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Abstract
The atmospheric boundary layer (ABL) is the layer closest to the Earth’s surface within
which most human activities take place. The vertical profile of atmospheric thermody-
namic parameters in the ABL impact weather, air quality and climate. However, surface
sensor networks and satellite observations do not provide sufficient information on the
high temporal variability and strong vertical gradients that occur in the ABL. Thus, the
ABL represents an important but rather under-sampled part of the atmosphere. This
observational gap currently hampers progress in numerical weather prediction, air quality
forecasting and climate assessment. Due to recent technological and methodological
advances, ground-based remote sensing instruments are now able to provide high-
quality profiles of ABL parameters such as temperature, humidity, wind, aerosol and
cloud properties. However, even though state-of-the-art ABL profilers are deployed at
numerous sites in Europe, efficient science and technology networking and coordination
is still required to exploit this rich dataset effectively. The current lack of data and
procedure harmonization often diminishes the potential societal benefits of the existing
ABL profiling data. This paper introduces PROBE, a new initiative funded by the
European Cooperation in Science and Technology (COST), that aims to broaden the
bridge between a wide range of user needs and the science and technology expertise
residing in industry and academia, while strengthening and harmonizing methods and
procedures to yield higher quality ABL observational data. Here, the challenges, objec-
tives and implementation plan for PROBE are described, highlighting some preliminary
results that will be further developed into operational applications during the 4-year
duration (2019–2023) of this collaborative project.
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Introduction

The atmospheric boundary layer (ABL) is the layer of the atmosphere closest to the Earth’s
surface, within which most human activities take place. The ABL is directly influenced by
surface-atmosphere exchanges of heat, moisture and other constituents, with impacts from the
biosphere and anthropogenic activities playing a role. In return, human activities are influenced
by the ABL characteristics of wind, temperature, humidity, fog, clouds, precipitation and air
quality (Friehe 1987; Stull 1988; Garratt 1994).

Disproportionately to its relevance, the observational knowledge of the ABL is scarce.
Meteorological surface sensor networks only gather standard atmospheric variables near
the ground while satellite observations of the ABL are limited by strong attenuation of
their signal in clouds, their lack of high vertical resolution in the ABL and the large
uncertainty of retrieval algorithms close to the surface due to limited knowledge of
variable surface characteristics (such as albedo). The only global coordinated measure-
ment network providing profile observations at a high vertical resolution within the ABL
are radiosondes. While radiosondes provide essential measurements for atmospheric
vertical profiling, they are spatially sparse and their low temporal frequency is not nearly
appropriate for capturing the diurnal variation in the ABL. The drawbacks of current
operational monitoring systems may be reduced by increasing the use of existing ground-
based profiling technology. However, compared with the well-established programs for
satellite, surface and radiosonde measurement networks, ABL profiling efforts still lag
behind in terms of coordination and international standards.

Atmospheric profiling has the ability to capture vertical variations in atmospheric condi-
tions that are key for characterizing ABL dynamics and structure at a given location and to
better understand atmospheric exchange processes. With high-resolution atmospheric models
emerging, 4-D observations of multiple variables capturing the diurnal evolution of ABL
dynamics are needed for model evaluation, development and data assimilation (NRC 2009;
Barlow et al. 2017). To cater to the needs of the modelling community, both suitable products
of high quality, and tools for data quality control, processing and assimilation, are required.

Several additional fields of applications could benefit from atmospheric profiling measure-
ments, in the domains of both scientific research and societal activities. Air quality authorities
in charge of monitoring and forecast could benefit from more precise information on the
vertical distribution of aerosols, as well as dynamical profiles to better account for atmospheric
mixing. Cities and local governments concerned with mitigation and adaptation to climate
change could also benefit from more precise data regarding temperature humidity and wind
profiles and their spatial heterogeneities in dense urban environment, with a particular concern
to severe weather events. The construction business is in high demand for vertical profiles of
wind in particular for urban environments. Airport activities that are highly weather dependent
could benefit from more precise knowledge of turbulence and hydrometeor (e.g. fog/stratus)
profiles. This applies to railway and road traffic as well. The renewable energy sector must
have access to precise datasets to quantify wind and solar resources and their variability. This
includes wind and turbulence profiles for wind energy and aerosol and cloud profiles for solar
energy, especially for plants based on concentrated solar power. The insurance business is also
a domain that is highly interested in weather and climate data, specifically in the atmospheric
boundary layer where human activities take place.

The importance of ABL profiling has hence been widely recognized for several applications
(Seibert et al. 2000; Emeis et al. 2008; Hardesty et al. 2012; Barlow 2014; Cimini et al. 2014;
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Dang et al. 2019) that can be grouped into five critical areas of societal needs (NRC 2009;
Hardesty et al. 2012): energy security, public health and safety, transportation, water resources
and food production. In particular, three high-priority emerging weather research needs have
been identified: very-high-impact weather, urban meteorology and renewable energy develop-
ment. Reaching out to new potential user communities that could benefit from continuous ABL
profiling by dense monitoring networks is hence an important objective to be pursued.

To determine spatio-temporal ABL variations, ground-based profiling networks need to
provide high-quality long-term measurements at high vertical and horizontal resolution.
Atmospheric variables of interest include vertical profiles of aerosol and cloud characteristics,
wind, turbulence, air temperature and humidity. ABL profiling measurements are currently
performed at a large number of sites in Europe. However, profiling systems are deployed and
operated in response to a variety of interests by the different state and regional governments,
research institutes, universities and the private sector. As a result, a diverse range of technol-
ogies, hardware settings and processing procedures are being used, lacking a common
framework at the European (or even global) level.

Thus, despite the indications of a high impact per cost-effectiveness of ground-based ABL
profiling networks (Eyre and Reid 2014), the current situation hampers the effective use of
extensive existing data, which thus remain underexploited.

State-of-the-art ground-based remote sensing instruments deployed worldwide for ABL
profiling include the following:

& Wind profilers
– Radar wind profiler (RWP)
– Doppler wind lidar (DWL)

& Temperature profilers
– microwave radiometer (MWR)
– Raman lidar (RL)

& Humidity profilers
– MWR
– RL
– Differential absorption lidars (DIAL)

& Aerosol profilers
– elastic lidars
– automatic lidar ceilometer (ALC)
– RL

& Cloud profilers
– ALC
– Cloud radar (CR)

In view of global economic constraints, whichmakemassive deployment of new instrumentation
unlikely, coordination efforts shall build on existing observing resources, fostering innovative
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research aiming at network optimization and enhanced synergy between different observing
strategies.

Recently, a number of surveys have shown that more than 700 ALC, 15 RL, 20 DWL, 30
RWP, 30 MWR and 15 CR are currently operated in Europe, typically by operational agencies
(e.g. national meteorological services) or research institutions. To exploit these valuable
observations most cost-effectively, innovative research should help identifying and closing
observational gaps as well as assessing how higher order products can be derived based on
synergy of different observing techniques. However, the inclusion of these vast resources in a
structured and coordinated monitoring system is a complex process, involving several initia-
tives. Among these, the European meteorological services network (EUMETNET) Composite
Observing System (EUCOS) is responsible for the development of the observing system in
Europe to serve the needs of regional numerical weather prediction (NWP). EUCOS is currently
running the E-PROFILE programme (www.eumetnet.eu/e-profile) to address the networking of
various profiling instruments.

Similarly, the European Research Infrastructure ACTRIS will design and implement a long-
term research infrastructure to support scientific research observational needs related to aero-
sols, clouds and trace gases (www.actris.eu) based on RL, CR, ALC and MWR among other
instruments. The above initiatives have benefited from research cooperation within former
European Cooperation in Science and Technology (COST) Actions. Established in 1971,
COST (www.cost.eu) is the oldest and widest European intergovernmental network for
cooperation in research, presently counting 38 European countries as well as cooperating and
partner members. The COSTmission is to provide networking opportunities for researchers and
innovators in order to strengthen Europe’s capacity to address scientific, technological and
societal challenges. The mission is implemented by funding bottom-up, excellence-driven,
open and inclusive networks for peaceful purposes in all areas of science and technology. COST
funding is exclusively dedicated to collaboration activities, covering basic and applied research
and addressing issues of societal importance or pre-normative nature. COST represents a global,
open and inclusive networking mechanism, currently engaging about 45,000 researchers and
innovators.

In the field of ABL profiling, research coordination within former COST Actions was
instrumental to improving data quality and derive value-added products for climate and
research applications, providing the expertise and the networking opportunities needed to
develop recommendations and new methods, algorithms, firmware and software. Among
others, the following COST Actions have significantly contributed to the development and
application of ABL profiling systems within the European observation network.

& COST Action 76 (1995–1999), “Development of VHF/UHF Windprofilers and Vertical
Sounders for Use in European Observing Systems”, set the basis for the development of
radar wind profilers and their networking for the integration in the European observing
system (Nash et al. 2003).

& COST Action 712 (1996–2000), “Application of microwave radiometry to atmospheric
research and monitoring”, set the basis for the development of radiative transfer models
and code for microwave radiometry (Mätzler 2000).

& COSTAction 715 (1999–2003), “Meteorology applied to Urban Air Pollution Problems”,
produced an inventory of urban meteorological sites (Fisher et al. 2005).

& COST Action 720 (2000–2006), “Integrated Ground-based Remote-Sensing Stations for
Atmospheric Profiling”, reviewed the progress within each ABL profiling technique and
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towards instrument synergy for the derivation of additional products. It also set the basis
for a EUMETNET observatory-type network, it introduced concepts for cost-effective
combination of ABL profiling systems and it promoted field campaigns to evaluate NWP
model output (Engelbart et al. 2009).

& COST Action ES0702 (2008–2012), “European Ground-based observations of essential
variables for CLImate and operational METeorology” (EG-CLIMET), advanced the
exploitation of existing ground-based profiling stations for climate and meteorology
applications. EG-CLIMET addressed four profiling sensor types (ALC, DWL, RWP,
MWR) that, at relatively low cost, could contribute significantly to NWP. EG-CLIMET
performed a survey of instruments already deployed in Europe, demonstrating their
performances in various conditions. EG-CLIMET also compared the ground-based profil-
ing products with the NWP model predictions. The results were presented to EUCOS with
the recommendation to operate these sensors in a monitoring network to provide real-time
data. Thus, EG-CLIMET made a substantial contribution in triggering and defining the E-
PROFILE program established by the EUMETNET Observations Program Manager
(Haeffelin et al. 2012; Illingworth et al. 2013; Illingworth et al. 2015).

& COST Action ES1303 (2013–2017), “Towards Operational Ground-Based Profiling with
Ceilometers, Doppler Lidars and Microwave Radiometers for Improving Weather Fore-
casts” (TOPROF), specifically addressed the remaining issues with the three relatively
newer sensor types (ALC, DWL, MWR). TOPROF focused on the setup of common
calibration techniques and operating procedures, developing retrieval algorithms and
uncertainty characteristics, and building homogeneous and reliable data quality control
for the three classes of instruments (Illingworth et al. 2019 and references therein).
TOPROF provided standardized software and calibration procedures that have been
implemented in the E-PROFILE processing. E-PROFILE currently distributes in real-
time profiles of aerosol and cloud backscatter from a network of 303 ALCs from 22
countries (as of October 2019) to European weather forecast centres. TOPROF finally
proposed the extension of E-PROFILE to DWL and MWR, which are now considered in
E-PROFILE 2nd phase (2019–2023) in form of the preparation of two business cases that
shall demonstrate respective benefits.

To maintain excellence established in the framework of previous COST actions, continued
quality control and interaction between manufacturers, research community and stakeholders
are required. In addition, capabilities and potential benefits of new technologies (such as DWL
and DIAL) that have reached the market in recent years need to be quantified. These goals will
be addressed by the new COST Action (CA18235) “PROfiling the atmospheric Boundary
layer at European scale” (PROBE), proposed in 2018 and selected for funding for the period
2019–2023. Here, we describe current challenges and outline PROBE objectives, highlighting
the innovation potential illustrated by a few early results.

Challenges and objectives

The ABL observational gap calls for improved and systematic profiling of the lower atmo-
sphere, i.e. the lowest 2–3 km above ground where the vertical structure is driven by surface-
atmosphere exchange processes in response to local orography, land cover and biological and
human activities in addition to the synoptic scale weather conditions. However, due to the
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complexity of high-technology ABL profiling instruments and the large variety of end-users,
their operators often lack expertise and common training regarding the most appropriate
measurement setup and best practice in data processing that allow for full exploitation of such
data. Optimized operation of ABL profiling sensors includes appropriate measurement con-
figurations, consistent maintenance activities, absolute calibrations and post-processing, data
format harmonization and quality control. This poses a clear need for operational guidelines
and harmonized processing procedures to ensure maximum quality and consistency through-
out the sensor networks for use in a wide range of applications, adding value to the network
data products and the deployment investment. Maintaining and even expanding the pool of
high-level expertise can only be achieved by a consortium of research scientists, instrument
manufacturers, operational agencies and end-users.

Increased harmonization of existing ABL profiling observations and data processing will
result in improved quality control, more complete and uniformmetadata, and easier data access.
Coordination of ABL profiling at the European scale is thus pivotal to pave the road towards
new and improved weather and climate services (e.g. NWP, high-impact weather warnings, air
quality and renewable energy forecasts, site climatology). An overarching strategy is required to
integrate the current and future aims and efforts at European level, vastly augmenting socio-
economic benefits that can be obtained. Following the Network-of-Networks (NRC 2009) and
System-of-Systems (Thorne et al. 2017) tiered approaches, scientific and technological coor-
dination will make ABL profiling more efficient, serving multiple needs and environmental
applications, and finally capitalizing existing science and technology investments in Europe.

Thus, the main research objective of PROBE is to efficiently and cost-effectively reduce the
observational gap in ABL profiling at European scale and to extend the field of applications
that can benefit from these ABL profiling data.

Challenges

To answer the main research question, the following four challenges have been identified:

& Challenge 1: Capacity building to enhance knowledge exchange between academia,
industry and end-users for exploiting the full potential of ABL profiling for societal
benefit;

& Challenge 2: Enhancing pan-European research coordination to develop advanced ABL
profiling products and tools for data assimilation and long time series reanalysis;

& Challenge 3: Fostering coordination between operational agencies, academia and industry
to tailor measurement networks for clearly identified applications;

& Challenge 4: Capacity building to improve the operation and data quality of existing ABL
profiling instruments for integration within a European network.

To address the above challenges, five groups of actors have been identified:

1. Academia: Scientists from Universities and research institutes;
2. Industry: Manufacturers of ABL profiling instruments;
3. Operational agencies: Entities operating individual or networks of ABL instruments in an

operational context for societal need (e.g. weather, air quality);
4. Sustained research structures: Networks of ABL instruments operated for research

purposes;
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5. End-users: groups whose activity can benefit from the use of ABL measurements in
different sectors (e.g. energy, transport, health).

The main goal of PROBE is thus to create a cooperation hub where these groups can
communicate their objectives and requirements, share expertise on observations and applica-
tions and develop novel strategies to further exploit ABL data with the aim to maximize
societal impact.

Objectives

The overall objective of PROBE is to develop homogenized and traceable methods to cost-
effectively close the ABL observational gap at European level. These methods will allow for
immediate implementation in short-term applications, while also provisioning long-term
sustainable research.

The following specific research coordination and capacity building objectives are defined
and aligned with the four challenges introduced above:

1. Challenge 1 (knowledge exchange)

Objective 1.1: Establish a stakeholder platform for identified user groups across stake-
holder types, EU member states, non-EU countries and transnational organizations to
collate, review and define ABL profiling user needs.
Objective 1.2: Develop a conceptual framework common to all measurements, including
the identification of necessary methods and tools for the entire processing chain from
measurement to end-user product (including operations, networking, retrieval, impact
evaluation).
Objective 1.3: Capacity building for end-users through training and demonstration on the
use and impact of ABL products in multiple applications for societal benefit.

2. Challenge 2 (advanced ABL profiling)

Objective 2.1: Identify ABL parameter needs of different stakeholder groups and EU
programmes through dedicated workshops, reports, review and white papers.
Objective 2.2: Develop higher level products from the synergy of co-located ABL
profiling instruments, including advanced atmospheric thermodynamic, aerosol and cloud
profiling products and their “best estimates”. Promote coordination of field experiment
efforts planned at national and international levels, including technology/methodology
comparison and/or performance assessment, ensuring efficient planning and impact
maximization.
Objective 2.3: Build capacity in exploiting advanced ABL profiling data for short-term
weather forecasts, aviation hazards, renewable energy applications, pollution dispersion,
carbon budget monitoring and long-term climate applications.

3. Challenge 3 (tailor measurement networks)

Objective 3.1: Improve the capabilities of existing ABL instrument networks through (a)
the design of harmonized data and metadata formats, near real-time processing, optimal
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measurement strategy building on existing network implementation experience and (b)
the promotion of cooperation between academia and agencies to support better integration
and use of ABL profilers.
Objective 3.2: Design optimized geographical distributions of ABL instrument networks
relevant to high-impact applications that could benefit from more ABL data (e.g. urban
environments). Exploit the mutual benefits of reference (less dense, more accurate) and
comprehensive (denser, less accurate) networks.
Objective 3.3: Enlarge the network capacity by engaging existing ABL profiling systems
in Europe that are not yet integrated within the emerging networks. Enable institutions
identified as national point-of-contact to assist national operators in performing observa-
tions and acquiring and deploying new instrumentation suitable for inclusion in a
European scale network.

4. Challenge 4 (operation and data quality)

Objective 4.1: Improve the quality and maturity of ABL profiling data across heteroge-
neous networks through (a) better operational procedures and tools, and (b) harmonized
data interpretation algorithms and codes suited for network application.
Objective 4.2: Promote innovation in ABL measurements (a) through close cooperation
with manufacturers leading to hardware, software and firmware improvements, and (b) by
investigating emerging new ABL profiling technologies and their potential for future
network deployment and synergy applications.
Objective 4.3: Develop an agenda targeting operational ABL profiling in Europe, coor-
dinating science and technology development addressing operational aspects and long-
term services. Identify and establish centres with sufficient expertise to serve as points-of-
contact for disseminating methods and tools.

Implementation

The understanding, monitoring and forecasting of ABL features require interdisciplinary
knowledge, ranging from fundamental science, technology engineering and operational
skills. Thus, in order to address to its objectives, PROBE is built on an interdisciplinary
network of experts including university departments (Physics, Atmospheric Sciences,
Meteorology), national meteorological and hydrological services (NMHS), national re-
search institutions, operational agencies and private sector (instrument manufacturers,
weather-related services).

This network allows PROBE access to many ABL profiling instruments distributed across
Europe and several highly instrumented test-bed sites. Sites are located in typical Alpine,
Mediterranean, Baltic, Atlantic and continental regions, enabling the investigation of most of
the ABL climatology types (marine, coastal, sub-arctic, continental, alpine, urban).

Activities within PROBE are organized through four Working Groups (WG), each address-
ing one of the four challenges identified above. The mutual interactions of the four WG are
pictured in Fig. 1.

In line with previous COST Actions, PROBE will promote non-commercial and open-source
software solutions. This is the case for RTTOV-gb (freely distributed through https://www.nwpsaf.
eu/site/software/rttov-gb/), raw2l1 (https://sourcesup.renater.fr/projects/sirta-raw2l1/), mwr_pro
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(ftp://gop.meteo.uni-koeln.de/pub/loehnert/mwr_data_flow/) and other software that will be
developed and maintained within PROBE. Any contribution from PROBE must be documented
and accessible to users, even when involving manufacturers, as already experienced in previous
COSTActions (e.g. firmware update following Kotthaus et al. 2016).

International liaisons

PROBE will coordinate with existing efforts not only at European level but also at interna-
tional level.

Fig. 1 Working groups (WG) and their interactions within COSTAction CA18235 PROBE (R&D, research and
development; QC, quality control).

WG1 (knowledge exchange) aims at coordinating the exchange of ABL profiling knowledge between different
groups of stakeholders. WG1 members shall include representatives from all the five identified stakeholder
groups. WG1 will interact with all other WGs: with WG2 to exchange needs and specifications for higher level
products; with WG3 to define the network observation strategy; with WG4 to optimally define instrument
characterization and quality control.

WG2 (advanced ABL profiling) aims at coordinating the development of new and improved ABL products
from the synergy of ABL profiling instruments as well as tools for data assimilation and long-term time series.
WG2 shall bring together scientists from different European research institutions working on the complemen-
tarity of multi-sensor platforms, NWP and/or climate applications. WG2 will address specific topics, such as
thermodynamic stability, ABL height, cloud and fog properties, wind and turbulence. WG2 members are mostly
remote sensing and ABL scientists. WG2 will interact with WG4 concerning instrument characterization, quality
control and retrieval algorithms, and with WG1 to receive user requirements for applications.

WG3 (tailored measurement networks) aims at improving the capabilities of ABL profiling networks by
developing harmonized data and metadata formats, common data processing methods and identifying optimal
measurement strategies. WG3 shall closely cooperate with E-PROFILE for those instruments that are already
included (ALC and RWP) and shall transfer the E-PROFILE approach to other sensors (e.g. MWR, DWL and
CR). In WG3, studies towards an optimized instrument setup shall yield how many instruments within a given
domain are needed to fulfil the user needs defined in WG1. WG3 members are mostly instrument, communi-
cation and data assimilation experts. WG3 will interact with WG4 concerning instrument characterization and
quality control, and with WG1 to receive the user requirements for applications.

WG4 (operation and data quality) aims to coordinate the development of tools and methods to support
improved instrument operations, and the development of standardized methods for transforming instrument
output into physical ABL properties for each considered instrument type. WG4 members are mostly instrument
experts and manufacturers. WG4 will interact with WG1, WG2 and WG3 to receive the user requirements for
applications, synergy and data assimilation and network coordination, respectively
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At global level, the World Meteorological Organization (WMO) expressed strong
support for the objectives of PROBE through the Director of the Research Department.
PROBE will establish cooperation with the WMO, particularly the working group on Data
Assimilation and Observing Systems (DAOS) and the Commission for Instruments and
Methods of Observation (CIMO). PROBE will support DAOS in developing ABL data
assimilation tools for improving NWP forecast and also will contribute to the CIMO
mission with characterization and standardization of ABL observing systems and method-
ologies. In return, WMO will upscale PROBE’s achievements to the global scale of the
WMO Global Observing System.

At European level, the activities carried out within PROBE should be beneficial to the
ACTRIS initiative for constructing a long-term research infrastructure (ACTRIS-RI) providing
expert services to the community in a sustainable manner for 20 years. In fact, several multi-
instrumented stations operated by national research institutes and universities involved in
ACTRIS-RI include ABL profiling instruments listed in the “Introduction” section, whose
performance will be improved by PROBE activities. The scientific services that ACTRIS-RI
will provide to end-users have been defined within the ACTRIS Preparatory Phase Project
(ACTRIS-PPP, 2017–2019, in terms of access to data and to expertise for instrument opera-
tion, calibration and exploitation. A follow-on project (ACTRIS-IMP) will support this
implementation phase from 2020 to 2024. PROBE will identify a series of proposals for
high-quality services that may be considered within ACTRIS-IMP towards the long-term
implementation in ACTRIS-RI.

PROBE will also be beneficial to the European E-PROFILE programme. In fact, E-
PROFILE is responsible for developing the wind, cloud and aerosol profiling part of the
EUMETNET Composite Observing System. E-PROFILE will produce a series of business
cases for future use of RWP, DWL and MWR by the end of 2020. PROBE will serve as an
external advisory board for E-PROFILE, ensuring that state-of-the-art procedures and
methods are implemented. Leveraging expert and manufacturer networking, PROBE will
also develop and test new and improved methods for direct implementation by E-
PROFILE.

Finally, PROBE will interact with the Integrated Carbon Observation System (ICOS), a
pan-European research infrastructure (www.icos-ri.eu) providing harmonized data on the
carbon cycle and greenhouse gas budget. ICOS manifested the need for 2-D spatial distribu-
tions of the ABL height, which is relevant for the mixing of trace gases in the atmosphere.
PROBE will coordinate with ICOS to define user requirements and implement methods to
derive ABL height from profiling instrument networks.

Thus, PROBE will establish a multi-fold coordination with the management of existing
programs to clarify user requirements for short-term and long-term applications and to
demonstrate that quality, reliability and operability of the technologies under consideration
meet the scientific and technical requirements.

Innovation potential

PROBE aims to contribute specific tools and expertise for progressing beyond the state-of-the-
art in each identified challenge by fostering cooperation and organizing the development of
tools and products, such as:

& Improved operation and calibration methods for ABL profiling instruments;
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& Assessment of emerging technologies with regard to future network deployment;
& Tools for monitoring, verification, data assimilation and long-term climate applications

using ABL profiling networks;
& New value-added products resulting from synergistic approaches;
& Optimizing network configuration, incorporating the needs of multiple end-users;
& Identification of gaps in existing measurement networks and suggestions for additional

measurement locations and settings;
& New application and use of ABL monitoring for improved understanding of ABL

processes;
& Demonstration of the relevance of ABL profiling for improved forecast of high-impact

severe weather, poor air quality, renewable energy availability, carbon budget monitoring
and urban environment specific needs.

In particular, PROBE is expected to contribute to the enhanced understanding of the following
research topics.

Air quality The accumulation of pollutants close to the surface is highly dependent on the
atmospheric stability and the height of the ABL. ABL profiling instruments considered in
PROBE bring relevant information on atmospheric stability, ABL height, vertical winds,
turbulence, aerosol content and optical properties. These data may be used to raise air quality
alerts in polluted areas such as cities (Chemel et al. 2016) and to evaluate the performance of
NWP and chemistry transport forecast models (Martinet et al. 2017), including hazardous
pollutants (Calpini et al. 2011). This will advance both scientific understanding and the
monitoring and forecasting of air quality and pollution dispersion. Related scientific break-
throughs are expected to have significant socioeconomic impact.

Weather with severe societal consequences A proper characterization of ABL profiles is
crucial for the detection of conditions leading to severe weather events. The availability of
ABL profiling data on a continental scale will trigger studies (e.g. model verification, data
assimilation) to show their added value through experimental demonstration. Tools for NWP
data assimilation and model evaluation (e.g. Benedetti et al. 2009; Cimini et al. 2019) will be
developed for or adapted to other profiling instruments. These expected high-risk, high-return
scientific and technological breakthroughs have the potential to increase societal resilience to
severe weather and reduce the associated socioeconomic costs.

Fog monitoring and forecast The potential of ALC to support short-range forecast of fog
onset has been demonstrated (Haeffelin et al. 2016). Other instruments considered in PROBE
(DWL, MWR, CR) add significant information useful for monitoring and forecasting the
complete fog life cycle (formation, duration, dissipation). Considering the impact that fog has
on transportation and solar energy sectors, improved short-range fog forecasts would represent
a high-value scientific and socioeconomic impact.

Urban meteorology Parameterizations of surface-atmosphere exchanges in NWP and
chemical transport models are based on severe simplifications of the complex urban
surface. ABL profiling instruments, very suitable for urban deployment where instrument-
ed towers are difficult to build, will help to advance understanding of complex surface-
atmosphere processes. The availability of such measurements is expected to trigger
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development of new research projects to improve parameterization schemes representing
boundary layer and urban surface processes that are critical for the advancement of
forecast skill in cities (Barlow et al. 2017). More accurate model representations will
make the assessment of urban planning strategies related to, e.g., air quality and wind gust
formation more realistic. Informing sustainable urban planning with implications for
climate change mitigation and resilience to various risk factors is of clear socioeconomic
benefit.

Renewable energy Weather strongly impacts the availability of major renewable energy
sources (wind, solar, hydro). Climatology and forecast of renewable energy availability impact
the energy market from the short to the long range. Accurate and distributed information
(wind, aerosol, cloud) at the European scale has the potential to increase the accuracy of
climatology and forecast of renewable energy source availability (Gryning et al. 2017;
Tuononen et al. 2019). This makes renewable energy more affordable and competitive, with
obvious high socioeconomic return.

Aviation meteorology Wind shear and wake turbulence during take-off and landing are
among the major dangers in aviation. The detection of dangerous conditions remains chal-
lenging. The combination of scanning CR and DWL can provide 3-D wind measurements
under all weather conditions (e.g. Thobois et al. 2018). Advanced combined algorithms can be
developed to provide turbulence information at high-temporal resolution, which could be
provided to pilots and air traffic controllers, with obvious socioeconomic impact. Under certain
conditions, aircraft can also induce localized intensification of precipitation during their
approach and departure (Moisseev et al. 2019); ALC and DWL are capable of identifying
the conditions in which this process is likely to occur and aid airport operations, again
providing clear socioeconomic impact.

Early results

Several stakeholders are already engaging in activities that contribute to the four challenges of
the PROBE action. We present 4 highlights of early results already available at the time of the
kick-off of the action.

Challenge 1: ABL products for new stakeholders ABL dynamics and its resulting vertical
structure play an important role for the dispersion of pollutants and greenhouse gases as
well as the vertical mixing of heat and moisture. Given its relevance for air quality
(Stirnberg et al. 2019) and effects on local climate (e.g. cloud dynamics; Theeuwes et al.
2019), an improved understanding of ABL processes in urban areas is vital for the
assessment of planning strategies aiming to mitigate climate change and make cities
more resilient to future risk factors. Thanks to recent progress in ALC profiling tech-
nology and the development of data processing procedures (Hervo et al. 2016; Kotthaus
et al. 2016) and advanced automatic algorithms (Kotthaus et al. 2019), increasingly
reliable detection of the ABL structure is now possible. An example of the seasonal
diurnal variations in mixed layer height (MLH) observed by ALC in central urban and
sub-urban locations in the megacity of Paris (France) is shown in Fig. 2. Consistently
higher MLH is found in urban environments (~ 100 m). This may be explained by the
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urban heat island effect, related to anthropogenic heating (especially during winter) and
change in surface albedo, further influenced by the occurrence of convective clouds over
the urban area (Theeuwes et al. 2019).

Challenge 2: Advanced ABL profiling products PROBE will also help the coordination of
advancedABL profiling through different instrumental synergy techniques and the development of
data assimilation tools for new sensors. The Cloudnet algorithms (Illingworth et al. 2007), already
applied on large datasets over several European stations, provide vertical profiles of cloud and
aerosol properties at a high-temporal resolution though instrumental synergy (mainly CR, lidars
andMWR). New instrumental and retrieval techniques now pave the way for advanced synergy by
increasing the number of sensors combined together aswell, extending retrievals to a larger number
of atmospheric variables. The potential added value brought by the synergy of microwave
radiometer, cloud radar and ceilometer observations has been demonstrated (e.g. Löhnert et al.
2007; Ebell et al. 2017) on non-drizzling liquid water clouds. A similar approach is currently
evaluated atMétéo-France to adapt the approach based on optimal estimation approach to combine
new 94 GHz CR measurements together with MWR observations and short-term forecasts from
the convective scale model AROME (Application of Research to Operations at MEsoscale; Seity
et al. 2011), with a focus on fog events. This is possible thanks to the development of forward
operators consistent with the AROME model microphysical scheme and vertically pointing
94 GHz cloud radars (Borderies et al. 2018). The direct comparison of simulated radar reflectivity
computed from the AROME model with CR observations at the SIRTA observatory has already
proved to be valuable to better understand main forecast errors during fog conditions.

Concerning wind profiling, TOPROF demonstrated the capability of long-range DWL for
providing information on the sources of turbulent mixing within the atmospheric boundary layer
based on the combination of several Doppler lidar-measured quantities (Manninen et al. 2018).
The DWL processing chain developed during TOPROF is now being implemented at several
DWL sites in Europe within PROBE and has since been extended by the addition of a novel post-
processing algorithm (Vakkari et al. 2019) for improving the instrumental noise floor. This
permits the integration of high-temporal resolution data for increasing data availability, and it
also improves the accuracy of the retrieved turbulent properties and radial velocity estimates.

Fig. 2 Seasonal diurnal pattern of mixed layer height (MLH) relative to time since sunrise detected by ALC at a
central urban and a sub-urban location in the megacity of Paris, France, during the period December 2016–
October 2019; (top row) solid line is the medianMLH with shading the inter-quartile range, (middle row) median
and inter-quartile range of instantaneous differences and (bottom row) number of samples
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Challenge 3: Demonstrating the added value of regional-scale networks Based on en-
couraging results on experimental MWR data assimilation into NWP models (Caumont et al.
2016; Martinet et al. 2017), the logical next step is now to go towards the integration of MWR
observations into NWP models for data assimilation for high-impact weather events. To that
end, an international regional-scale MWR network is currently being deployed in the South-
west of France in the context of the SOuth west FOG 3D (SOFOG3D, https://www.umr-cnrm.
fr/spip.php?article1086) experiment for fog processes study led by Météo-France. This MWR
network, composed of 8 European units, was deployed thanks to the cooperation within the
TOPROF action. PROBE will help promoting the impact brought to NWP forecasts by the
assimilation of retrieved profiles at the different sites during fog events using advanced data
assimilation techniques. MWR observations are also beneficial to better understand fog
processes (Temimi et al. 2019) and evaluate NWP model capabilities.

An attempt to assess the spatial representativeness of ground-based microwave observations
and their potential impact in synergy with satellite measurements on retrieval of convective
available potential energy (CAPE) has been made. The satellite-based instrument considered in
the study is the future Infrared Sounder on board of geostationary Meteosat Third Generation
(MTG-IRS). The ground-based instrument is a standard multichannel microwave radiometer.

The COSMO-REA2 reanalysis data (Bollmeyer et al. 2015) was used to simulate ground-
based MWR and satellite IRS observations for a 150 × 150 km2 domain in the west of
Germany with 4-km spacing. The MWR observations were simulated using RTTOV-gb
(Cimini et al. 2019), the IRS observations using RTTOV. The simulated observations were
used to train a neural network retrieval for CAPE for each single instrument as well as for the
combination of both. The root-mean-square error (RMSE) of the synergistic retrieval (MWR+
IRS) is 37% lower than that of IRS only and 13% lower than MWR only retrieval. Both clear-
sky and cloudy cases were included.

Fig. 3 Left: root-mean-square error of CAPE index calculated from simulated IRS observations over an area in
the west of Germany. Right: root-mean-square error of CAPE index calculated from IRS observations including
the observations of a single MWR at the grid point marked with red star. Domain size and resolution are 150 ×
150 km2 and 4 km, respectively (figure courtesy of Maria Toporov, University of Cologne, Germany)
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Figure 3 (left) shows the regionally specific RMSE of CAPE derived from simulated IRS
observations for August 2010. A single MWR is assumed to perform observations at the grid
point marked with star (Fig. 3, right). The neural network trained with the synergistic MWR+
IRS observations was applied to the reanalysis profiles at this grid point. The CAPE values at
the surrounding grid points, calculated with the IRS only retrieval, were updated by minimiz-
ing a cost function based on the uncertainty of the IRS andMWR+IRS retrievals and on spatial
correlation of CAPE between grid points. A single ground-based MWR provides valuable
improvements and reduces the uncertainty of CAPE domain wide by about 25% compared
with the IRS only retrieval. Further work in the context of PROBE will focus on the estimation
of the optimal MWR network configuration and density for retrieval of CAPE and other
thermodynamic parameters of the atmosphere.

Challenge 4: Innovative methods to improve data quality One of the outcomes of previous
COST Actions (EG-CLIMET and TOPROF) was the demonstration of remote monitoring of
MWR data through observation minus background (O-B) statistics (Güldner 2013; Martinet
et al. 2015; De Angelis et al. 2017). Such an approach, which compares MWR brightness
temperature observations against simulations computed from NWP model outputs with a
radiative transfer model (Cimini et al. 2019) is now applied in near real time by Météo-France
to a prototype network of three MWR in Europe. It has been demonstrated that the operational
O-B statistics, kindly displayed by the Institute of Geophysics and Meteorology of University
of Cologne (e.g. http://gop.meteo.uni-koeln.de/~hatpro/dataBrowser/dataBrowser4.html),
provide a useful tool for detecting faulty calibration or instrumental drift of remote
instruments, as shown in Fig. 4. O-B statistics also provide values for bias correction of the
raw measurements consistent with dedicated NWP and radiative transfer models. In a second
step, bias-corrected MWR brightness temperatures are processed to infer boundary layer
temperature and humidity profiles as well as liquid water path using the Net1D software

Fig. 4 MWR calibration monitoring through online O-B statistics. Data from the MWR at the SIRTA observa-
tory near Paris (48.80° N, 2.36° E) during February 2019 are shown. Untypical large bias is detected at
51.26 GHz, which is corrected after the recalibration performed on February 25
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developed within TOPROF for network-consistent one-dimension variational retrievals
(Fig. 5). This quasi-operational monitoring has also demonstrated the good stability of
MWR measurements as well as the good continuity in the data flow demonstrating the
potential of these instruments to be part of future operational networks. This demonstrator
will be one component of the E-PROFILE business case for the integration of MWR networks
and can be easily extended to other European units.

Fig. 5 1-month time series (March 2019) of temperature profiles from MWR operating in three observatories in
Europe (top to bottom: Jülich, Germany (50.91° N, 6.41° E), Lindenberg, Germany (52.21° N, 14.12° E),
SIRTA, France (48.80°, N 2.36° E). The profile retrievals are obtained consistently throughout the prototype
network by processing the MWR brightness temperature observations with the Net1D software developed within
the COST action TOPROF
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Outlook

The COST Action PROBE (CA18235) started on 29 October 2019. For the next 4 years (2019–
2023), PROBE will pursue its objectives by developing and strengthening the network of re-
searchers, engineers, scholars, industry and other stakeholders in the domain of ABL profiling. This
domain requires expertise in different fields (dynamics, thermodynamics, microphysics, engineer-
ing), which is distributed among different organizations and countries in Europe. Networking
previously poorly connected sectors is crucial for developing new concepts (e.g. instrument
synergy), products (best estimate atmospheric retrievals) and services (e.g. data assimilation, user-
oriented customized forecast). This will be achieved through capacity building of instrument
operators to improve the use of state-of-the-art ABL profiling instruments, and by identifying
knowledge brokers to enable rapid exchange between academia, operational agencies, industry
and end-users to ensure full exploitation for societal benefit. Close cooperation with instrument
manufacturers will be fostered to gainmutual benefit: solid instrument characterization for scientists/
users and pathways for improving market-competitive hardware/firmware for manufacturers. This
will intensify the links between scientific community, industry, policy makers and society.

PROBEwill enhance pan-European research coordination to develop new products and tools for
short- and long-term applications. PROBE has the capability to exploit the research and technology
outcomes directly in the operational services through the cooperation with European programmes
such E-PROFILE, ACTRIS and ICOS, thus ensuring high return for the investments. Finally,
PROBEwill also facilitate the international collaboration of the European network with other world
leaders onABL profiling, providing the natural platformwhere cutting-edge science and technology
developments are shared, increasing the visibility and impact of European research at a global level.

Acknowledgements This article is based upon preparatory work for COST Action CA18235 “PROBE”
supported by COST - European Cooperation in Science and Technology (www.cost.eu). Maria Toporov (from
University of Cologne and supported through Research Grant 2015EMF-09, Extramurale Forschung, German
Weather Service DWD) is acknowledged for producing Figure 3.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barlow JF (2014) Progress in observing and modelling the urban boundary layer. Urban Clim. https://doi.
org/10.1016/j.uclim.2014.03.011

Barlow JF et al (2017) Developing a research strategy to better understand, observe and simulate urban
atmospheric processes at kilometre to sub-kilometre scales. Bull Amer Meteor Soc. https://doi.org/10.1175
/BAMS-D-17-0106.1

Bulletin of Atmospheric Science and Technology (2020) 1:23–42 39

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.uclim.2014.03.011
https://doi.org/10.1016/j.uclim.2014.03.011
https://doi.org/10.1175/BAMS-D-17-0106.1
https://doi.org/10.1175/BAMS-D-17-0106.1


Benedetti A et al (2009) Aerosol analysis and forecast in the European Centre for Medium- Range Weather
Forecasts Integrated Forecast System: 2. Data assimilation. J Geophys Res 114:D13205. https://doi.
org/10.1029/2008JD011115

Bollmeyer C, Keller J, Ohlwein C, Bentzien S, Crewell S, Friedrichs P, Hense A, Keune J, Kneifel S, Pscheidt I,
Redl S, Steinke S (2015) Towards a high-resolution regional reanalysis for the European CORDEX domain.
Q J R Meteorol Soc 141(86):1–15. https://doi.org/10.1002/qj.2486

Borderies M, Caumont O, Augros C, Bresson É, Delanoë J, Ducrocq V, Fourrié N, Bastard TL, Nuret M (2018)
Simulation of W-band radar reflectivity for model validation and data assimilation. Q.J.R. Meteorol Soc 144:
391–403. https://doi.org/10.1002/qj.3210

Calpini B, Ruffieux D, Bettems J-M, Hug C, Huguenin P, Isaak H-P, Kaufmann P, Maier O, Steiner P (2011)
Ground-based remote sensing profiling and numerical weather prediction model to manage nuclear power
plants meteorological surveillance in Switzerland. Atmos Meas Tech 4:1617–1625. https://doi.org/10.5194
/amt-4-1617-2011

Caumont O, Cimini D, Löhnert U, Alados-Arboledas L, Bleisch R, Buffa F, Ferrario ME, Haefele A, Huet T,
Madonna F, Pace G (2016) Assimilation of humidity and temperature observations retrieved from ground-
based microwave radiometers into a convective-scale NWP model. Q.J.R. Meteorol Soc 142:2692–2704.
https://doi.org/10.1002/qj.2860

Chemel C, Arduini G, Staquet C, Largeron Y, Legain D, Tzanos D, Paci A (2016) Valley heat deficit as a bulk
measure of wintertime particulate air pollution in the Arve River Valley. Atmos Environ. https://doi.
org/10.1016/j.atmosenv.2015.12.058

Cimini D, Rizi V, Di Girolamo P, Marzano FS, Macke A, Pappalardo G, Richter A (2014) Overview:
tropospheric profiling: state of the art and future challenges – introduction to the AMT special issue.
Atmos Meas Tech 7:2981–2986. https://doi.org/10.5194/amt-7-2981-2014

Cimini D, Hocking J, De Angelis F, Cersosimo A, Di Paola F, Gallucci D, Gentile S, Geraldi E, Larosa S, Nilo S,
Romano F, Ricciardelli E, Ripepi E, Viggiano M, Luini L, Riva C, Marzano FS, Martinet P, Song YY, Ahn
MH, Rosenkranz PW (2019) RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and
availability. Geosci Model Dev 12:1833–1845. https://doi.org/10.5194/gmd-12-1833-2019

Dang R, Yang Y, Hu X-M, Wang Z, Zhang S (2019) A review of techniques for diagnosing the atmospheric
boundary layer height (ABLH) using Aerosol Lidar Data. Remote Sens 11:1590. https://doi.org/10.3390
/rs11131590

De Angelis F, Cimini D, Löhnert U, Caumont O, Haefele A, Pospichal B, Martinet P, Navas-Guzmán F, Klein-
Baltink H, Dupont J-C, Hocking J (2017) Long-term observations minus background monitoring of ground-
based brightness temperatures from a microwave radiometer network. Atmos Meas Tech 10:3947–3961.
https://doi.org/10.5194/amt-10-3947-2017

Ebell K, Löhnert U, Päschke E, Orlandi E, Schween JH, Crewell S (2017) A 1-D variational retrieval of
temperature, humidity, and liquid cloud properties: performance under idealized and real conditions. J
Geophys Res Atmos 122:1746–1766. https://doi.org/10.1002/2016JD025945

Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height - a review.
Meteorol Z. https://doi.org/10.1127/0941-2948/2008/0312

Engelbart D, Monna W, Nash J (2009) Integrated Ground-Based Remote-Sensing Stations for Atmospheric
Profiling, COST Action 720 Final Report, EUR 24172. https://doi.org/10.2831/10752

Eyre J, Reid R (2014) Cost-benefit studies of observing systems. In: Forecasting ResearchTechnical Report No:
593, Met Office, 1–11, 2014

Fisher B, Joffre S, Kukkonen J, Piringer M, Rotach M, Schatzmann M (2005) Meteorology applied to Urban Air
Pollution Problems, Final Report COST Action 715, ISBN 954-9526-30-5, Online: https://www.dmu.
dk/atmosphericenvironment/cost/docs/Cost715-final.pdf Accessed 05 November 2019

Friehe CA (1987) Review of atmospheric boundary layer research, 1983–1986. Rev Geophys 25(3):387–392.
https://doi.org/10.1029/RG025i003p00387

Garratt JR (1994) Review: the atmospheric boundary layer. Earth-Sci Rev 37(1–2):89–134 ISSN 0012-8252.
https://doi.org/10.1016/0012-8252(94)90026-4

Gryning SE, Mikkelsen T, Baehr C, Dabas A, Gómez P, O’Connor E, Rottner L, Sjöholm M, Suomi I, Vasiljević
N (2017) Measurement methodologies for wind energy based on ground-level remote sensing. https://doi.
org/10.1016/B978-0-08-100504-0.00002-0

Güldner J (2013) A model-based approach to adjust microwave observations for operational applications: results
of a campaign at Munich Airport in winter 2011/2012. Atmos Meas Tech 6:2879–2891. https://doi.
org/10.5194/amt-6-2879-2013

Haeffelin M, Angelini F, Morille Y, Martucci G, Frey S, Gobbi GP, Lolli S, O’Dowd CD, Sauvage L, Xueref-
Rémy I, Wastine B, Feist DG (2012) Evaluation of mixing-height retrievals from automatic profiling Lidars
and ceilometers in view of future integrated networks in Europe. Boundary-Layer Meteorol 143:49–75.
https://doi.org/10.1007/s10546-011-9643-z

Bulletin of Atmospheric Science and Technology (2020) 1:23–4240

https://doi.org/10.1029/2008JD011115
https://doi.org/10.1029/2008JD011115
https://doi.org/10.1002/qj.2486
https://doi.org/10.1002/qj.3210
https://doi.org/10.5194/amt-4-1617-2011
https://doi.org/10.5194/amt-4-1617-2011
https://doi.org/10.1002/qj.2860
https://doi.org/10.1016/j.atmosenv.2015.12.058
https://doi.org/10.1016/j.atmosenv.2015.12.058
https://doi.org/10.5194/amt-7-2981-2014
https://doi.org/10.5194/gmd-12-1833-2019
https://doi.org/10.3390/rs11131590
https://doi.org/10.3390/rs11131590
https://doi.org/10.5194/amt-10-3947-2017
https://doi.org/10.1002/2016JD025945
https://doi.org/10.1127/0941-2948/2008/0312
https://doi.org/10.2831/10752
https://www.dmu.dk/atmosphericenvironment/cost/docs/Cost715-final.pdf
https://www.dmu.dk/atmosphericenvironment/cost/docs/Cost715-final.pdf
https://doi.org/10.1029/RG025i003p00387
https://doi.org/10.1016/0012-8252(94)90026-4
https://doi.org/10.1016/B978-0-08-100504-0.00002-0
https://doi.org/10.1016/B978-0-08-100504-0.00002-0
https://doi.org/10.5194/amt-6-2879-2013
https://doi.org/10.5194/amt-6-2879-2013
https://doi.org/10.1007/s10546-011-9643-z


Haeffelin M, Laffineur Q, Bravo-Aranda J-A, Drouin M-A, Casquero-Vera J-A, Dupont J-C, De Backer H
(2016) Radiation fog formation alerts using attenuated backscatter power from automatic Lidars and
ceilometers. Atmos Meas Tech 9:5347–5365. https://doi.org/10.5194/amt-9-5347-2016

Hardesty RM, Hoff RM, Hoff RM, Hardesty RM, Carr F, Weckwerth T, Koch S, Benedetti A, Crewell S, Cimini
D, Turner D, Feltz W, Demoz B, Wulfmeyer V, Sisterson D, Ackerman T, Fabry F, Knupp K (2012)
Thermodynamic Profiling Technologies Workshop report to the National Science Foundation and the
National Weather Service. NCAR Technical Note 488, NCAR/TN-488+STR, ISSN:2153-2397.
https://doi.org/10.5065/D6SQ8XCF

Hervo M, Poltera Y, Haefele A (2016) An empirical method to correct for temperature dependent variations in the
overlap function of CHM15k ceilometers. Atmos Meas Tech Discuss 1–27. https://doi.org/10.5194/amt-
2016-30

Illingworth AJ, Hogan RJ, O’Connor E, Bouniol D, Brooks ME, Delanoé J, Donovan DP, Eastment JD, Gaussiat
N, Goddard JW, Haeffelin M, Baltink HK, Krasnov OA, Pelon J, Piriou J, Protat A, Russchenberg HW,
Seifert A, Tompkins AM, van Zadelhoff G, Vinit F, Willén U, Wilson DR, Wrench CL (2007) Cloudnet Bull
Amer Meteor Soc 88:883–898. https://doi.org/10.1175/BAMS-88-6-883

Illingworth AJ, Ruffieux D, Cimini D, Löhnert U, Haeffelin M, Lehmann V (2013) COST Action ES0702 EG-
CLIMET – Final Report. https://doi.org/10.12898/ES0702FR

Illingworth A, Cimini D, Gaffard C, Haeffelin M, Lehmann V, Loehnert U, O’Connor E, Ruffieux D (2015)
Exploiting existing ground-based remote sensing networks to improve high resolution weather forecasts,
bull. Amer Meteor Soc. https://doi.org/10.1175/BAMS-D-13-00283.1,February

Illingworth A, Cimini D, Haefele A, Haeffelin M, Hervo M, Kotthaus S, Loehnert U, Martinet P, Mattis I,
O’Connor E (2019) How can existing ground-based profiling instruments improve European weather
forecasts? Bull Amer Meteor Soc. https://doi.org/10.1175/BAMS-D-17-0231.1, 606-619 April

Kotthaus S, O’Connor E, Münkel C, Charlton-Perez C, Haeffelin M, Gabey AM, Grimmond CSB (2016)
Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilome-
ters. Atmos Meas Tech 9:3769–3791. https://doi.org/10.5194/amt-9-3769-2016

Kotthaus, S., Haeffelin, M., Drouin, M.-A., Dupont, J.-C., Grimmond, C., Haefele, A., Hervo, M., Poltera, Y.,
Wiegner, M., 2019. Taking advantage of common automatic Lidar and ceilometer (ALC) systems: tailored
algorithms for the detection of the atmospheric boundary layer structure, in prep.

Löhnert U, vanMeijgaard E, Baltink HK, Groß S, Boers R (2007) Accuracy assessment of an integrated profiling
technique for operationally deriving profiles of temperature, humidity, and cloud liquid water. J Geophys Res
112:D04205. https://doi.org/10.1029/2006JD007379

Manninen, A. J., T. Marke, M. J. Tuononen and E. J. O’Connor ( 2018). Atmospheric boundary layer
classification with Doppler Lidar. J Geophys Res Atmos, 123, 8172–8189, https://doi.org/10.1029/2017
JD028169

Martinet P, Dabas A, Donier JM, Douffet T, Garrouste O, Guillot R (2015) 1D-Var temperature retrievals from
microwave radiometer and convective scale model. Tellus A 67:27925. https://doi.org/10.3402/tellusa.
v67.27925

Martinet P, Cimini D, De Angelis F, Canut G, Unger V, Guillot R, Tzanos D, Paci A (2017) Combining ground-
based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in
complex terrain: an Alpine valley case study. Atmos Meas Tech 10:3385–3402. https://doi.org/10.5194
/amt-10-3385-2017

Mätzler C(ed.) (2000) Radiative transfer models for microwave radiometry, application of microwave radiometry
to atmospheric research and monitoring, COSTAction 712, Final Report Project 1, European Commission,
Directorate General for Research, EUR 19543, ISBN 92-828-9842-3

Moisseev D, Lautaportti S, Alku L, Tabakova K, O’Connor EJ, Leskinen M, Kulmala M (2019) Inadvertent
localized intensification of precipitation by aircraft. J Geophys Res Atmos 124:2094–2104. https://doi.
org/10.1029/2018JD029449

Nash J, Monna W, Dibbern, J (2003) Development of VHF/UHF wind profilers and vertical sounders for use in
European observing systems, COSTAction 76 final report, ISBN 92-894-4899-7, ISSN 1018-5593

National Research Council (2009) Observing weather and climate from the ground up: a nationwide network of
networks, ISBN: 978-0309-12986-2

National Research Council (2010) When weather matters: science and service to meet critical societal needs,
ISBN: 978-0-309-15249-5

Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of
operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027

Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France
convective- scale operational model. Mon Weather Rev 139:976–991

Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M., Fuchs, J., Andersen, H., Kim, M., 2019. Variability of air
pollution (PM1) analysed using explainable Machine Learning, in prep.

Bulletin of Atmospheric Science and Technology (2020) 1:23–42 41

https://doi.org/10.5194/amt-9-5347-2016
https://doi.org/10.5065/D6SQ8XCF
https://doi.org/10.5194/amt-2016-30
https://doi.org/10.5194/amt-2016-30
https://doi.org/10.1175/BAMS-88-6-883
https://doi.org/10.12898/ES0702FR
https://doi.org/10.1175/BAMS-D-13-00283.1,February
https://doi.org/10.1175/BAMS-D-17-0231.1, 606-619
https://doi.org/10.5194/amt-9-3769-2016
https://doi.org/10.1029/2006JD007379
https://doi.org/10.1029/2017JD028169
https://doi.org/10.1029/2017JD028169
https://doi.org/10.3402/tellusa.v67.27925
https://doi.org/10.3402/tellusa.v67.27925
https://doi.org/10.5194/amt-10-3385-2017
https://doi.org/10.5194/amt-10-3385-2017
https://doi.org/10.1029/2018JD029449
https://doi.org/10.1029/2018JD029449


Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht/
Boston/London, ISBN 9027727686

Temimi M, Morais Fonseca R, Reddy Nelli N, Valappil VK, Weston MJ, Thota MS, Wehbe Y, Yousef L (2019)
On the analysis of ground-based microwave radiometer data during fog conditions. Atmos Res. https://doi.
org/10.1016/j.atmosres.2019.104652

Theeuwes, N.E., Barlow, J.F., Teuling, A.J., Grimmond, C.S.B., Kotthaus, S., 2019. Persistent cloud cover over
mega-cities linked to surface heat release. npj Clim. Atmos Sci 2, 1–15. doi:https://doi.org/10.1038/s41612-
019-0072-x

Thobois L, Cariou JP, Gultepe I (2018) Review of Lidar-based applications for aviation weather. Pure Appl
Geophys 176:1959–1976. https://doi.org/10.1007/s00024-018-2058-8

Thorne PW, Madonna F, Schulz J, Oakley T, Ingleby B, Rosoldi M, Tramutola E, Arola A, Buschmann M,
Mikalsen AC, Davy R, Voces C, Kreher K, De Maziere M, Pappalardo G (2017) Making better sense of the
mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment.
Geosci Instrum Method Data Syst 6:453–472. https://doi.org/10.5194/gi-6-453-2017

Tuononen M, O’Connor EJ, Sinclair VA (2019) Evaluating solar radiation forecast uncertainty. Atmos Chem
Phys 19:1985–2000. https://doi.org/10.5194/acp-19-1985-2019

Vakkari V, Manninen AJ, O’Connor EJ, Schween JH, van Zyl PG, Marinou E (2019) A novel post-processing
algorithm for Halo Doppler lidars. Atmos Meas Tech 12:839–852. https://doi.org/10.5194/amt-12-839-2019

Affiliations

Domenico Cimini1,2 & Martial Haeffelin3 & Simone Kotthaus3 & Ulrich Löhnert4 & Pauline
Martinet5 & Ewan O’Connor6 & Christopher Walden7 & Martine Collaud Coen8 & Jana
Preissler9,10

1 National Research Council of Italy, Institute of Methodologies for Environmental Analysis (CNR-IMAA),
Potenza, Italy

2 Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy
3 Institut Pierre-Simon Laplace (IPSL), CNRS, Ecole Polytechnique, Palaiseau Cedex, France
4 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
5 CNRM UMR 3589, Meteo-France/CNRS, Toulouse, France
6 Finnish Meteorological Institute, Helsinki, Finland
7 UK Research and Innovation and National Centre for Atmospheric Science (NCAS), Chilbolton

Observatory, Drove Rd, Chilbolton, Stockbridge SO20 6BJ, UK
8 Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
9 National University of Ireland Galway, Galway, Ireland
10 Present address: Leosphere, Saclay, France

Bulletin of Atmospheric Science and Technology (2020) 1:23–4242

https://doi.org/10.1016/j.atmosres.2019.104652
https://doi.org/10.1016/j.atmosres.2019.104652
https://doi.org/10.1038/s41612-019-0072-x
https://doi.org/10.1038/s41612-019-0072-x
https://doi.org/10.1007/s00024-018-2058-8
https://doi.org/10.5194/gi-6-453-2017
https://doi.org/10.5194/acp-19-1985-2019
https://doi.org/10.5194/amt-12-839-2019

	Towards the profiling of the atmospheric boundary layer at European scale—introducing the COST Action PROBE
	Abstract
	Introduction
	Challenges and objectives
	Challenges
	Objectives

	Implementation
	International liaisons
	Innovation potential
	Early results

	Outlook
	References


