
Tracking Livestock Movements

to Figure out Potentially Infected Farms

Paolino Di Felice
Dipartimento di Ingegneria Industriale, Informazione ed Economia, Università di L'Aquila, L’Aquila, Italy

Email: paolino.difelice@univaq.it

Americo Falcone
Dipartimento di Ingegneria Industriale, Informazione ed Economia, Università di L'Aquila, L’Aquila, Italy

Email: falconeamerico@gmail.com

Abstract—The concern stems from the public health and

food safety aspects of animal health, but also from the

economic costs that animal disease outbreaks can trigger.

Very recently it has been proposed a method ([4]) devoted

to discover the farms that may have been infected by an

outbreak of a highly infectious disease of livestock

subjected to long trips with intermediary stops. Having a

reliable list of farms that may be infected is relevant to

feed existing farms culling strategies (e.g., [1]). The

present paper reports on an effective way to implement

the method introduced in [4] based on an emerging

software technology.

Index Terms—livestock movements, moving points

databases, SQL, animal health, prevention

I. INTRODUCTION

A primary concern of national and international

institutions for animal health (the World Organization

for Animal Health is probably the most known

institution among the many - http://www.oie.int/en/), is

to keep the animal health under control to prevent

epidemics of infectious diseases at geographic scale

whose negative effects are the need of culling entire

livestock farming, with massive economic costs to the

farmers, as well as the risk that the disease transmits to

the human beings, too (zoonosis).

The issue of controlling the diffusion of highly

infectious livestock epidemics is relevant and topical

also from the scientific community, as witnessed by the

continuous flow of papers that are published. One of

the most recent and important contribution among the

many is [1], where the authors propose a method of

epidemic investigation (called risk based culling) that

represents an evolution of the so far mostly adopted

ring culling.

An input data of the risk based culling strategy is the

list of infected farms. Unfortunately, in the cases where

the animal batches moved in time periods close to the

detection of the disease, with intermediary stops in the

so-called “parking areas” (a scenario made frequent by

the globe scale livestock market), it is utopian to

pretend to know all the farms which are infected and,

consequently, to think of being able to know exactly

the geographical areas affected by the outbreaks of the

contagion. This state of affairs reduces tremendously

the output reliability of any potential software tool

based on [1], simply because the correctness of its

prediction is subordinated to the degree of adherence to

the reality of its input data.

Ref. [4] proposes a method helpful, downstream of

the outbreak of cases of livestock disease, to set up a

list of farms that could have been infected by sick head

of cattle which moved in a period of time “close to”

that when the alarm of a sanitary hazard was issued.

The method is made up of an algorithm (CHECK) and

a database (about farm, livestock, health checks, trips,

and parking areas). Our paper is a continuation and, to

a large extent, the completion of the research described

in [4]. In a nutshell, aim of the present paper is to give

substance to the claim that to manage software

applications about the control of the diffusion of the

animal diseases more easily, effectively and efficiently

than the case where a DataBase Management System

of the current generation is adopted, it is necessary

making recourse to the body of knowledge about

moving objects databases, [7].

The paper is structured as follows. Sec. II reports a

minimum nucleus of information, taken from [4],

necessary to comprehend our contribution. In detail, we

sketch out the application context our study refers to

and mention the causes that could trigger livestock

contagion within the parking areas. Then, it is recalled

the algorithm CHECK suitable to detect potentially

infected batch of animals and, hence, the (potentially)

infected farms. The structure of a relational database

suitable to model the reference application context ends

the section. Sec. III and Sec. IV concern, in sequence,

what in [4] was left as “Further work”, that is: a) the

loading of the designed database with an example

dataset; and b) the implementation of the algorithm

CHECK in terms of SQL queries. As DBMS we use

SECONDO [8]. Sec. V ends the paper.

II. THE APPLICATION CONTEXT. ITS

MODELLING

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013 101

© 2013 ACADEMY PUBLISHER
doi:10.4304/jait.4.2.101-110

http://www.oie.int/en/

A. Terminology

Hereafter, we use the following terminology mainly

inspired by regulations in force within the EU:

– meeting point: either the livestock aggregation

place during a cattle fair or the terminal where it

takes place the loading (unloading) of live animals

from a transportation means (truck, ship, and so

on).

– Control post: a place devoted to the animal

nutrition and rest during long trips.

– Farm: the place where animals grow up.

– Parking area: either a meeting point, a control post,

or a farm.

– Batch: a certain number of animals of the same

species that move together and that, together, rest in

the same parking area.

– Sick batch: a batch of animals where at least one

head of cattle has been found sick after a veterinary

visit. We call potentially infected batch one

containing some head of cattle that might have got

the disease from a sick batch.

– Infected farm: the farm to which a sick batch

belongs. We call potentially infected farm one

where there is at least a potentially infected batch.
Ref. [6] reports of 157 approved control posts within

12 countries at the beginning of 2010. About meeting

points and farms it is not easy to get exact numbers,

however they can be estimated of the order of

thousands.

Parking areas may be conceptualized as structures

either fixed (as in the case of farms) or semi-mobile (as

in the case of meeting points) composed of a certain

number of pens (Fig. 1).

Figure 1. The organization of a parking area made up of 5 pens.

B. Causes Triggering the Contagion. Types of

Contagion

Ref. [6] reports that about 365 million farm animals

per year are transported within Europe and a large part

of them pass through parking areas where they are

unloaded and loaded many times before reaching the

final destination. The long stops, inside those areas, of

the livestock contribute considerably to the diffusion of

the epidemics in a short time interval and over large

geographical areas.

The causes that could spark off the disease are to be

re-conducted to either the “co-presence” in the same

parking area of healthy livestock batches and sick ones,

or to their “temporal contiguity” (that is when a healthy

batch enters a parking area that previously had hosted a

sick batch and where, therefore, could have been left

few pathogen agents in the environment.). Such two

“dimensions” set up the necessary condition because

the transmission of the disease among the livestock can

take place. Accordingly, two types of contagion have

to be taken into account in such an application context:

one due to the co-presence (hereafter called contagion

by co-presence) and the other due to the temporal

contiguity (hereafter called contagion by temporal

contiguity). [4] discusses in some depth both types of

contagion.

C. An Investigation Algorithm

Ref. [4] proposes an algorithm (CHECK) that,

downstream of the identification of an infected batch,

traces back to all the potentially infected batches of

animals, then it recognizes all the farms that are to be

considered either infected or potentially so. This latter

step is fundamental because its output allows to feed

the existing methods for the analysis of the diffusion of

the disease among farms such as, for instance, the

already mentioned risk based culling method. The

CHECK algorithm follows.

Algorithm CHECK

Input: data about the farms, the animal batches, the

veterinary visits, the animal trips over the territory,

and the involved parking areas.

Output: the (potentially) infected farms

Method:

Let <SickBatch, VisitTimestamp, LastVisit
Farm> be, respectively, the identifier of the sick batch,

the time stamp when the disease was diagnosed, and

the farm where the visit took place.

1. Starting from LastVisitFarm and travelling back

in time:

– reconstruct the movements of the sick batch

until the farm where it was previously visited
(PreviousVisitFarm) resulting in healthy is

reached. Both the PreviousVisitFarm and

the LastVisitFarm are assumed to be

infected.

 Let {PreviousVisitFarm, PA1, PA2, …, PAk,
LastVisitFarm} be the result of this

investigation step, where PAi (with

i=1,2,3,…,k) denotes the generic parking area

that had put the sick batch up.
– For each PAi, compute the duration of the stop

of the SickBatch in it and the departure time

from it
2. for each PAi, the issue is to identify the animal

batches that might have been infected by the
SickBatch;

3. for each those batches, identify (when possible) the

farms they belong to, these latter to be classified as

potentially infected too.

Notice that when the CHECK algorithm is started,

not necessarily it happens that all the batches returned

by Step “2.” have reached the destination farm. Some

of them, in fact, could be still (away) on the trip

towards the final destination. This is the meaning of the

words “when possible”. For each animal batch

potentially infected by a SickBatch that falls in such

102 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

a situation, Step “3.” returns the last parking area

occupied by the livestock.

D. A SECONDO database

Di Felice and Falcone ([4]) complete their proposal

by designing a SECONDO relational database about

farm, livestock, health checks, trips, and different types

of parking areas as an essential step towards an

effective and efficient implementation of the CHECK

algorithm. Their database is composed of the following

five tables:

animalBatch (BatchId: string,

Species: string, HeadNumber: int);

parkingArea (PAID: string, Name:

string, City: string, Type:

string, FarmerId: string,

Position: point, Layout: region);

farmer (FarmerId: string,

Name: string);

visit (BatchId: string, VisitDate:

instant, Result: string,

Diagnosis: string, PAID: string);

trip (BatchId: string, TripData:

mpoint, From: string, To: string);

The APPENDIX collects the SECONDO SQL-like

definition of those tables.

Figure 2. The map of the parking areas of the example dataset

This database models the movement of an animal

batch (from a parking area to another one) as an atomic

value of the attribute TripData of type mpoint, [7].

The organization of the database in terms of moving

points (briefly m-points) acknowledges the recent

recommendations of the EU ([2] Annex I, Chp.VI,

Point 4 – Navigation System) which hope a prompt

activation of a fully electronic procedure about the

traceability of the movements of live animals (see, for

instance, the “Identification and Tracing” section of the

Animal Health Strategy of the European Union - 2007-

2013, [5]).

III. AN EXAMPLE DATASET

We have loaded the database of Sec. IID with an

example dataset small but still sufficiently

comprehensive to cover the cases of contagion between

lots of cattle recalled in Sec IIB. The dataset consists of

20 animal batches and 20 parking areas (located in the

centre of Italy – Fig. 2) broken down as follows: 11

farms (the violet triangles), 5 control posts (the blue

circles) and 4 meeting points (the green squares).

The APPENDIX collects a summary of the SQL-

like scripts about the loading of the tuples into the

SECONDO database.

The map shown in Fig. 2 is the combined output of

the processing of the following three queries:

SELECT *

FROM parkingArea

WHERE type = "Meeting point"

SELECT *

FROM parkingArea

WHERE type = "Control post"

SELECT *

FROM parkingArea

WHERE type = "Farm"

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013 103

© 2013 ACADEMY PUBLISHER

by defining for each query a different visualization

display of the spatial objects (i.e., of each geometric
attribute of the relation parkingArea).

Figure 3. The graph of the movements of the animal batches being part of the example dataset

The database contains also the data of 37

trajectories corresponding to as many trips of the

batches between pairs of parking areas. The

movements of the animals have been generated by a

Java program which receives as input the parking area

of departure and arrival, the date and start time of the

trip and returns a text file that describes the journey.

These movements are conceptualized by the graph of

Fig. 3, where each node is labeled with the code of a

parking area (namely, a string ranging from AS01 to

AS20), while the arcs are labeled with the code of the

batch that moved between the extreme nodes. As we

can see, different batches have gone through the same

intermediate parking areas before reaching the final

destination, a circumstance very common in the reality.

The (red) arcs labeled L03 in Fig. 3 refer to the

animal batch L03 that, as the result of a transaction,

moved from farm AS14 to farm AS07. Before

departure, the livestock was subjected to a veterinary

check at the farm of origin (AS14) with negative

outcome. Reached the destination (AS07), on

11/07/2011 the batch was visited again by resulting

sick (see Sec. IIA for the definition of “sick batch”) of

a disease highly infectious. By construction, L03 is the

only one sick batch in our small example dataset.

Going through the steps of the algorithm CHECK

for the example dataset, and taking into account the

arrival and departure time of the livestock from the

parking areas, we get the situation depicted in Fig. 4

and summarized in Table 1.

IV. IMPLEMENTATION OF THE ALGORITHM

CHECK

This section reports on the implementation of the

algorithm CHECK. The solution is valid independently

of the number of sick batches. CHECK has been

realized in terms of eight “basic” queries. Table 2

shows the correspondence that exists between them and

the steps of the algorithm. It is trivial to reduce the

number of queries simply by "merging" the basic

queries of the same level at the expense, however, of a

greater difficulty of understanding the resulting

queries.

In the following, the term query is overloaded in the

sense that it denotes both what we want to compute and

the SQL formulation to reach the goal.

The syntax of the eight queries most adhere to

standard SQL. The few variations will be explained as

we met them.

104 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 4. The portion of the graph of Fig. 3 that plays an active role in discovering (potentially) infected farms. The rectangles contain the time stamp

of arrival and departure of the livestock from the parking area. “yyyy-mm-dd, hh:mm:ss” is the date-time format used. For example, L03 entered

AS12 on 2011-07-10 at 10:13:21 and left it on 2011-07-10 at 14:20:08.

Table 1. CHECK outcome with respect to the example dataset. To verify the table content correctness, please refer to the time stamp values

shown in Fig. 4.

Sick batches L03

Potentially infected batches

 BatchID Place of contact

 L01 AS05 (farm)

 L04 AS05 (control post)

 L05 AS07 (farm)

 L06 AS14 (farm)

 L18 AS12 (control post)

Infected farms AS14, AS07 (because of the presence of L03)

Potentially infected farms

 Farm Infecting batch

 AS04 L04

 AS08 L05
 AS16 L01
 AS19 L18
 AS20 L06

Table 2. Correspondence between CHECK and the basic queries

Steps of CHECK Queries that implement the step

1 1, 2, 3, 4, 5

2 6, 7

3 8

A. Implementation of Step 1

Preliminarily we determine the periods spent by the

animal batches in the parking areas (Query 1, 2 and 3).

Those data are extracted from the trajectories and

stored into a working table (break). Three cases are

possible (Fig. 5), each implemented as an independent

query, according to the “role” played by the parking

area inside the whole history of the movements of each

animal batch present in the database. Let us denote

with bid* and paid*, respectively, the identifier of a

generic animal batch and that of a generic parking area.

The three roles played by paid* are the following:

– a crossing parking area for bid* (Case “a” of Fig.

5). In the database exists at least a trajectory done

by bid* that reaches paid*, stops in it, and then

leaves from it.

– The last known destination of bid* (Case “b”). In

the database exists a trajectory done by bid* that

reaches paid*, but none comes out.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013 105

© 2013 ACADEMY PUBLISHER

– The origin parking area for bid* (Case “c”). In the

database exists a trajectory done by bid* that comes

out from paid*, but none enters it. Think, for

example, to paid* as the farm of birth of bid*.

Figure 5. The roles played by a parking area in the history of

movements of an animal batch

Query 1: Rest periods of the batches inside crossing

parking areas

let break =

SELECT [entry:BatchId AS BatchNumber,

entry:To AS ParkingAreas,

inst (final (entry:TripData))

AS StartStaging,

inst (initial (exit:TripData))

AS EndStaging]

FROM [trip AS entry, trip AS exit]

WHERE [entry:BatchId = exit:BatchId,

entry:To = exit:From]

The (SECONDO) let command builds the table

break, which stores the query result. entry:BatchId
replaces the entry.BatchId standard notation.

The beginning instant of the rest in a parking area

coincides with the last instant of the incoming

trajectory in such an area, while the end of the rest is

the initial instant of the trajectory of output from the

same area. “inst(final(entry: tripData))” and

“inst(initial(exit: tripData))” return,

respectively, those time stamps (entry and exit are

two aliases of the trip table).

Query 2: Rest periods of the batches inside the

parking area of their last known destination

INSERT into break

SELECT [entry:BatchId AS BatchNumber,

entry:To AS ParkingAreas,

inst (final (entry:TripData))

AS StartStaging,

now AS EndStaging]

FROM [trip AS entry]

WHERE [entry:to NOT IN

(SELECT t:From

FROM [trip AS t]

WHERE entry:BatchId =

t:BatchId)]

The stay period in the “last known destination”

returned by Query 2 ranges from the time of the last

timestamp of the input trajectory in the parking area

and the time of execution of query itself (in

SECONDO, the date and current time are returned by

the operator now).

Query 3: Stay periods of the batches inside their

origin parking area

INSERT into break

SELECT [exit:BatchId AS BatchNumber,

exit:From AS ParkingAreas,

inst (initial(exit:TripData)) –

[const, duration, value,

[90,0]] AS StartStaging,

inst (initial(exit:TripData))

AS EndStaging]

FROM [trip AS exit]

WHERE [exit:From NOT IN

(SELECT t:To

FROM [trip AS t]

WHERE exit:BatchId =

t:BatchId)]

The parameter “[const, duration, value,

[90,0]]” sets the temporal extension of the stay

period (90 days) in an “origin parking area” returned

by Query 3. Such a value can be modified according to

the needs.

Query 4: Migration of the break’s content into table

stops and addition, to this latter, of attribute

rangeTime that stores the stay time interval

let stops = break feed

extend[rangeTime: theRange

(.StartStaging,

.EndStaging, true, true)]

sortby[BatchNumber, StartStaging]

consume;

The feed operator reads relation break from disk

and puts its tuples into a stream; while the extend

operator adds the attribute rangeTime to the query

result; lastly, the consume operation collects a tuple

stream into a persistent relation. .StartStaging

stands for break.StartStaging.

Fig. 6 shows a portion of the instance of the relation

stops computed with respect to the example dataset of

Sec. III.

Query 5: Infected farms

SELECT [t:BatchId AS SickBatches,

site:PAID AS InfectedFarms]

FROM [ParkingArea AS site,

trip AS t, visit AS v]

WHERE [v:result ="Sick",

t:BatchId = v:BatchId,

t:TripData passes site:Layout,

site:Type ="Farm"]

Query 5 analyzes the trips of each sick batch, to

assess whether they crossed the area that borders some

of the farms in the database (predicate: “t:TripData

passes site:Layout”). Fig. 7 shows the output of

Query 5. The result coincides with the expectation (see

Table 1).

106 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 6. Stay intervals of the animal batches inside the parking areas (i.e., meeting points, control posts, and farms). Giving a glance at the rows of
the table, it is possible to have a confirmation, for instance, of the trips of the batch L03 together with the relative time stamps, previously seen in

Fig.4.

B. Implementation of Step 2 (Search potentially

infected batches)

Query 6 uses the data in the stops table to

determine the batches potentially infected by the co-

presence with batches found sick.

Query 6: Potentially infected batches by co-presence

SELECT [stay1:BatchNumber AS

SickAnimalBatches,

stay2:BatchNumber AS

PotentiallyInfectedBatches,

stay2:ParkingAreas AS

SitesOfInfection]

FROM [stops AS stay1, stops AS stay2,

visit AS v]

WHERE [tay1:BatchNumber #

stay2:BatchNumber,

stay1:ParkingAreas =

stay2:ParkingAreas,

stay1:rangeTime intersects

stay2:rangeTime,

stay1:BatchNumber = v:BatchId,

v:result = "Sick"]

ORDERBY [SickAnimalBatches,

SitesOfInfection,

PotentiallyInfectedBatches]

The tables listed in Query 6 are stops and visit

The predicate “stay1:BatchNumber =

v:BatchId, v:result=”Sick”” identify all the sick

batches in the database. Then, are selected all the

animal batches who have made stops in the same

parking area (predicate: “stay1:ParkingAreas =

stay2:ParkingAreas”) by ignoring the tuples that

refer to the same batch (predicate:

“stay1:BatchNumber # stay2:BatchNumber”).

Lastly, the function intersects verifies the temporal

overlapping of their periods of stay. The SELECT

clause lists the columns to be displayed, namely: the ID

of the sick batch, the infected batches, the parking area

where the infection could be occurred, the range of co-

presence.

The formulation of Query 6 is valid regardless of

the number of sick batches in the database. This thanks

to the condition “v:result = "Sick"” which takes

into account all the sick batches. In the example dataset

there is only one sick batch (L03).

With a similar procedure, it is possible to determine

the batches infected by temporal contiguity and the

places where such a contamination may have occurred

(Query 7).

Figure 7. The farms infected by the batch L03

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013 107

© 2013 ACADEMY PUBLISHER

Figure 8. Batches potentially infected by batch L03 either by co-presence or temporal contiguity

Query 7: Potentially infected batches by temporal

contiguity

SELECT [stay1:BatchNumber AS

SickAnimalBatches,

stay2:BatchNumber AS

PotentiallyInfectedBatches,

stay2:ParkingAreas AS

SitesOfInfection]

FROM [stops AS stay1, stops AS stay2,

visit AS v]

WHERE [stay1:BatchNumber #

stay2:BatchNumber,

stay1:ParkingAreas =

stay2:ParkingAreas,

stay1:BatchNumber = v:BatchId,

v:result ="Sick",

stay2:StartStaging >

stay1:EndStaging,

stay2:StartStaging <

stay1:EndStaging +

[const, duration, value, [2,0]]]

Because it exists temporal contiguity, the beginning

of the rest of a batch must start after the end of the stay

of the sick one (predicate: “stay2:StartStaging >

stay1:End Staging”). In Query 7, the parameter

“[const, duration, value, [2,0]]” sets the

“temporal distance” between these two events in two

days. The value of such a parameter have to be

changed according to the characteristics of the

epidemic at hand.

Query 6 and Query 7 can be merged in a single

query by using the or operator in the WHERE clause.

The combined effect of these two queries is shown in

Fig. 8.

C. Implementation of Step 3 (Search potentially

infected farms)

Query 8 returns the potentially infected farms, that

is the farms which host at least one of the batches

potentially infected (either by co-presence or temporal

contiguity) by the sick batches inside some of the

parking areas. The screen of Fig. 9 shows the result.

#Query 8: Potentially infected farms

SELECT [stay1:BatchNumber AS

SickBatches,

stay2:BatchNumber AS

PotentiallyInfectedBatches,

lastTrip:to AS

PotentiallyInfectedFarms]

FROM [stops AS stay1, stops AS stay2,

trip AS lastTrip, visit AS v]

WHERE [stay1:BatchNumber #

stay2:BatchNumber,

stay1:ParkingAreas =

stay2:ParkingAreas,

stay1:BatchNumber = v:BatchId,

v:result ="Sick”,

(stay1:rangeTime intersects

stay2:rangeTime)

or

(stay2:StartStaging <

stay1:EndStaging +

[const, duration, value, [2,0]]

and

stay2:StartStaging >

stay1:EndStaging),

lastTrip:BatchId =

stay2:BatchNumber,

lastTrip:to

NOT IN

(SELECT [journey:From]

FROM [trip AS journey]

WHERE [stay2:BatchNumber =

journey:BatchId])]

ORDERBY[SickBatches,

PotentiallyInfectedFarms]

Fig. 10 summarizes the outcome of the analysis

(output of Query 5 and Query 8) on a geographic map,

that is the infected farms (red crosses) and those

potentially infected (triangles with an embedded

exclamation mark).

V. CONCLUSIONS

The paper reports about the implementation of a

method (the algorithm CHECK) that takes advantage

of the data collected in a “quasi real-time” database

about the trips of the livestock from a parking area to

another one and the sanitary controls of the livestock

itself, in order to derive which farms are infected and

which one could be so. The availability of this latter

information allows to feed the existing methods for the

analysis of the diffusion of the disease among farms

such as, for instance, the risk based culling. The

proposed solution cuts the number of head of cattle on

which has to be launched the campaign of visits, that

108 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

otherwise should be extended to all the livestock which

has undergone movements in the period of time

elapsed from the visit of the head turned out to be sick

and the previous visit, in which the same animal was

healthy.

Figure 9. The potentially infected farms

Figure 10. The outcome of the CHECK algorithm against the example dataset

The happy notes learned through the experience

The implementation in SECONDO of the algorithm

CHECK has been accomplished in terms of eight SQL

queries of low difficulty. The realization effort has to

be considered, therefore, within the reach of anyone

who wants to repeat of his own a solution such as that

reported in this paper. Incomparably bigger is the entity

of the effort if one decides to adopt as enabling

technology one of the RDBMS today available on the

marketplace (e.g.: IBM-DB2/SE, Oracle Spatial, or

PostgreSQL/PostGIS) and this for the lack in those

software of a native data type suitable to model moving

points and, consequently, of operators that operate on

those complex objects ([3] discusses this issue in

detail).

Without such a native support, the implementation

of the algorithm CHECK binds us to develop, in

advance, ad hoc operators (such as, for example, passes

used in Query 5) with a global effort definitely higher,

besides the risk of producing a software of lower

reliability.

The painful notes learned through the experience

So far, SECONDO cannot be considered a stable

technology to put into practice in real contexts. This

system, to the authors' own admission, it is now

recommended especially in the scientific context

mainly for testing new methods and algorithms.

To reach a satisfactory command in the use of

SECONDO, it requires a period of start-up absent if

one remains with the relational DBMSs today largely

part of most corporate assets.

REFERENCES

[1] D. E. te Beest, T. J. Hagenaars, A. J. Stegeman, M. PG

Koopmans, and M. van Boven, “Risk based Culling for

highly Infectious Diseases of Livestock,” Veterinary

Research 2011, 42:81.

JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013 109

© 2013 ACADEMY PUBLISHER

[2] Council Regulation (EC) No 1255/97 of 25 June 1997

“On Community Criteria for Staging Points and

Amending the Route Plan Referred to in the Annex to

Directives 91/628/EEC,” Official Journal of the

European Union series L, n. 174/1, 2.07.1997.

(http://europa.eu/documentation/legislation/index_en.ht

m - item: Search by Official Journal reference, June

2012)

[3] P. Di Felice. A Short Term Solution to Implement

Applications about Moving Points on top of Existing

DBMSs. Int. Journal of Computer Applications (0975 –

8887) Volume 50 – No.10, July 2012. DOI:

10.5120/7804-0934.

[4] P. Di Felice, A. Falcone. “An Algorithm and a Database:

two Conceptual Tools to Control the Diffusion of

Animal Diseases,” Journal of Advances in Information

Technology. (To appear)

[5] European Commission, The new Animal Health

Strategy for the European Union (2007-2013):

“Prevention is better than Cure,” Communication from

the Commission to the Council, the European

Parliament, the European Economic and Social

Committee and the Committee of the Regions - COM

539 (2007). European Communities, 2007. ISBN 978-

92-79-06722-8. (http://ec.europa.eu/food/animal/

diseases/strategy/index_en.htm, June 2012)

[6] G. Gebresenbet, W. Baltussen, P. Sterrenburg, K. De

Roest, K. E. Nielsen, “Evaluation of the Feasibility of a

Certification Scheme for high Quality Control Posts,”

Sanco/d5/2005/SI2.548887, 2010. European

Commission Funded Project Directorate-General for

Health and Consumers.

[7] R. H. Güting, M. Schneider, Moving Objects Databases,

Morgan Kaufmann Publishers, 2005.

[8] R. H. Güting, T. Behr, and C. Düntgen, “SECONDO: A

Platform for Moving Objects Database Research and for

Publishing and Integrating Research Implementations,”

IEEE Data Engineering Bulletin, 2010, 33:2, 56-63.

APPENDIX

This section collects a summary of the SECONDO

scripts devoted to create the database, its tables and

load them with the example dataset.

DB creation and opening

create database MODAT;

Moving Objects Database for Animal Traceability

open database MODAT;

Tables creation

sql CREATE TABLE animalBatch COLUMNS [BatchID: string,

Species: string, HeadNumber: int]

sql CREATE TABLE parkingArea COLUMNS [PAID: string, Name:

string, City: string, Type: string, FarmerID: string, Position:

point, Layout: region]

sql CREATE TABLE farmer COLUMNS [FarmerID: string, Name:

string]

sql CREATE TABLE visit COLUMNS [BatchID: string, VisitDate:

instant, Result: string, Diagnosis: string, PAID: string]

Tables loading (partial)

Animal batch (1 of 20)

sql insert into animalBatch values ["L01", “Bovina chianina”, 30]

Parking area

sql insert into parkingArea values [“AS01”, “Cerullo s. r. l.”,

”Montoro Superiore”, ”Meeting point”, ”ALL02”,

[const, point, value, [14.7949, 40.8512]],

[const, region, value, [[[

[14.79435 , 40.85105], [14.79505, 40.85090],

[14.79590 , 40.85100], [14.79590, 40.85150],

[14.79545 , 40.85195], [14.79480, 40.85165],

[14.79435 , 40.85165]]]]]]

Farmer (1 of 8)

sql insert into farmer values [“ALL01”, “Mario Bramieri”]

Visit (1 of 11)

sql insert into visit values [”L01”, theInstant (2011,07,2,11,00),

”Regolare”, ” Healthy”, ”AS15”]

Trip creation and loading
The creation and the loading of the table trip require

several steps. The reader interested to know the details

may refer to the Appendix in [3].

110 JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, VOL. 4, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

Call for Papers and Special Issues

Aims and Scope
JAIT is intended to reflect new directions of research and report latest advances. It is a platform for rapid dissemination of high quality research /

application / work-in-progress articles on IT solutions for managing challenges and problems within the highlighted scope. JAIT encourages a
multidisciplinary approach towards solving problems by harnessing the power of IT in the following areas:

• Healthcare and Biomedicine - advances in healthcare and biomedicine e.g. for fighting impending dangerous diseases - using IT to model
transmission patterns and effective management of patients’ records; expert systems to help diagnosis, etc.

• Environmental Management - climate change management, environmental impacts of events such as rapid urbanization and mass migration,
air and water pollution (e.g. flow patterns of water or airborne pollutants), deforestation (e.g. processing and management of satellite imagery),
depletion of natural resources, exploration of resources (e.g. using geographic information system analysis).

• Popularization of Ubiquitous Computing - foraging for computing / communication resources on the move (e.g. vehicular technology), smart
/ ‘aware’ environments, security and privacy in these contexts; human-centric computing; possible legal and social implications.

• Commercial, Industrial and Governmental Applications - how to use knowledge discovery to help improve productivity, resource
management, day-to-day operations, decision support, deployment of human expertise, etc. Best practices in e-commerce, e-commerce, e-
government, IT in construction/large project management, IT in agriculture (to improve crop yields and supply chain management), IT in
business administration and enterprise computing, etc. with potential for cross-fertilization.

• Social and Demographic Changes - provide IT solutions that can help policy makers plan and manage issues such as rapid urbanization, mass
internal migration (from rural to urban environments), graying populations, etc.

• IT in Education and Entertainment - complete end-to-end IT solutions for students of different abilities to learn better; best practices in e-
learning; personalized tutoring systems. IT solutions for storage, indexing, retrieval and distribution of multimedia data for the film and music
industry; virtual / augmented reality for entertainment purposes; restoration and management of old film/music archives.

• Law and Order - using IT to coordinate different law enforcement agencies’ efforts so as to give them an edge over criminals and terrorists;
effective and secure sharing of intelligence across national and international agencies; using IT to combat corrupt practices and commercial
crimes such as frauds, rogue/unauthorized trading activities and accounting irregularities; traffic flow management and crowd control.

The main focus of the journal is on technical aspects (e.g. data mining, parallel computing, artificial intelligence, image processing (e.g. satellite
imagery), video sequence analysis (e.g. surveillance video), predictive models, etc.), although a small element of social implications/issues could be
allowed to put the technical aspects into perspective. In particular, we encourage a multidisciplinary / convergent approach based on the following
broadly based branches of computer science for the application areas highlighted above:

Special Issue Guidelines
Special issues feature specifically aimed and targeted topics of interest contributed by authors responding to a particular Call for Papers or by

invitation, edited by guest editor(s). We encourage you to submit proposals for creating special issues in areas that are of interest to the Journal.
Preference will be given to proposals that cover some unique aspect of the technology and ones that include subjects that are timely and useful to the
readers of the Journal. A Special Issue is typically made of 10 to 15 papers, with each paper 8 to 12 pages of length.

The following information should be included as part of the proposal:
• Proposed title for the Special Issue
• Description of the topic area to be focused upon and justification
• Review process for the selection and rejection of papers.
• Name, contact, position, affiliation, and biography of the Guest Editor(s)
• List of potential reviewers
• Potential authors to the issue
• Tentative time-table for the call for papers and reviews

If a proposal is accepted, the guest editor will be responsible for:
• Preparing the “Call for Papers” to be included on the Journal’s Web site.
• Distribution of the Call for Papers broadly to various mailing lists and sites.
• Getting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors should be

informed the Instructions for Authors.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

Special Issue for a Conference/Workshop
A special issue for a Conference/Workshop is usually released in association with the committee members of the Conference/Workshop like general

chairs and/or program chairs who are appointed as the Guest Editors of the Special Issue. Special Issue for a Conference/Workshop is typically made of
10 to 15 papers, with each paper 8 to 12 pages of length.

Guest Editors are involved in the following steps in guest-editing a Special Issue based on a Conference/Workshop:
• Selecting a Title for the Special Issue, e.g. “Special Issue: Selected Best Papers of XYZ Conference”.
• Sending us a formal “Letter of Intent” for the Special Issue.
• Creating a “Call for Papers” for the Special Issue, posting it on the conference web site, and publicizing it to the conference attendees.

Information about the Journal and Academy Publisher can be included in the Call for Papers.
• Establishing criteria for paper selection/rejections. The papers can be nominated based on multiple criteria, e.g. rank in review process plus the

evaluation from the Session Chairs and the feedback from the Conference attendees.
• Selecting and inviting submissions, arranging review process, making decisions, and carrying out all correspondence with the authors. Authors

should be informed the Author Instructions. Usually, the Proceedings manuscripts should be expanded and enhanced.
• Providing us the completed and approved final versions of the papers formatted in the Journal’s style, together with all authors’ contact

information.
• Writing a one- or two-page introductory editorial to be published in the Special Issue.

More information is available on the web site at http://www.academypublisher.com/jait/.

(Contents Continued from Back Cover)

An Intelligent Water Droplet-based Evaluation of Health Oriented Distance Learning
Koffka Khan, Zulaika Ali, Nisa Philip, Gail Deane, and Ashok Sahai

Tracking Livestock Movements to Figure out Potentially Infected Farms
Paolino Di Felice and Americo Falcone

91

101

