
p ()
URL: http://www.elsevier.nl/locate/entcs/volume62.html 13 pages

Specifying and verifying reactive systems in a
multi-language environment �

Agathe Merceron a,1, Monica Müllerburg b,2,
G. Michele Pinna c,3

a LIAFA - Université Denis Diderot, France
b GMD - Forschungszentrum Informationstechnik, Germany

c Dipartimento di Matematica, Università di Siena, Italy

Abstract

The multi-language environment Synchronie supports the design and formal ver-
ification

of synchronous reactive systems. It integrates three synchronous languages and
also three ways to specify properties: the temporal logic with future operators CTL,
the temporal logic with past operators Past TL, and observers, which are particular
synchronous programs. It is argued that this multi-language feature provides an
answer to two major issues of formal verification: facility of formalizing properties
and facility of verifying large systems. The approach is illustrated with the case
study of a time-triggered protocol.

1 Introduction

Reactive systems are real-time systems that continuously react to stimuli from
their environment. They consist of software, hardware, and mechatronic com-
ponents, thus combining discrete and continuous behaviour. Reactive systems
are critical components of our everyday lives, be they in control systems like
airbag controllers in cars, or in consumer products like washing machines and
phones. Synchronous languages have been proposed to design and formally
specify reactive real-time systems. The synchronous paradigm is considered
as particularly well suited, since properties such as reactivity and satisfaction
of timing constraints can be guaranteed. Reactivity means that the system

� Work partially supported by the project TOSCA.
1 Email: agathe@liafa.jussieu.fr
2 Email: muellerburg@gmd.de
3 Email: pinna@unisi.it

c©2002 Published by Elsevier Science B. V.

Merceron et al.

always reacts to an input and the unique reaction terminates within a fixed
amount of time. The synchronous paradigm views a system run as a sequence
of events which individually consist of a computation step and the exchange
of signals (possibly with data) between the various components of the system
and their environment. Synchronous languages are based on the synchrony
hypothesis [2] which stipulates that calculations are carried out quickly enough
so that, for the environment, output signals appear to be synchronous with the
inputs. Thus, time is divided into non-overlapping instants where reactions
take place. It is worth noticing that a synchronous system is deterministic, in
spite of the fact that it can be made of several parallel components.

Several synchronous languages have been developed (see [8] for a survey)
: Argos, a graphical language [13], and Esterel, an imperative language [3],
are both state based and thus well suited for modelling discrete behaviour
while Lustre, a data flow language [5], is instead well suited for modelling
continuous behaviour. Integrating these three languages enables multi-style
design: each system component may be modelled using the language that
best captures the kind of behaviour. The workbench Synchronie [21,20,24]
presents such an integration. It is extended to include object-oriented aspects
in sE [23], Other integration platforms include scade [22], and an extension of
Esterel [7].

Temporal logic, in particular CTL (Computation Tree Logic) [6], is well
established for specifying properties of reactive systems, and model checkers
may be used for their verification [25,14]. Checking that a property specified
as a formula written in a suitable temporal logic is satisfied by a system is
an automatic process. A model checker searches the reachability space to
conclude whether the check passes. There are, however, two problems: (1)
specifying properties in a temporal logic may be awkward for some types of
properties; (2) the state explosion problem for large reachability spaces makes
actual proving not feasible in many cases.

The paper discusses how verification is done in the multi-language envi-
ronment Synchronie and shows how it copes with these limitations using a
case study, namely a time-triggered communication protocol [26,10] (time-
triggered protocols are getting particular attention in the transport industry
where electronic systems, so-called “by-wire” systems, replace mechanical sys-
tems for stearing, braking and such).

In Synchronie (swb for short) the integration of languages is achieved via
a common semantic model, called Synchronous Component [21]. swb compiles
modules written in any of the above mentioned language into this model.
Boolean Automata constitute the core part of Synchronous Components. A
Boolean Automaton (ba for short) is a kind of finite state machine encoded
by a set of Boolean equations. It is used to represent the calculation of the
instantaneous reaction: given a set of input signals provided by the environ-
ment, it calculates the set of output signals to be fed back to the environment.
All the tools of the workbench, like the reactivity checker (it checks whether

2

Merceron et al.

or not a program is reactive, i.e. given an input, there is a unique reaction),
the simulator and the code generator work on this common model.

ba’s can be easily transformed into the input format of existing model
checkers such as SMV [14] or VIS [25]. Since swb supports CTL, the tra-
ditional temporal logic based verification is possible. However, swb provides
additional ways to prove properties. One way is to use a logic with past tem-
poral operators, that we call Past TL, particularly suited to specify safety
properties [12]. Another, original and, for many practitioners, simpler way of
specifying safety properties is through observers [9]. An observer is another
synchronous program which observes the signals received and emitted by a
synchronous system. The observer emits a special error signal as soon as the
synchronous system violates the property it observes. Because observers are
synchronous programs, the same language which is used for modeling the sys-
tem may also be used to formally specify safety properties. Since swb provides
more than one synchronous language, any of them may be used. Thus, swb

provides not only multi-style design but also multi-style verification, which
helps to make the specification of formal properties a more natural and handy
process.

One solution to the state explosion problem is modular verification [11]. It
makes the whole automatic verification process easier and, for large systems,
feasible at all. The multi-language environment swb provides full support for
modular design and modular verification [17].

The paper is structured as follows: in the next section we briefly discuss
the role of boolean automata in a multi-language environment, then, in section
3, we illustrate how verification is done. Finally we illustrate, in section 4, the
case study.

2 The role of boolean automata

Coherence in swb is achieved via the translation of all components in a com-
mon format called ba’s. More detailed discussions on ba’s may be found in
[20,21] where additional insight into synchronous languages and their integra-
tion is provided. ba’s have two kinds of statements, one for defining signals
to represent transient information

s⇐ φ: the signal s is emitted if the condition φ is satisfied,

and another for defining registers to represent persistent information

h ← φ: the control register h is true (or ‘set’) in the next instant if φ is
satisfied.

In the statements above, φ is a boolean expression defined on signals and
registers.

The operational semantics is defined by two successive phases: given a val-
uation v, that assigns a truth value (true or false) to each register, and inputs

3

Merceron et al.

(intuitively the free variables), a reaction is the solution of the system equa-
tions {s⇐ φ}; this solution extends v to cover all the signals, and this is used
to compute the assignments {h ← φ} to yield the next state of the machine.
A solution to the signal equations for all input patterns and reachable states
must be proved to exist at compilation time to guarantee that the program is
reactive in that it may respond to any input stimulus. Moreover the solution
must be unique to guarantee that the program is deterministic.

The following ba represents the switcher of application, see Fig. 2: it has
two states (a off and a on) and it switches from a state to the other upon
reception of the signals on and stop. Depending on the state and the signal
received it emits start:

start⇐ a off ∧ on
a off← α ∨ (a off ∧ ¬on) ∨ (a on ∧ stop)

a on← (a off ∧ on) ∨ (a on ∧ ¬stop)

Signal start is emitted if the automaton is in state a off and signal on is
present. Register a off is set in the initial reaction, represented by the special
signal α, or if the automaton is in state a off and signal on is not present, or
if the automaton is in state a on and signal stop is present. Register a on is
set if the automaton is in state a off and signal on is present or it is in state
a on and stop is not present.

Each component of the system is translated into a ba and these are com-
posed using (among others) two relevant operations: parallel composition and
refinement. Putting ba’s in parallel is obtained simply by putting side by side
all the statements of the automata, provided that they have a disjoint set of
registers. Refinement needs something more: the initial signal α has to be
replaced by the starting condition of the refined state, and the negation of its
preemption condition has to be added [24]. The translation into ba’s and the
composition of modules on this intermediate format has several advantages.
First, it allows the composition of modules written in various synchronous lan-
guages, every language that translates into ba’s. Second, it makes multi-style
verification possible, as we see next.

3 Specification and verification in the multi-language
environment

In swb properties may be specified in the temporal logics CTL and Past TL
, or as observers in any of the supported synchronous languages. CTL is a
branching time temporal logic with future operators, while Past TL is a linear
time temporal logic using only past operators. Observers are synchronous
programs.

CTL is widely used for automatic verification as it is available on model

4

Merceron et al.

checkers. It uses temporal operators like G, generally, which is interpreted as
in each instant later; the operator X, next, interpreted as in the next instant;
and F , future, interpreted as in some instant later. It uses also two paths
quantifiers: A for all and E for exists.

Take the property ’start is always followed sometime later by stop’. In
CTL it is written : AG (start → F stop). This property concerns some-
thing that will happen in the future, (liveness property), and CTL is very well
suited to express this kind of properties. However CTL may be awkward to
express safety properties. For instance consider ’stop is always preceded by
start’ which is a property verified by application. To express it with CTL
one has to cast it into a form using future operators, something like ’if there
is no start, then later there is no stop’. By contrast it is easily expressed
using a temporal logic with past operators like Past TL. Past TL provides the
operator Once which is interpreted as there is some preceding instant. Refor-
mulating ’stop is always preceded by start’ with ’at every instant where stop
is present, there is a preceding instant where start was present’, which re-
mains quite intuitive, gives the Past TL formula: AG (stop → Once start).

Properties involving particular patterns in signal sequences are difficult to
express in temporal logic, either CTL or Past TL. An illustrative example is
’start and stop alternate and start begins’. By contrast, such a property is
easily formulated as an observer, e.g. written in Argos as shown in Fig. 1.

init wait_o

wait_s

/e

error

start

-start&-stop

stop/e

start/e

stop

start

-start&-stop

stop/e

-start&-stop

Fig. 1. The automaton for start and stop alternate and start begins.

Expressing invariants like ’start and stop are exclusive’ is easy in any of
these formalisms. This property can be expressed as an observer in Lustre:

node MutExcl(start, stop : bool) returns (e : bool);
let
e = start and stop;

tel

Verification of properties expressed in CTL, Past TL or as observers using
a synchronous language is automatic in swb. ba can be transformed into
inputs for available model checkers. Thus CTL formulas are verified using a
model checker. One can associate observers expressed directly in ba to Past
TL properties as shown in [4]. Verifying a property expressed as an observer

5

Merceron et al.

simply consists of checking the simple safety property AG not e, where e is
the special error signal, on the state space of the program composed in parallel
with the observer, using again a model checker.

Though formal verification through model checking is very attractive it
has a serious drawback: it is not feasible when the number of states increases
dramatically, which is the case for large systems. Modular verification is one
answer to the state explosion problem, and it makes the whole verification
easier and, for large systems, feasible at all.

In swb, modules are given by the design: they are the parallel, the re-
fined and the refining components that all together constitute the program .
Modular verification makes sense only if it is conservative, i.e. if properties
proved for a component do also hold for the whole program. Fortunately a
number of nice results have been proved for parallel composition and can be
applied in swb. Among these results, we are interested in those concerning
properties expressed as ∀CTL formulas. ∀CTL formulas are CTL formulas
using only the quantifier ∀ (namely A). In our setting, i.e. boolean automata
and swb, it is possible to cast the results as follows: provided that the output
signal sets of the modules are disjoint, a property expressed as a ∀CTL for-
mula proved on a module, is also true for the complete program obtained by
refining the module with another one or by putting it in parallel with another
one (as shown in [15,17]). It it worth noticing that the result does not apply
to a refining module. Other results concern the use of other temporal logics
or observers [9]. While observers are more limited than a logic like CTL in
that they can only express safety properties, a stronger result is obtained for
modular verification. Provided that the output signal sets of the modules are
disjoint, a property expressed as an observer or as a Past TL formula proved
on a module holds also for the complete program; it does not matter whether
the module is a refined one, a refining one or a parallel one [17,16].

Having different formalisms to express properties gives flexibility in many
ways: on how to formally specify properties (the most appropriate formalism
may be used depending on the particular property as shown above); on who
formally specifies properties (not only temporal logic specialists may specify
properties, designers used to synchronous languages can specify properties as
well via observers); and finally on when are properties to be formally specified
(core properties to verify are part of the informal system requirements and
may be formalized at a very early stage, possibly before the design begins;
however, as the designer proceeds, more properties worthwhile to verify may
be identified). Hence formal specification of properties may continue in par-
allel with the design and programming of the system, an approach similar to
extreme programming put forward in [1] for testing.

6

Merceron et al.

4 The case study: a time-triggered protocol

The protocol for automotive applications presented in [26] is a time-triggered
protocol [10] which allows a fixed number of stations to communicate via a
shared bus. Messages are broadcasted to all stations via the bus. Each station
that participates in the communication sends a message when it is the right
time to do so. Therefore, access to the bus is determined by a time division
multiple access (TDMA) schema controlled by the global time generated by
the protocol. A TDMA cycle is divided into time slices. The stations are
ordered and time slices are allocated to the stations according

to their order. During its time slice, a station has exclusive message sending
rights. Focusing on control, we consider a time slice as being composed of
two parts: a frame, which includes the identification of the station, and an
acknowledgement window.

The protocol is fault-tolerant. If a message is not properly received, the
station(s) that notice(s) the transmission error send(s) a veto in the acknowl-
edgement window and all the stations change from normal mode to

error mode. If the faulty sending station is not able to recover it will be
excluded. For the fault-tolerance algorithm to work properly, each station
maintains a membership service, which indicates which stations are in normal
mode.

To participate in the communication, a station starts in the initialization
mode. It enters the normal mode as soon as it succeeds synchronizing with
other stations. Suppose stationi wants to communicate. It has to find out
when it is its time to access the bus. Therefore, it goes first in the initialization
mode. Upon entering it, it sets its timer to a time T1. During this time, it
listens to the traffic on the bus. As soon as it recognizes

a valid frame, i.e., a frame whose ‘ack window’ does not have any veto, it
knows which station is sending. Consequently, it can deduce when it will have
to send, since time slices are statically allocated. It synchronizes and enters
the normal mode, updating its membership service for any valid frame. If
stationi is the first to require a communication, it won’t hear any valid frame
during T1. When time T1 elapses, it sends a frame and sets its timer to T2i, a
time proper to stationi and different from any T2j for any stationj with i �= j.
Communication needs at least two partners, therefore stationi will continue
listening to the traffic during time T2i, sending a message when T2i elapses
and resetting its timer to T2i. If a second station, say stationj, needs also
to communicate, it enters the initialization mode too. Because T2i and T2j

are different, eventually one of the two stations will recognize a valid frame
and synchronize, thus switching to the normal mode. It sends a message in
its own time slice, allowing the second station to synchronize as well. Notice
that during the set up of the protocol, collisions may occur, for instance if two
stations start in the same instant, since T1 is the same for everybody.

Besides its time-triggered aspect, a relevant feature of the protocol is to

7

Merceron et al.

allow a quick change of mode and a membership service with minimal overhead
both in message length and in the number of messages.

4.1 Formal description of the protocol

We illustrate briefly the overall structure and some parts of the realization
of the protocol. Some details are given for the parts involved in the formal
proofs. Further details can be found in [18]. The synchronous approach gives
the global clock for free. A time unit for the protocol is the reaction time of
its synchronous realization.

The protocol is modeled by a number of stations, three in the actual im-
plementation (1 ≤ i ≤ 3), running in parallel. The bus is modeled implicitly
as the set of global messages, i.e. those messages that are not local to any
station. A frame sent by stationi is modeled by two signals, bframe−i and
eframe−i: the first one represents that the station begins to send a frame,
and the second

the end of this operation. In the actual implementation they come in two
consecutive instants. A time slice has a length of three time units (instants):
the first two are for the frame and the third one is for the acknowledgement
window. Taking advantage of the graphical style of Argos and of its refinement
operator

for states, the top level of the protocol consists of parallel single state
automata: one for each station and one for the collision controller. The colli-
sion controller checks whether signals on the bus collide. It emits the signal
rframe−i in the third instant of the time slice if the frame sent by stationi

does not collide with any other frame and it is accepted by the other stations.
All states are further refined. The states for the stations are refined by the
same Argos automaton, called station and shown in Fig. 2. Only the param-
eters, which are signals, differ. Within station, station f denotes the first
follower station, station s the second, and signals x specific to station f ar
e called x f.

The Argos automaton for station (Fig. 2) consists of three parallel com-
ponents. Each component is again an Argos automaton. The automaton
application models the status of the station which is either off (state a off)
or on

(state a on). The automaton engine represents the station’s protocol en-
gine, which is either idle or working. The state working is refined by the
Argos automaton shown partly in Fig. 3. The automaton timer is responsible
for counting the instants in the initialization mode.

Starting an automaton with parallel components, all parallel initial states
are entered, hence starting the automaton in Fig, 2, the three parallel ini-
tial states a off, idle, t0 are entered. Further, because of the synchrony
hypothesis and broadcasting of signals, the following happens when station

needs its protocol engine. Upon a request from the environment (issued via

8

Merceron et al.

engine

working

a_on

application timer

a_off

idle

stop

start/set_t1

stop

on/start

set_t1

set_t2

t1

t0

t2

synchro_f
+synchro_s

synchro_f
+synchro_s

station
start,stop,synchro_f,synchro_s,set_t1,set_t2,timeout

Fig. 2. Argos automaton for station

the input signal on), the automaton application emits the signal start and
enters the state a on. Signal start is immediately received by engine which

changes to state working, emitting set−t1 which is in turn received by
the timer causing it to change to state t1 for counting the first time (T1). As
soon as timer receives synchro−f or synchro−s (representing the success in
synchronization with one of the two other stations), it goes back in its initial
state. If the station does not succeed in synchronization within time T1 the
counter issues the signal timeout at the end of the counting, the timer starts
to count (in state T2) and another synchronization attempt is performed. The
counter is periodically reset to T2 until the synchronization succeed.

The working state of engine is refined by three automata running in
parallel: stationIsOn models the status of the protocol engine which is either
initializing or operating, stateVector models the membership service, and
sliceDistributor decides whether it is the station’s turn to send its frame
(see Fig. 3).

The protocol engine is either in the initialization mode or in the oper-
ating mode, where operating mode covers normal and error mode. Hence,
the automaton stationIsOn consists of the two states, initializing and
operating. Both states are further refined by Argos automata. Fig. 3 shows
how the state initializing is refined.

The automaton stateVector, modelling the membership service, consists
of just one state which is refined by a Lustre node, as shown in Fig. 3. The
equations for aux1, aux2, included f, and included s are evaluated in par-
allel. Variable aux1, for instance, has the value false in the first instant, and
in all further instants it has the value that included f had in the previous
instant. The state vector represents the state of the system as it is perceived
by the station: each station knows which stations are participating to the
game, i.e. which are included. Those stations which are not included are

9

Merceron et al.

sd4sd5sd6

sd3

sd2

sd7

sd8

veto

-veto

synchro_f

synchro_s

a3

a1

a2

timeout/bframe

/eframe

/my_slice

/set_t2

working

sd1

rframe_f/synchro_f,include_f
+rframe_s/synchro_s,include_s

initializing

operating

node statev(include_f,exclude_f,include_s,exclude_s:bool)
returns (included_f,included_s:bool)
var aux1,aux2:bool;

let
 aux1 = false -> pre(included_f);
 included_f = ((include_f or aux1) and not exclude_f);
 aux2 = false -> pre(included_s);
 included_s = ((include_s or aux1) and not exclude_s);
tel

initializing

stv

sliceDistributor

stationsIsOn
stateVector

include_f,included_f,exclude_f,include_s,included_s,exclude_s

Fig. 3. Argos automaton refining state working

ignored. The sliceDistributor decides whether it is the station’s turn to
send its frame. Therefore, it keeps track of the time slices and emits the signal
my−slice when the time slice to send a frame has arrived. In addition, it no-
tices whether the frame sent by another station, say station f, was rejected.
In this case it emits the signal exclude f causing the stateVector to exclude
station f. This is done by a Lustre program which refines states sd6 and
sd8 not further discussed here.

4.2 Specification and verification of protocol properties

The following three properties were identified as particularly important:

Property 1: stations will synchronize.

Property 2: there is no collision on the bus.

Property 3: the membership service does function correctly.

To cut down complexity, properties have been verified modularly as much
as possible.

Property 1: stations will synchronize
This property refers to something good that will happen in the future (liveness
property). It is therefore best specified using a temporal logic with future
operator, hence CTL.

10

Merceron et al.

A station will synchronize if (1) it is able to send a frame and (2) if there
is

another station that wants to synchronize as well or has already synchro-
nized.

The property was proved in two parts. If station is in the state a off

and on is present, then it will always send its frame. For the second part,
it will synchronize, rframe f (or rframe s) must be emitted sufficiently of-
ten. This will be the case if station f and station s are not both in
state a off. Thus the second property is proved with the fairness constraint
rframe f or rframe s. For both parts of the proof it is assumed that off re-
mains absent, which is safe, as off is emitted only in the error mode, not in the
initialization. The CTL formulae are: AG((a off and on) ⇒ AF bframe)
and AG((a off and on) ⇒ AF (synchro f or synchro s)). The temporal
operator AF stands for always in the future. Putting these properties to-
gether, one can conclude that a station will synchronize. This property has
been proved on the module station dropping the refining components for
sliceDistributor, stateVector, and operating, since those are not con-
cerned with the signals involved in the property.

Property 2: there is no collision on the bus
This property requires that any two stations never send a frame in the same
instant. This is the case if their slice distributors do not emit my slice in
the same instant. This is quite easy to formalize as a Lustre observer. The
following equation ensures the property for any two stations station1 and
station2: e = my slice 1 and my slice 2. The property AG not e was
proved as true.

Property 3: the membership service does function correctly
For proving this property it was shown that the Lustre node for StateVector
is correct. The proof was done in two steps. First, if stationf is included in
the state vector of station, then it has always been included since the signal
include f has been emitted. The property is best formalized using a logic
with past operators: AG (included f ⇒ (included f Since include f)).
Further, if a station is not included, then either it has never been included or
it has not been included since an exclude has been emitted. Again, this is best
formalized by a Past TL formula: AG (not included f ⇒ (P not included f)
or (not included f Since exclude f)) where P should be red as always in
the Past. Property 3 was proved on the module stateVector only.

References

[1] Beck, K., “Extreme Programming explained: embrace change” Addison Wesley
Longman, 2000.

[2] Benveniste, A. and G. Berry, The synchronous approach to reactive and real-

11

Merceron et al.

time systems, Proceedings of the IEEE 79 (1991).

[3] Berry, G. and G. Gonthier, The Esterel synchronous programming language:
Design, semantics, implementation, Science of Computer Programming 19
(1992), pp. 87–152.

[4] Budde, R. and A. Merceron, A generator of boolean acceptors for safety
properties, in: 5th Australasian Conf. on Parallel and Real-Time Systems
(Part’98), Springer-Verlag, 1998, pp. 45–56

[5] Caspi, P., D. Pilaud, N. Halbwachs and J. Plaice, Lustre: a declarative language
for programming synchronous systems, in: 14th ACM Conf. on Principles of
Programming Languages, ACM Press, 1987, pp. 178–188.

[6] Clarke, E. M., E. Allen Emerson and A. Prasad Sistla, Automatic verification
of finite-state concurrent systems using temporal logic specifications, ACM
Transactions on Programming Languages and Systems 8 (1986), pp. 244–263.

[7] Esterel homepage, http://www.esterel.org.

[8] Halbwachs, N., “Synchronous Programming of Reactive Systems,” Kluwer
Academic Publishers, 1993.

[9] Halbwachs, N., F. Lagnier and P. Raymond, Synchronous observers and the
verification of reactive systems, in: Third Int. Conf. on Algebraic Methodology
and Software Technology, AMAST’93, Workshops in Computing, Springer-
Verlag, 1993.

[10] Kopetz, H. and G. Grünsteidl, A time triggered protocol for automotive
applications, Research report 16/92, Institut für Technische Informatik,
Technische Universität Wien, Vienna, Austria (1992).

[11] Kupferman, O. and M.Y. Vardi, Modular model checking, in: Proc. Com
positionality Workshop, Lecture Notes in Computer Science 1536, Springer-
Verlag, 1998.

[12] Manna, Z. and A. Pnueli, “The Temporal Logic of Reactive and Concurrent
Systems - Specification,” Springer Verlag, 1992.

[13] Maraninchi, F., The Argos language: Graphical representation of auto mata
and description of reactive systems, in: IEEE Workshop on Visual Languages,
IEEE Society Press, 1991.

[14] McMillan, K. L., “Symbolic Model Checking,” Kluwer Academic Publishers,
1993.

[15] Merceron, A. and G. Michele Pinna,Modular verification of argos programs, in:
6th Australasian Conf. on Parallel and Real-Time Systems(Part’99), Springer-
Verlag, 1999, pp. 367–376.

[16] Merceron, A. and G. Michele Pinna, Refinement and modular verification with
observers, in: 1st Asia-Pacific Conference on Quality Software (APAQS 2000),
IEEE Society Press, 2000, pp. 104–114.

12

Merceron et al.

[17] Merceron, A. and G. Michele Pinna, Component-based verification is
a synchronous setting, International Journal of Software Engineering &
Knowledge Engineering 11 (2001), pp. 181–203.

[18] Merceron, A., M. Müllerburg and G. Michele Pinna, Verifying a time triggered
protocol in a multi language environment, in: Proceedings of Safecomp ’98,
Lecture Notes in Computer Sciences 1516, Springer-Verlag, 1998, pp. 185–195.

[19] Poigné, A. and L. Holenderski, Boolean automata for implementing esterel,
Arbeitspapiere der GMD 964, GMD (1995).

[20] Poigné, A. and L. Holenderski, On the combination of synchronous languages,
in: Compositionality: The Significant Difference, Lecture Notes in Computer
Science 1536, Springer-Verlag, 1999, pp 490 –514.

[21] Poigné, A., M. Morley, O. Maffëıs, L. Holenderski and R. Budde, The
synchronous approach to designing reactive systems, Formal Methods in System
Design 12 (1998), pp. 163–187.

[22] scade homepage, http://www.telelogic.com/products/scade/.

[23] sE homepage, http://set.gmd.de/ees/synchronie/doc/lang.html.

[24] Synchronie homepage, http://set.gmd.de/ees/synchronie/swb.html.

[25] The VIS Group, VIS: A system for verification and synthesis, in: Proc. 8th
International Conference on Computer Aided Verification, Lecture Notes in
Computer Science 1102, Springer-Verlag, 1996, pp. 428–432.

[26] v. Hanxleden, R., J. Bohne, L. Lavagno and A. Sangiovanni-Vincentelli,
Hardware/software co-design of a fault-tolerant communication protocol, in:
Proc. of the IEEE International Workshop on Embedded Fault-Tolerant
Systems, Dallas, 1996.

13

