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ABSTRACT QoS-aware big data analysis is critical in Information-Centric Internet of Things (IC-IoT)
system to support various applications like smart city, smart grid, smart health, intelligent transportation
systems, and so on. The employment of non-volatile memory (NVM) in cloud or edge system provides good
opportunity to improve quality of data analysis tasks. However, we have to face the data recovery problem led
by NVM failure due to the limited write endurance. In this paper, we investigate the data recovery problem
for QoS guarantee and system robustness, followed by proposing a rarity-aware data recovery algorithm.
The core idea is to establish the rarity indicator to evaluate the replica distribution and service requirement
comprehensively. With this idea, we give the lost replicas with distinguishing priority and eliminate the
unnecessary replicas. Then, the data replicas are recovered stage by stage to guarantee QoS and provide
system robustness. From our extensive experiments and simulations, it is shown that the proposed algorithm
has significant performance improvement on QoS and robustness than the traditional direct data recovery
method. Besides, the algorithm gives an acceptable data recovery time.

INDEX TERMS Big data analysis, data recovery, IC-IoT, NVM, QoS improvement.

I. INTRODUCTION
Big data analysis has meaningful importance for IC-IoT sys-
tem. On the one hand, it is easy to collect big volume and
multisource data in IC-IoT with the pervasive utilization of
smart equipments, such as smartphones, cameras, and sen-
sors. On the other hand, it is highly valuable to explore the
big data to support various applications such as information-
center networking [1], [2], smart city and transportation sys-
tem [3], [4], smart health [5], online social network [6].
Hence, it is essential to conduct QoS (Quality of Service)
assurance big data analysis in cloud data center to support
IC-IoT services continuously [7], [8]. Generally, the ser-
vice response time is critical for supporting better prediction
and timely decision-making. Due to the limited I/O perfor-
mance, HDD (Hard Disk Drive) is not an idea device for fast
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data analysis. Hence, there are two essential factors for IoT
service provision, data, and bandwidth for data communi-
cation. They are also a challenging problem for data center
resource allocation. Recent literature works have proposed
lots of resource management approaches for data centers
to achieve efficient and fast data analysis [9]–[12]. How-
ever, DRAM is becoming part of the bottleneck for fast
data analysis due to the limited capacity, and it is approach-
ing scalability limits [13]. It is expected that NVM (Non-
Volatile Memory) will be equipped in future data centers to
provide in-memory data processing [14], [15], since NVM
can achieve storage-class memory and it owns non-volatile
feature. Hence, NVM provides an opportunity to conduct
faster data analysis for IoT data, and provide real-time ser-
vices. Nevertheless, NVM also has a noticeable disadvantage
caused by its limited write endurance. As a consequence,
there may be a NVM failure suddenly, which leads to the risk
of losing data during data analysis in the data center.
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To provide high reliability and performance improvement,
it is usual to place multiple replicas or copies of data in a
data center. Once some NVM failure occurs, it is necessary
to recover the lost data replicas to maintain the system sta-
bility and performance. Traditionally, related works about
data recovery pay more attention to the storage system with
erasure code and take recovery time as the primary concern
[16]. For the data center with NVM, it will be a hybrid
storage system [17] because of the different features of NVM,
DRAM, and disk. Therefore, the diskswill constitute a typical
persistent storage system. At the same time, NVM is mainly
adopted for computing, e.g., data analysis in this work.

In this paper, we focus on the data recovery problem to
copewithNVM failure during IoT real-time big data analysis.
We take the QoS (Quality of Service), recovery time and
system robustness into account, rather than only the recovery
time. In fact, the primary motivation is that our problem
is different from the traditional data recovery mode for a
storage system. On the contrary, our work mainly focuses
on a computing system. Hence, we use data migration as
the principal method to recover lost data replicas. Moreover,
we take the allocated bandwidth as the primary indicator for
QoS. For the robustness issue, it represents the ability of the
system to sustain another NVM failure or rack malfunction
during data recovery stage, since there should be at least
one replica for each data to satisfy data analysis service.
Specifically, it is better to maintain replicas at two different
racks in a data center. We will use the percentage of data that
can survive from another NVM failure or rack malfunction
during the recovery stage to measure the robustness of the
recovery approach. Recovery time is intuitively measured by
the time to recover the data replicas.

We aim to provide guaranteed services even when NVM
failure occurs, which is different from previous works based
on wear-leveling NVM endurance enhancement, like the one
shown in [18]. To conduct data replica recovery, we can start
the recovery process immediately when a failure occurs to
achieve shorter recovery time. However, this method will
decrease the QoS and robustness significantly. Based on this
conclusion, we first analyze the data replica distribution, and
further define a replica high reliability rule. The basic idea is
that at least one replica should survive for each data in another
NVM failure, even rack failure. Then, we propose a staged
data recovery method, which considers the replica distribu-
tion and can achieve improved QoS performance. Further-
more, we take the data hotness into account, which reflects
the bandwidth requirement for the services. We propose a
data rarity model to measure the necessity and urgency for
recovering replica. Finally, we combine replica distribution
and data hotness to give a more reasonable assessment for
the data replica and propose a rarity-aware data recovery
algorithm.

The contributions can be summarized as follows.
• We present a data recovery problem in a data center with
NVM. We aim to guarantee the QoS during data recov-
ery, and we consider the QoS, recovery time and system

robustness together to achieve a more comprehensive
assessment.

• We propose an algorithm based on data rarity model,
which takes data replica distribution and service band-
width requirement into account. To the best of our
knowledge, we are the first to combine the two factors
to improve data recovery performance.

• We conduct extensive experiments and simulations, and
the results show that our algorithm has a significant
improvement on the QoS and robustness with acceptable
data recovery time.

The rest of this paper is organized as follows. We review
the related works in Section II. We present the scenario and
preliminaries in Section III. Then, the staged data recovery
and rarity-aware algorithms are proposed in Sections IV
and V respectively. These proposed algorithms are evaluated
in Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORKS
In this section, we provide related literature concerning disk
failure and NVM feature on write endurance.

A. DISK FAILURE
With the development of Internet cloud technology, more
and more data are generated and stored in disks. As a con-
sequence, disk failures lead to data loss. Therefore, it is
necessary to investigate the data replica management [19] and
disk failure control [20].

Proper data replica management helps with disk failure
data recovery. In [21],Myint andNaing deal with themanage-
ment of replication scheme and their proposed solution can
balance the load of a PC cluster. In detail, they focus on the
number of replicas and number of data blocks. By adjusting
the size of these parameters, the probability of disk fail-
ure could be reduced. To decrease access latency, in [22],
Kim et al. propose a real-time data replica strategy. The
priority value (PV) is used to update a file’s priority after
it is accessed. More in detail, PV represents the importance
of the file. The strategy proposed by the authors updates
the data replica by PV. In this way, the management of
data replica improves the performance of service requests.
Another way to reduce access latency is to consider the
link bandwidth. In a transfer of many data between physical
machines, the link bandwidth will limit performance. So it
is crucial for users to provide better service based on the
currently limited link bandwidth. Considering the usage of
link bandwidth, the distributed storage system proposed in
[23] has a good performance. As a result, a full consideration
of link bandwidth can effectively shorten access time and load
balance. Regarding the link, a formal description of the data
link is provided in [24].

Data replica may be lost at any time. Therefore, disk
failures require more attention [25]. Besides, there are many
algorithms to solve a disk failure. For instance, erasure code
protects data security [26]. Most of the algorithms introduced
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in the literature are designed for a unique code. In [27], Luo
and Shu present two disk recovery strategies composed of
two algorithms that can work with any erasure code. These
algorithms are designed for load-balanced recovery. The
only difference between them is if the condition of minimal
read for the recovery must be considered or not. Anyhow,
the recovery strategy proposed by the authors obtains better
performance than the approach introduced in [28]. Some
literature works focus on the data loss probability. Another
proposed solution, different from what is proposed in [27],
studies the disk failure in the stack-level and not in stripe-
level. The authors introduce a BP-scheme to solve the prob-
lem. In this case, the obtained performance is better than
Khan’s scheme [29]. Finally, it is clear that data recovery
time must be reduced. A possible method to achieve that is
to combine data requested in the same rack and to use the
useful link, as shown in [30]. The approach suggested by the
authors delivers a right load balance. However, their solution
does not pay much attention to the QoS, which is an essential
indicator for IoT data analysis.

B. NVM ENDURANCE MANAGEMENT
AND ENHANCEMENT
NVM (Non-Volatile Memory) is becoming the likely choice
for its advantages, including non-volatile, byte-by-byte
access, high storage density, low power consumption, and
good read/write performance. PCM (Phase-ChangeMemory)
is the current choice for NVM.Nevertheless, the limited write
endurance still is the apparent shortage and a challenging
problem to use PCM.

Wear-Leveling (WL) is the core method to handle the
endurance management and to improve the PCM lifetime
in recent literature works [31]. In [32], the authors sug-
gest a start-gap wear leveling technique to improve the
PCM lifetime. The goal of the authors is to adopt an alge-
braic mapping between logical and physical addresses, thus
bypassing also tracking per-line write counts. Another adap-
tive wear-leveling algorithm is introduced in [33]. In this
case, the approach suggested by the authors is composed
of three unique patterns for PRAM main memory with a
DRAM buffer. The main benefit is that the buffering solution
decreases the write counts and prevents skewed writing by
taking into account both the write count and clean data based
on a least recently used (LRU) scheme.

In [34], Jiang et al. suggest an LLS (Line-Level mapping
and Salvaging) scheme in which a portion of the total space
is allocated dynamically as backup space in a PCM device
while mapping failed lines are employed to backup PCM.
As known, the LLS builds a contiguous PCM space and hides
lower level failures from the Operating System and appli-
cations. Chen et al. introduce an efficient age-based wear-
leveling scheme in [35]. In this case, the proposed solution
is agreeable with existing virtual memory management. Two
implementations, i.e., bucket-based and array-based wear
leveling, with nearly zero search cost, are proposed to obtain
a good tradeoff between time and space complexity. A FGWL

(Fine Grained Wear-Leveling) is presented in [36] and is
used for producing uniform writes (in the average case) while
avoiding per line storage.

For the failure repair issue, Schechter et al. propose Error-
Correcting Pointers (ECP) in [37]. This approach aims to
optimized error correction for memories. In fact, it is clear
that the permanent cell failures lead to error but, employing
the proposed method, they could be immediately detected.
In [38], Ipek et al. introduce a dynamically replicated mem-
ory (DRM). The solution presented by the authors represents
the first hardware and operating system interface, designed
for PCM, which enables continued operation through grace-
ful degradation when a hardware failure occurs. On the con-
trary, in this paper, we pay our attention to the data recovery
when a failure occurs.

III. SCENARIO AND PRELIMINARIES
For a given data center with N PMs equipped with NVM to
conduct big data analysis tasks for supporting various IoT
applications/services, the tasks rely on some data and network
bandwidth to provide continuous services. It is necessary to
be aware that multiple services may share the same data,
such as, vehicles navigation and stations setting are needed
by users to obtain the road network information.

For each service, we assume that it is associated with one
data, and there is a bandwidth demands for the service to
accomplish its task with guaranteed QoS. Hence, we can use
a two-tuple to represent the service as Si : 〈Dj,Bi〉, where Dj
means the jth data, and Bi is the required bandwidth for Si.
We also use δ(Si) to represent the associated data for Si, i.e.
δ(Si) = Dj for the above example.
Each PM (Physical Machine) or server in the data center

is equipped with an NVM (Non-Volatile Memory), which is
split into m storage slots to store data. For each data, there
are multiple replicas in the system to support redundancy and
performance improvement. Actually, the service is associated
with some given data replica. Therefore, we can update the
service as Si : 〈Rjk ,Mk ,Bi〉, where Rjk is the replica that
hosted on PM Mk for data Dj. Similarity, we define R(Si) =
Rjk to represent the replica that actually access by service Si.
To clarify the relationship between service and data replica,
we define Rjk = ∅ if there is no replica of Dj placed on PM
Mk , and define an indicator as follows.

π (Si,Rjk ) =

{
1, Si is associated with replica Rjk ;
0, otherwise.

Based on the bandwidth requirement of the service, we can
further define the load for the replica. We use ωjk to represent
the load for replica Rjk , and define it as:

ωjk =

|S|∑
i=1

π (Si,Rjk ) · Bi (1)

where S is the set of services in the system and |S| is the
number of services.
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The bandwidth requirement of the services usually is
guaranteed to ensure the QoS. Once NVM failure occurs,
the hosted data replicas will be lost. For the associated
services, we assume they will be redirected to other replicas
of the same data equally. It is necessary to recover the
lost data replicas for system robustness and performance
improvement. As mentioned above, we consider the QoS,
recovery time and robustness together during data recovery.
For each service, we use the allocated bandwidth to measure
the QoS, i.e.:

Qi = Ai/Bi

where Ai is the allocated bandwidth to service Si. In fact,
the QoS should be a notation over time, here is just the value
under a specific time. We will give more details on the QoS
of the global system in Section VI.

It is straightforward to understand the recovery time, which
concerns the time to recover all lost data. The recovery time
is also a window of vulnerability since the system is subject
to another NVM failure with the risk of losing data. On the
one hand, we should reduce the window of vulnerability, and
it should be shorter than the time between two regular NVM
failures, which is determined by the NVM feature (limited
write endurance). On the other hand, we need to maintain
the system robustness during data recovery. Regarding the
robustness issue, it aims to provide the ability for each data to
survive from another NVM failure or rack failure during data
recovery. Therefore, we need to define a high reliability rule
to represent the robustness. As a consequence, we give a rule
as follows:

HR-Rule (High Reliability Rule): There should be at least
two racks to store the replicas for each data.

The HR-rule indicates that there are at least two replicas
for each data, and the data can survive from one single NVM
failure or rack failure. A direct consequence of this feature is
that there is at least one replica after one NVM failure or rack
failure. Alternatively, we declare that the replica distribution
is robust if the data can survive from one single NVM failure
or rack failure. Indeed, the replica distribution obeys HR-rule
is robust. To simplify the description, we define another
indicator as follows:

0(Dj) =

{
1, replica distribution of Dj obeys HR-rule;
0, otherwise.

We will use the percentage of data whose replica distribu-
tion obey the HR-rule, i.e.:

α =

|D|∑
j=1
0(Dj)

|D|
(2)

whereD is the set of data in the system, and |D| is the number
of data.

Furthermore, it is essential to be aware that HR-rule must
be flexible since could be adjusted according to the real
system requirement.

We investigate the data recovery problem when NVM
failure occurs. We take the QoS, recovery time and robust-
ness into account, and aim to propose a useful data replica
recovery algorithm to achieve improved QoS and robustness
for the system within acceptable recovery time.

IV. STAGED DATA REPLICA RECOVERY
It is straightforward to assume that the direct data replica
recovery method can achieve shorter recovery time, which
can decrease the window of vulnerability for the system.
However, the QoS will be degraded significantly. This issue
occurs because data transfer will occupy bandwidth, and the
allocated bandwidth to services will be decreased. We ana-
lyze the problem and find that the replica distribution for each
data is different. We can treat the lost replica respectively.
Hence, we propose a staged data replica recovery algorithm.
The basic idea is to recover the data with only one replica in
the systemfirstly. Then, we recover the datawith two replicas,
and so on. The benefit of this algorithm is to avoid a burst of
data communication. The details of the Staged Data replica
Recovery (SDR) algorithm is shown in Alg. 1.

Algorithm 1 Staged Data Replica Recovery: sdr(�)
Require: �: the set of data having lost replica.
1: max ← 0;
2: for all Dj ∈ � do
3: if max < Nr (Dj) then
4: max ← Nr (Dj);
5: end if
6: end for
7: for i← 1→ max do
8: �i← ∅;
9: end for
10: for all Dj ∈ � do
11: n← Nr (Dj)
12: �n← �n ∪ {Dj};
13: end for
14: for i← 1→ max do
15: recovery(�i);
16: end for

To describe the replica distribution and algorithm clearly,
we define the following indicator:

π (Dj,Mk ) =

{
1, if Rjk 6= ∅;
0, otherwise.

Based on this indicator, the number of replicas for dataDj can
be given by the following equation:

Nr (Dj) =
N∑
k=1

π (Dj,Mk ) (3)

Besides, we define another indicator isRack(Mm,Mn) to
represent if two PMs belong to the same rack or not.
isRack(Mm,Mn) equals to 1 if the two PMs belong to the same
rack; the value equals to 0, if not.
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In the algorithm, the set of data having lost replica in the
NVM failure is classified into multiple categories by their
number of available replicas. max in lines 1-6 represents the
number of categories. Then, the data with the same replica
numbers are assigned to the same subset.�n is the subset con-
taining the data with n replicas. Finally, we call the recovery
function to finish the data recovery procedure stage by stage.
The details of the recovery is shown in Alg. 2.

Algorithm 2 Data Recovery Procedure: recovery(�)
Require: �: the set of data needs new replica.
1: for Dj ∈ � do
2: src← 0, dst ← 0, ω← 0, flag← 0;
3: for k ← 1→ N do
4: if (Rjk 6= ∅)&&(ω(Mk ) > ω) then
5: src← k;
6: ω← ω(Mk );
7: end if
8: end for
9: sort(racks);
10: for all rack ∈ racks do
11: if isHR(Dj, rack) then
12: sort(PMs)
13: for all Mk ∈ PMs do
14: if place(Dj,Mk ) then
15: flag← 1;
16: dst ← k;
17: break;
18: end if
19: end for
20: end if
21: if flag then
22: break;
23: end if
24: end for
25: src(Dj)← src, dst(Dj)← dst;
26: end for
27: conduct data recovery;

For the data recovery procedure, we need to answer the
following three questions. (1) When is it necessary to start
the recovery procedure? (2) Where is the original data source
if there are more than one available replica? (3) Where is the
destination or host PM for the new replica?

For the first question, we start the recovery stage by stage
as shown in Alg. 1. For the source selection problem for data
migration from multiple replicas, the basic idea is to select
the replica contained in the PM with minimal workload. It is
shown in lines 3-8 inAlg. 2. The load of PMMk is represented
by ω(Mk ), which is equal to the total load of replicas in
PM Mk , i.e.:

ω(Mk ) =
|D|∑
j=1

π (Dj,Mk ) · ωjk

src (in Alg. 2) is used to record the PM ID containing the
source replica.

To decide the destination for the new replica, we need three
steps: rack-level selection, PM-level selection, and slot-level
selection. First, we sort the racks by their loads, which mean
the total loads of the PMs hosted in the rack. This feature is
implemented in function sort(racks) in line 9. The load of the
rack is equal to the sum of PM loads in the rack. We will test
each rack in racks. One of the necessary conditions for the
selected rack is to satisfy the HR-rule, i.e. if a new replica
is hosted in the selected rack. This peculiarity is shown in
line 11. The function isHR(Dj, rack) returns true if the new
replica distribution of Dj fulfill the HR-rule when one new
replica of Dj is placed in rack . Now, we have selected some
rack . Then, for the PMs in the selected rack, we sort PMs
by increasing the load order by the function sort(PMs). For
all PM in the rack, we will also test if there is an available
slot to place the new replica. This is executed by the function
place(Dj,Mk ) in line 14. If the place function returns true,
dst will record the hosted PM ID for a new replica. Until
now, we know the source and destination for each data replica
recovery.

There is another issue that requires more investigation.
When we place the new replica in the selected PM, there may
be no idle slot to store it. In this case, we need to replace some
existing replica in the destination PM. This action is also the
slot-level selection as mentioned above. To select the target
replica, we still need to practice the HR-rule. A consequence
of this indication is that although the selected replica is
removed its data replica distribution still meet HR-rule. In our
implementation, letMk be the selected PM.We select the data
replica Rjk with largest Nr (Dj) value.

V. RARITY-AWARE DATA REPLICA RECOVERY
We reconsider the problem addressed in this paper and find
that the data replica distribution should match the service
requirement. This indication is also the reason to place mul-
tiple data copies in a social network system. To describe the
relationship between data and service requirement, we define
hotness for each data as follows:

θj =

N∑
k=1

ωjk

where N is the number of PMs in data center, and ωjk is
defined in Eq. 1.

For each data, hotness indicates the demands on bandwidth
for all associated services. However, it still cannot reflect
the requirement for the scale of data replicas. Consequently,
we define rarity for the data Dj, i.e., the average load for
replicas to satisfy the service requirement, as follows:

γj = f (Nr (Dj), θj) = Nr (Dj)+ β · lg θj

where Nr is defined in Eq. 3, β is a coefficient to adjust
the θj with various definition. According to the experiments,
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we find that the data needs more replica if γj < 0. This
conclusion is because the data is very hot. The average load
for each replica is heavy, even if there are more than three
replicas in the system. We should be aware that rarity and
hotness will work with the above mentioned HR-rule. So far,
we have combined the data hotness and replica distribution.

Based on the above analysis, we propose a Rarity-Aware
Data replica Recovery (RADR) algorithm as shown in Alg. 3.
In this algorithm, the function isHR(Dj) in line 3 returns true
if the replica distribution of data Dj practices the HR-rule,
or return false if not. Based on the two conditions, the item in
set � is assigned to subset �A and �B. There may be some
items in � that do not belong to �A or �B. This feature is
because we take data rarity into account.We think that if there
are enough replicas of the data, it is unnecessary to recover the
lost replica. Formally, the RADR algorithm is also a staged
algorithm, but with different data set from the SDR algorithm.

Algorithm 3 Rarity-Aware Data Replica Recovery: radr(�)
Require: �: the set of data having lost replica.
1: �A← �B← ∅;
2: for all Dj ∈ � do
3: if isHR(Dj) then
4: �A← �A ∪ {Dj};
5: else if γj < 0 then
6: �B← �B ∪ {Dj};
7: end if
8: end for
9: recovery(�A);
10: recovery(�B);

For the recovery function in Alg. 3 (RADR Algorithm),
it is also a bit different from the function in Alg. 1 (SDR
Algorithm). More in detail, the sub-function place(Dj,Mk ) is
different. For the RADR algorithm, the replaced replica is the
one with minimal load (refer Eq. 1), and the remaining replica
distribution still satisfy the HR-rule and positive rarity value.
For instance, let Rjk be the selected replica to be replaced. The
new replica distribution for dataDj still meet the HR-rule, and
we have γ ′j = f (Nrj − 1, θj) = Nr (Dj)− 1+ β · lg θj > 0.

VI. PERFORMANCE EVALUATION
In this section, we will evaluate our algorithms by simula-
tions. As discussed above, the QoS is the crucial factor to
measure the algorithm performance, and the allocated band-
width decides the QoS directly. Hence, we will evaluate the
bandwidth allocation model first.

A. BANDWIDTH ALLOCATION MODEL
We conducted extensive experiments on a real system to
explore the bandwidth allocation model for data migration
tasks. We allowed the data transfers between PMs in the same
rack. First, we transferred 10 equal-size data. The size of the
data has been set to 64MB, 128MB, 256MB, 512MB, and
1024MB respectively. The data migration time for each data
is shown in Table 1. From the result, we know that the 10 data

TABLE 1. Data migration time - 10 data with same size (second).

TABLE 2. Data migration time - 5 data with various size (second).

have the similar migration time under any data size setting.
This result indicates that the 10 data migration tasks share
the bandwidth equitably.

We also managed the experiments in another scenario.
We transferred 5 data with different size simultaneously,
including 64MB, 128MB, 256MB, 512MB, and 1024MB.
The data migration time is shown in Table 2. We can also
conclude that the data migration tasks share the bandwidth
reasonably. In detail, five tasks share the bandwidth at first,
and then four tasks after the 64MB data are moved. Similarly,
the data with a more substantial size have greater average
bandwidth since fewer tasks share the resource gradually.

Based on the above result analysis, we have employed the
average distribution model for bandwidth allocation in the
following simulations.

B. SIMULATION ANALYSIS
We performed simulations to evaluate our algorithms under
various settings. As the case in our data center, the link capac-
ity has been set to 1000 Mbps. In the data center, the racks
are connected by one core switch. There is one key factor to
represent the initial system state, system load, which indicates
the average load for all the racks. We used u to represent the
system load. The value is the ratio of the average load to the
link capacity.

We implemented three algorithms in our simulation.
Besides, the SDR and RADR algorithms, we also realized
the typical direct data replica recovery (DDR) algorithm. The
latter recovers all the lost replicas immediately when anNVM
failure occurs. This feature has been the baseline for our
algorithm performance. For the recovery function, the band-
width is assigned to the IoT services and data migration tasks
equitably. We also have made the following settings.
• the system load varied from 40% to 80%;
• the data size has been set to 1GB;
• the NVM capacity has been set to 1TB.
Therefore, there are 1000 slots to store the data. There

are 2000 data in the system. For the replica distribution,
the number of replicas for data follows normal distribution
between 2 and 5. Consequently, there are some idle slots in the
NVM. For each service, the load accepts normal distribution

107002 VOLUME 7, 2019



S. Wang et al.: Active Data Replica Recovery for Quality-Assurance Big Data Analysis in IC-IoT

FIGURE 1. Data Recover Time for DDR, SDR, and RADR (second).

between 50 and 200. At the same time, the original replica
distribution practices the HR-rule for all data. We used the
average distribution model for bandwidth allocation as men-
tioned above.

First, for the traditional data recovery time, the obtained
result is shown in Fig. 1. The x-coordinate is the system
load, and the y-coordinate is the data recovery time. From
this result, we know that the DDR algorithm has shortest
recovery time. This conclusion is because of the DDR algo-
rithm initials all replica recovery immediately when an NVM
failure occurs, and it occupies more bandwidth to transfer the
data. SDR and RARD algorithms have a more considerable
recovery time since the recovered data is split into multiple
groups (or stages) based on the replica distribution. Accord-
ing to the bandwidth allocation model, the data migration
tasks have assigned less bandwidth to transfer data globally.
As the system load increases, the total recovery time becomes
more substantial, since there are more IoT services or data
migration tasks to share the given bandwidth.

For the critical factor, i.e., the QoS, Fig. 2 shows the QoS
given by the three algorithms. The x-coordinate is also the
system load, and the y-coordinate represents the average QoS
for services in the system. It is quantitatively calculated by
Eq. 4:

QoS =

|S|∑
i=0

Qi

|S|
=

|S|∑
i=0

∫ T
0 Ai(t)dt
Bi·T

|S|
(4)

where T is the value of data recovery time, as shown in Fig. 1.

FIGURE 2. Average QoS given by DDR, SDR, and RADR.

FIGURE 3. QoS values over time (u = 30%).

FIGURE 4. System Robustness under DDR, SDR, and RADR (u = 30%).

From the obtained result, we know that our SDR algorithm
and the RARD algorithm have significant QoS improvement
than the DDR one. It is the similar reason for data recov-
ery time. The IoT services occupied less bandwidth during
data migration in the DDR algorithm. Subsequently, the QoS
decreased significantly. We notice that the RARD algorithm
offers the best QoS because it ignores many unnecessary
replica recoveries based on data rarity. The principal differ-
ence between SDR and RADR lie in taking the data rarity into
account or not. Hence, it is valuable to note that the combined
consideration of the replica distribution and data hotness is
beneficial.

Regarding the algorithms with multiple stages, they intro-
duced smooth QoS variation. Fig 3 can demonstrate this
conclusion. In fact, it provides the QoS values over time for
some specific service. In this figure, the QoS related to the
DDR algorithm decreases suddenly, since all data recovery
tasks start simultaneously. The value goes up and down, this
indicates a new data migration stage. Compared to DDR,
SDR and RADR algorithms have more data migration stages,
and this massive transfer is distributed to multiple stages.
These stages are unquestionably shown in the figure. For the
SDR algorithm, it has four stages in this instance, while the
RADR algorithm has two stages.

System robustness is also significant for data recovery.
Fig. 4 presents the retrieved result regarding the robustness.
The x-coordinate is the time, and y-coordinate is the value
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of α for the system (see Eq. 2). By analyzing the results,
we know that the DDR algorithm needs to face a long-time
risk of losing data by another NVM failure or rack failure.
Compared to the DDR algorithm, the SDR and RARD algo-
rithms have a meaningful improvement on the system robust-
ness. We can also find more stages in this figure. This result
is because the allocated bandwidth for each data migration
task is different. The value of α increases once some data
migration tasks are finished.

VII. CONCLUSION
In this paper, we examined the data recovery problem for
QoS assurance IC-IoT big data analysis. We have aimed to
provide the QoS guarantee and robustness for the system
during the data recovery. In particular, in the proposed solu-
tion, we jointly consider the QoS, recovery time and system
robustness while presenting the HR-rule and rarity model
to measure the replica distribution and service requirements
comprehensively. Then, the rarity-aware data replica recov-
ery algorithm has been presented, which not only gives the
priority for lost data based on the HR-rule, but also explores
the unnecessary replica by data rarity. The simulation results
have shown that our RADR algorithm has significant perfor-
mance improvement than a traditional direct data recovery
method.
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