to data 
from high-throughput sequencing and can also be relevant for 
SedaDNA data.

3.5 | Testing complex driver–response relationships

Ecosystems function in complex ways, involving multiple biotic/
abiotic factors simultaneously at work, which are woven into a 
network of causality. Ecological explanations are therefore often 
both inherently multivariate and causal in nature (Shipley, 2016). 
Long-term ecological records such as SedaDNA, combined with 
other proxies recording environmental conditions, provide excel-
lent opportunities to investigate such complex causal network. 
Instead of testing particular causal relationships one-by-one, it 
is possible to investigate a complex causal network as a whole 
through a combination of both graphical and mathematical mod-
els, that is, structural equation modeling [SEM, (Grace, 2006; 
Shipley, 2016)]. Treating causal network as a whole brings benefits 
to the interpretation of data. Most notably, it enables assessment 
of directed relationships between variables and not merely cor-
relations. This possibility comes from the fact that the ambiguous 
causality direction [either A causes B, or B causes A, or both A 
and B are caused by an unobserved C? (Shipley, 2016)] in a cor-
relation can be resolved by testing all the possibilities based on 
(a) a priori knowledge of possible causal relationships within the 
system in question and (b) the observational data at hand. In fact, 
hypothesized causal relationships can be represented as paths in 
a directed acyclic (loop-free) graph, in which variables are repre-
sented as vertices and can appear simultaneously as predictors 
and responses (Lefcheck, 2016). The size and significance of each 
causal relationship can be then evaluated by generalized linear 
models (GLMs), generalized additive models (GAMs) (Shipley, 
2000a), or even generalized linear mixed models (GLMMs), if both 
fixed and random effects are considered, for a wide range of dis-
tributional assumptions. The overall goodness of fit of the SEM can 
also be evaluated: In fact, by analyzing the structure of the graph, 
one can formulate a set of claims on the conditional independence 
among variables, and a P-value can be estimated for each one of 
these claims. Combining all these P-values of a SEM by Fisher's 

C statistic provides an indicator of the consistency between the 
hypothesized causal relationships and the data. The procedure 
described above (Shipley's d-separation test) and its extensions 
allow researchers to deal with models characterized by complex 
hierarchical or multilevel structures (Shipley, 2000a, 2009).

To date, there are only a few applications of structural equation 
models on sedimentary DNA data (an example of such studies based 
on modern sedimentary DNA is presented in Box 2), and they are 
mostly focused on microbiome functioning in modern lake environ-
ment (e.g., Orland et al., 2019; Zhang, Ji, Wang, Zhang, & Xu, 2019). 
We argue that such application will provide invaluable insight to the 
drivers of biodiversity change and ecosystem functioning through 
time, even for terrestrial environments. A possible approach to do 
so is to use an ordination method to extract a few major axes, as 
representation of the main trends of biodiversity change along time, 
and then to integrate these axes into a SEM as variables among other 
environmental variables. However, as in other approaches to seek 
causal relationships with paleorecords, caution must be taken when 
dealing with the different time intervals among records, because 
causal relationships may hold in one scale and break in another (Mills 
et al., 2016, also see Section 3.4). Adding to this challenge are the 
irregular sampling time intervals, which can be extremely difficult to 
avoid in sediment analysis, especially when sedimentation rate is not 
constant (Birks et al., 2012; Mills et al., 2016; Simpson & Anderson, 
2009). Finally, statistical tests of consistency such as Shipley's d-sep-
aration test do not guarantee that the tested SEM’s structure is ad-
equate, and solid knowledge of the ecological processes involved is 
essential in order to formulate an appropriate SEM. Additional details 
and guidance to the application of SEM in ecology are discussed in 
Fan et al. (2016).

4  | CONCLUSIONS

Despite SedaDNA’s relatively complicated data generation process 
(Taberlet et al., 2018) and the uncertainties in defining biodiversity 
units based on it, it provides an exceptionally large amount of in-
formation to past environmental changes. Existing numerical/sta-
tistical methods in the ecological literature can be applied to such 
data directly or with minor adjustments, yielding more in-depth in-
sights to the long-term ecological processes in the past (Figure 1). 
Nevertheless, researchers must be aware that SedaDNA analysis is 
complicated by multiple factors, such as the uneven DNA quality due 
to degradation, the spatial and temporal autocorrelation, and the un-
even sampling intervals. Furthermore, the origin, transport, deposi-
tion, and preservation of SedaDNA must be better understood, as 
they can have complex consequences on the SedaDNA detection 
and thus on the ecological signal obtained. Therefore, numerical 
approaches often need to be optimized or even developed to ac-
count for these issues, along with calibration processes, if possible. 
Molecular ecologists, sedimentologists, and biostatisticians should 
therefore closely collaborate for effective advances of SedaDNA-
based ecological studies.
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Box 2. Using structural equation modeling (SEM) to investigate the drivers of ecosystem functioning based on mod-
ern sedimentary DNA

SEM, or path analysis [sensu (Grace et al., 2012)], provides an effective way to assess direct and indirect causal relationships among 
environment drivers, biodiversity, and ecosystem functioning. A recent study based on modern sedimentary DNA and geochemical 
data investigated how microbial community structure, presentday environment and historical legacies influenced ecosystem func-
tioning (measured as the CO2 production of the sediment sample), in a freshwater lake in Ontario, Canada (Orland et al., 2019). To 
do so, the authors estimated for each site the bacterial abundance, microbial taxonomic diversity functional diversity, and functional 
gene abundance in top-layer sediment samples, based on their DNA contents. They proposed a conceptual model of pathways by 
which microbial community structure, present-day environment and historical legacies affect ecosystem functioning (Figure I-a), 
and then used path analysis based on linear mixed models to estimate the relative importance and direction of the proposed causal 
linkages (Figure I-b). The path analysis results (Figure I-b) highlighted the large contribution of both microbial community structure 
[median (95% CI): 26% (16–33%)] and environment [20% (13–29%)] to the variation in ecosystem functioning. Besides, the interaction 
between community structure and environment explained 12% (2–18%) of variation in ecosystem functioning. Namely, the positive 
effect of oxidase on CO2 production was stronger when terrestrial C was relatively abundant. Finally, the influence of historical lega-
cies was suggested by the variation of community structure among different sites, as a significant part of the variance in taxonomic 
diversity was either directly explained by site [12% (6–28%)], or indirectly through change in bacterial abundance [34% (15–48%)], 
which in turn was also influenced by site [20% (7–42%)].
Figure I. a. Conceptual model specifying how different ecosystem properties (community structure, environment and historical 
legacies) affect ecosystem functioning (CO2 production). Solid arrows represent hypothetical causal relationships, and dashed ar-
rows represent potential interactions between ecosystem properties. b. SEM results based on linear mixed models showing that a 
large part of ecosystem functioning explained by the individual and interactive effects of the environment and microbial community 
structure. Numbers accompanying each arrow are median (95% CI) percentage of variance explained. A variable is shown in boxes 
only if it has a direct or indirect effect on ecosystem function with 95% CI that exclude zero. Both a. and b. were redrawn based on 
Orland et al., 2019.

(a) (b)
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