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Abstract SystemC is the de-facto standard language for system-level modeling, architec-
tural exploration, performance analysis, software development, and functional verification
of embedded systems. Nevertheless, it has been proved that the performance of the SystemC
implementation is typically less optimal than commercial VHDL/Verilog simulators when
used for register transfer level (RTL) simulation. This is mainly due to the “slow” imple-
mentation of bit-accurate data types provided by the standard library. Such a problem limits
the simulation performance even when SystemC designs are implemented at higher levels of
abstraction (i.e., transaction-level modeling—TLM) and still make use of bit-accurate data
types (e.g., for a more accurate verification, or in TLM descriptions automatically generated
from RTL). This article presents HDTLib, a new bit-accurate data type library that increases
the simulation speed up to 3.45× at RTL and up to 10× at TLM. In addition, when the level
of abstraction rises from RTL and better simulation performance is required, accuracy of
HW-dependent behaviors is no longer necessary. Thus, the article presents a type abstrac-
tion methodology to get rid of low level behaviors and how such a methodology can be
combined with HDTLib for guaranteeing a sound tradeoff between accuracy and simulation
speed. Finally, more recent works have proposed efficient and promising techniques to boost
SystemC simulation through general purpose graphics processing unit (GP-GPU) architec-
tures. In such parallel frameworks, the standard SystemC library for bit-accurate data types
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is not supported, with a consequent limitation of their application to actual designs. This ar-
ticle shows how HDTLib has been implemented for applying also to these today many-core
architectures.

Keywords SystemC · TLM · Data types · Type abstraction · Simulation · GP-GPU

1 Introduction

The increasing complexity of modern designs makes simulation a key approach to support
and accelerate verification in the design flow. Simulation allows functional validation and
early evaluation of performance and requirements of the final system. As a consequence,
design complexity has a huge impact on the efficiency of simulation during the design flow,
and simulation time increases at least linearly with the circuit complexity [1]. Furthermore,
simulation time impacts on the design and verification loop, as higher simulation speed
shortens time until a regression runs and until results of a modification are made available.
Since simulation heavily affects the overall verification process, fast simulation is a priority.

Many factors determine simulation efficiency: from the level of abstraction to the mod-
eling style. Also the language used for modeling impacts on simulation performance [1].

One of the most common languages for embedded system design is SystemC [2]. Sys-
temC is defined and promoted by Accellera Systems Initiative (ASI), the organization that
has joined the Open SystemC initiative (OSCI) and Accellera. SystemC has been approved
by the IEEE Standards Association as IEEE 1666-2005. SystemC extends the C/C++ lan-
guage with libraries for describing HW constructs and thus it is familiar and easy to learn
for C/C++ programmers. Nevertheless, SystemC is up to 10× slower at RTL level and 2.5×
slower at behavioral level than the other HDLs (i.e., Verilog, VHDL and SystemVerilog) [1].

Most of this decrement of performance is due to the SystemC bit accurate data types (i.e.,
sc_int, sc_lv, sc_logic, etc.) [3]. Low level modeling of HW requires the adoption
of bit-accurate and multi-valued data types, in order to recreate the correct behavior of the
physical circuit. Bit-accuracy is required since each single bit impacts on the quality of
the final product. Using native C/C++ types would allow to highly optimize performance.
Nevertheless, native types do not support all the typical HW manipulation operators. Thus,
it is necessary to define classes implementing accurate data types, that result in being slow.

SystemC also supports design modeling at levels of abstraction higher than RTL, such
as electronic-system level (ESL) [4], with the aim of speeding up the design and verifi-
cation process. Transaction-level modeling (TLM) is the standard modeling style at ESL
proposed by ASI and has become the de-facto standard for embedded system designers [5].
TLM provides interfaces and primitives for implementing designs with more or less de-
tails according to the target use case (i.e., SW development, HW verification, architectural
analysis, etc.) [6].

The most accurate SystemC TLM implementations make often use of bit-accurate data
types (e.g., sc_int, sc_uint) [7]. As a consequence, the “slow” implementation of such
data types also limits the potential simulation performance of the abstraction paradigm.

In addition, TLM models rely on bit-accurate data types even at the highest abstraction
levels, when the models are automatically generated from an RTL-to-TLM abstraction pro-
cess. Methodologies to abstract RTL implementations up to TLM exist in literature [8] and
on the market [9], with the aim of reusing RTL IPs for faster TLM simulation. In these cases,
besides the bit accuracy, low level HW-specific details implemented through multi-valued
logic data types (i.e., sc_logic, sc_lv) are inevitably maintained during the abstraction
process even though useless at such an abstraction level, thus resulting in a heavier simula-
tion.
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Fig. 1 Simulation frameworks with HDTLib

Finally, portability on many-core architectures is another major limitation of the data type
standard library proposed by ASI. Recently, several research groups are investigating new
solutions to reduce the simulation time of complex embedded systems by exploiting the
high degree of parallelism afforded by today’s general purpose graphics processing units
(GP-GPUs) [10–12]. All these works present promising techniques that sensibly reduce the
simulation time of SystemC models described at any level of abstraction and run on NVIDIA
CUDA platforms [13]. Nevertheless, the proposed techniques do not support models imple-
mented with bit-accurate data types, with a consequent limitation of their application to
actual designs.

To deal with all these limitations of the SystemC data type standard library, this article
presents HDTLib, an efficient library that provides a faster implementation of all the HDL-
oriented data types. The library is bit-accurate and is semantically equivalent to the ASI
standard. HDTLib modularly replaces the ASI data type library, thus applying to new as
well as already existent SystemC designs (see Fig. 1). By adopting HDTLib, only few slight
syntax modifications may be required to the original SystemC model implementation and
the scheduling activities during simulation are left to the SystemC simulation kernel.

The article presents an analysis on SystemC simulation of both synthetic and industrial
designs of different complexity and architectural characteristics to show:

– the impact of the different data types and corresponding operators on the overall simula-
tion speed.

– the impact of the data type accuracy on the overall simulation by considering the abstrac-
tion level of the design implementation.

– a comparison of simulation speed obtained by adopting the standard ASI library, a com-
mercial SystemC library, and HDTLib.
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Fig. 2 HDTLib and type
abstraction in RTL, TLM, and
CUDA simulation

The experimental results show that, at RTL, HDTLib improves the simulation speed-up
to 3.45× with regard to the standard ASI library.

The results also show that the optimized implementation of data types impacts even more
at TLM, where the scheduling activity is minimal. Thus the article presents a type abstraction
methodology that, combined with HDTLib (Fig. 2), improves the simulation performance at
TLM by getting rid of low-level HW behaviors. The approach is analyzed to show how
the type abstraction may influence the equivalence between the original and the abstracted
model. In particular, the analysis shows what kind of HW-specific details (useless at TLM)
can be lost during abstraction, and how this loss of details impacts on the simulation perfor-
mance.

Finally, the article shows how HDTLib has been implemented for applying also to GP-
GPU architectures (Fig. 3). Experimental results show that the simulation overhead intro-
duced for supporting bitwise accuracy and the multi-value logic becomes negligible when
considering the overall massive speed-up provided by such many-core architectures.

The article is organized as follows. Section 2 presents the related work. Section 3 presents
HDTLib, deepening its implementation details, while Sect. 4 presents the proposed type
abstraction methodology and the related issues. Section 5 presents the application of the
proposed library to CUDA GP-GPU architectures. Section 6 applies the HDTLib library and
the type abstraction methodology to a set of test cases to prove its efficiency with respect to
the ASI SystemC implementation. Finally, Sect. 7 draws the conclusions.

2 Related work

Some works have been proposed in literature with the aim of defining a tradeoff between
accuracy and simulation speed of SystemC data types.

In [14], the authors propose a C implementation of the main operators required by HW
descriptions and not provided by standard C/C++ types. By using this approach, native types
can be exploited for increasing performance. However, the work is limited to concatenation,
bit selection and range operators. Furthermore, there is no support for multi-value logic and,
thus, there is no compliance with the SystemC specifications.

Performance close to native C/C++ data types is reached in [3] and [15] with the defini-
tion of the Algorithmic C library (AC). AC provides arbitrary-length integer, fixed-point and
complex data types. Data types are defined as templatized classes, such as integer arithmetic
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Fig. 3 Comparison between ASI
SystemC data types and HDTLib
class hierarchy

ac_int and fixed point numbers ac_fixed. Precision and signedness are specified as
template parameters, and the mostly used operators are supported (i.e., arithmetic, logic, re-
lational and bit or range selection). This approach allows to obtain a 2× simulation increase
with respect to the corresponding SystemC data types. However, logic data types are not
handled, thus preventing efficient simulation of low level designs.

In [16], the authors present an automatic technique for software generation from SystemC
modules with an efficient class of data types, built to replace SystemC data types. Neverthe-
less, only the uc_uint data type is provided, to substitute the sc_uint SystemC type.
Furthermore, only a very restricted range of operators is implemented (i.e., assignment, bit
selection and read operations).

All the previous works deal with simulation on standard architectures, where the Sys-
temC discrete-event simulation (DES) is performed on a single CPU. More recently, many-
core architectures have been applied for accelerating computation intensive EDA applica-
tions and, in particular, logic simulation [17–19] and gate-level fault simulation [20–22].
All these simulation frameworks yield reasonable speed-up compared to logic simulation
on conventional processors. They meaningfully apply to logic and fault simulation of gate-
level circuits since gate-level data types of each HDL are easily mapped into native C data
types. Nevertheless, they apply neither to RTL nor to TLM simulation.
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RTL-to-SystemC/C/C++ translation has been proposed in different works [23, 24] and
tools [9, 25, 26] targeting simulation in conventional CPU architectures. The translation
from RTL to C for GP-GPUs (i.e., NVIDIA CUDA) has been investigated only in most
recent works [10–12]. All these works focus on improving simulation performance by par-
allelizing the SystemC kernel activity ([10, 11]) or by parallelizing instances of the design
under verification [12]. Nevertheless, they do not face the problem of porting the bit-accurate
multi-value data type into the CUDA framework.

3 HDTLib: an HDL-oriented data types library for SystemC

HDTLib is an accurate and efficient implementation of SystemC data types, which has the
following characteristics:

– The implementation preserves semantics with the SystemC specifications and it supports
all low-level and accurate behaviors.

– It has been implemented by exploiting advanced optimization techniques, like compile-
time optimizations based on C++ templates, as explained in Sect. 3.1.

– It applies to standard “single core” architectures for discrete event simulation and GP-
GPU architectures (e.g., CUDA) for massive parallel simulation, as explained in Sect. 5.

– It can be combined with a type abstraction (as explained in Sect. 4) to guarantee the best
tradeoff between simulation performance and accuracy in each simulation paradigm (i.e.,
RTL, TLM, CUDA), as depicted in Fig. 2.

– It can be adopted on new as well as already existent SystemC designs, by exploiting a
simple C++ preprocessor directive, namely a #define. In contrast, the type abstraction
methodology requires code manipulations, which have been automated in a HIFSuite
tool [27], as described in Sect. 4.

HDTLib has been acquired by EDALab [28] and it is available under licence as a com-
ponent of the A2T tool of HIFSuite.

3.1 HDTLib implementation details

HDTLib consists of five data types: a 4-value logic vector class, a 2-value bit vector class, a
single logic value class, a signed and an unsigned integer class. The fixed point data type is
not supported by the current version of HDTLib. This extension will be part of future work.

All classes except the single logic value class are templatized, taking one integer param-
eter that indicates the bitwidth (i.e., the number of elements belonging to the vector).

In order to achieve a significant performance improvement, the following solutions have
been adopted when implementing these data types:

1. No heap memory allocation. A statically allocated array of unsigned integers is employed
as underlying data structure used to store vector elements. The size of such an array can
be computed at compile time, since it depends only on the width template argument. For
example, a bit vector having width W contains the following declarations:

// static constant that stores the number of chunks required
to accommodate W bits

static const unsigned int CHUNKS_NUMBER = W / (sizeof(chunk_t)
* 8) + (W % (sizeof(chunk_t) * 8) ? 1 : 0);

...
unsigned int _chunks[CHUNKS_NUMBER];
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This solution allows us to avoid heap memory allocation, which causes additional over-
head at runtime and prevents compiler optimizations, thus resulting in a performance hit.
It is worth noting that this solution usually uses about the same size of stack memory w.r.t.
the ASI implementation. Considering bitwidth up to 64 bits, the ASI implementation uses
at least sizeof(void*) stack memory, while HDTLib uses sizeof(int32_t) or
sizeof(int64_t). Thus, HDTLib results in being more efficient than the ASI library
on x86-64 machines, and nearly equivalent on x86-32 machines.

2. Operations performed on words, instead of single bits. The choice of unsigned integers
as underlying data structure led to implementing operations on data types on a word
as a whole, instead of repeating the same operation on each single vector element. For
example, a snippet of the code that implements bitwise negation for bit vectors is the
following:

for (register unsigned int i = 0; i < CHUNKS_NUMBER; ++i)
result._chunks[i] = ~(_chunks[i]);

This is achieved by carefully implementing operations on architecture-dependent words
by properly using bitwise operations and shifts. These are among the fastest instructions
to be executed on any machine, since they take advantage of word-sized registers and
optimized ALUs to be executed in a single CPU operation.

3. Mapping of a logic value on two separate bits. Logic vectors have been implemented by
using two separate arrays of unsigned integers. Each logic value is associated with two
bits, one per array, to represent the four possible values. For example, the logic vector
class has the following instance variables:

unsigned int _lower_chunks[CHUNKS_NUMBER];
unsigned int _upper_chunks[CHUNKS_NUMBER];

In this way, it is still possible to implement operations on logic values in terms of bitwise
and shift operations on architecture-dependent words.

4. Replacement of lookup tables with Karnaugh maps. Consistently with the previous
choice, bitwise operations on logic values have been implemented by using Karnaugh
maps, instead of lookup tables. Karnaugh maps are faster than lookup tables because they
avoid accessing values that have not been fetched into cache. Implementation of logic op-
erations has been achieved by rewriting the truth tables of such operators according to
the two-bit encoding adopted for logic values into Boolean functions. These functions
have been expressed in terms of their minimal sum of products form. For example, the
implementation of the bitwise negation operator can be sketched as:

for (register unsigned int i = 0; i < CHUNKS_NUMBER; ++i) {
result._lower_chunks[i] = _upper_chunks[i] &

(~(_lower_chunks[i]));
result._upper_chunks[i] = _upper_chunks[i];

}

5. Minimal class hierarchy. In order to reduce the impact of managing parent constructors
and destructors at runtime, the class hierarchy has been kept to the bare minimum.
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Table 1 Mapping of ASI SystemC types to HDTLib

SystemC HDTLib Notes

sc_int_base/sc_uint_base Removed to optimize hierarchy.

sc_lv_base/sc_bv_base Removed to optimize hierarchy.

sc_signed/sc_unsigned Removed to optimize hierarchy.

sc_proxy/sc_subref/
sc_subref_r and
other reference/proxy types

Returning reference to the actual
type, when possible.
Otherwise, code modification is required.

sc_int/sc_uint ta_int/ta_uint Implemented with optimized versions
for most common bitwidths (8, 16, 32, 64).

sc_bigint/sc_biguint Not implemented, since ta_int and ta_uint
have no limits on the number of bits.

sc_bit Deprecated, thus not implemented.
Replaced by bool.

sc_bv ta_bv Implemented with optimized versions
for most common bitwidths (8, 16, 32, 64).

sc_logic ta_logic

sc_lv ta_lv Implemented with optimized versions
for most common bitwidths (8, 16, 32, 64).

All fixed point types Not implemented. Future work.

In order to provide a better overview of HDTLib structure, Table 1 associates ASI Sys-
temC data types with corresponding HDTLib data types. It is worth noting that most classes
in the ASI hierarchy have been removed to shrink the class hierarchy as much as possible.
For example, common base classes such as sc_bv_base and sc_lv_base have been
omitted, since the end user of the library does not directly employ and access them. Figure 3
provides a visual representation of the class hierarchy reduction operated by HDTLib, thus
underlying one of the main differences w.r.t. the ASI implementation. To improve perfor-
mance, template specializations of the classes for bit and logic vectors and integer types
have been developed, so that optimized definitions of these classes are provided for most
common bitwidths (i.e., 8, 16, 32 and 64 bits).

As additional details, Table 2 compares syntactically equivalent methods for the logic
vector class in the ASI SystemC library and HDTLib. Instead, Table 3 highlights the methods
featuring syntax changes, as identified previously in the text. For space constraints, only the
logic vector class is shown. However, the same applies to the classes for bit vector and
integer types.

A limitation with respect to SystemC concerns portions of vectors. SystemC allows to
create references to portions of vectors, by using the type sc_dt::sc_subref. Chang-
ing the values of a reference will also change the value in the referenced vector. HDTLib
returns only values by copy, while reference support is part of our current work. Meanwhile,
the SystemC behavior can be easily reproduced by using an explicit call to a range-setting
method.

3.2 HDTLib usage

HDTLib can be adopted in two contexts:
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Table 2 Comparison between ASI SystemC and HDTLib syntactically equivalent methods for the logic
vector class

SystemC HDTLib

sc_lv<W>& operator =
(const sc_lv<W>& a)

ta_lv<W>& operator =
(const ta_lv_t<W>& a)

const sc_lv_base operator ~() const const ta_lv<W> operator ~() const

sc_lv_base& operator &=
(const sc_lv<W>& a)

ta_lv<W>& operator &=
(const ta_lv_t<W>& a)

sc_lv_base& operator |=
(const sc_lv<W>& a)

ta_lv<W>& operator |=
(const ta_lv_t<W>& a)

sc_lv_base& operator ^=
(const sc_lv<W>& a)

ta_lv<W>& operator ^=
(const ta_lv_t<W>& a)

sc_lv_base& operator <<=
(int n)

ta_lv<W>& operator <<=
(int n)

sc_lv_base& operator >>=
(int n)

ta_lv<W>& operator >>=
(int n)

Table 3 Comparison between ASI SystemC and HDTLib syntactically non-equivalent methods for the logic
vector class

SystemC HDTLib

sc_subref_r<sc_lv_base>
range(int hi, int lo) const

template <int WR> ta_lv<WR>
range(int hi, int lo) const

sc_subref<sc_lv_base>
range(int hi, int lo)

template <int WR> ta_lv<WR>&
set_range(int hi, int lo, const
ta_lv<WR>& rhs)

sc_bitref_r<sc_lv_base>
operator[](int i) const

ta_logic operator[]
(int i) const

sc_bitref<sc_lv_base>
operator[](int i)

ta_logic set_bit
(int i)

1. implementation of SystemC designs from scratch;
2. replacement of the ASI SystemC data types with HDTLib data types on already existing

SystemC designs.

In the first context, designers can easily use HDTLib data types according to the API
and the documentation provided with the library. HDTLib largely preserves the same syntax
as the ASI SystemC data types, except for operations on ranges and single bits that have a
slightly different syntax. Such differences are due to the implementation choices adopted in
order to improve HDTLib simulation performance. Specifically, HDTLib syntax differs with
the ASI SystemC syntax only in the following cases:

1. range selections require the bitwidth of the selection to be provided as template argument,
e.g. a.range(15, 8) becomes a.range<8>(15, 8);

2. assignments on ranges must be replaced with corresponding templatized function calls,
e.g. a.range(15, 8) = x is replaced with a.set_range<8>(15, 8, x);
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3. assignments on single bits must be replaced with corresponding function calls, e.g. a[8]
= x; is replaced with a.set_bit(8, x);

In the second context, i.e., usage of HDTLib in existent designs, HDTLib data types
replace the standard data types provided by the SystemC ASI library. In this case, some
modifications to the source code may be required in order to take into account the previously
stated syntax differences. However, it is worth noting that these changes have to be applied
only if the existing SystemC description contains operations on ranges and single bits, as
stated before. In order to make the transition to HDTLib smoother in these cases, these
modifications have been automated by developing a tool on top of HIFSuite [27]. This tool
performs all the syntax changes required by HDTLib on the existing SystemC description,
according to the pseudocode described in Algorithm 1.

foreach expression do1

if expression contains range selection then2

add the range bitwidth as template argument3

to the range function call;4

end5

end6

foreach assignment do7

if left-hand side is a range then8

replace assignment with call to the set_range function9

with the range bitwidth as template argument;10

else if left-hand side is a single bit then11

replace assignment with call to the set_bit function;12

end13

end14

Algorithm 1: Pseudocode for the algorithm performing syntax changes required by
HDTLib

The starting SystemC description is firstly parsed, in order to identify expressions and
assignments, which are the only two constructs affected by the required syntax changes. In
fact, the first syntax change targets read-only range selections, which can be found only in
expressions, while the last two syntax changes impact assignments only.

Each expression is checked to determine whether it contains a range selection (lines
1–2). If this is the case, the range bitwidth is added as a template parameter to the function
call that performs the range selection (lines 3–4). Then the left-hand side of each assignment
is checked to determine whether it is a range (lines 7–8) or a single bit (line 11). If a range
is on the left-hand side, the assignment is replaced with a call to the set_range function
(lines 9–10). The bitwidth range is provided as template argument, while the range bounds
and a reference to the left-hand side are passed as arguments to the function call. If the left-
hand side consists of a single bit, the assignment is replaced with a call to the set_bit
function (line 12). The bit index and a reference to the left-hand side are passed as arguments
to the function call.
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Fig. 4 Integration of third-party IPs with designs using HDTLib

3.3 Third-party IP integration

IP reuse is a key strategy in modern embedded system design flows to optimize the time-to-
market and to minimize production costs. In many cases, third-party IPs are available only
as object files, i.e. SystemC code pre-compiled by the vendors to protect the implementation
details.

In these cases, the integration of such IPs, which are written by adopting standard Sys-
temC types, with designs that adopt HDTLib is not immediate. The proposed solution is
depicted in Fig. 4. Each IP is instantiated as a submodule of a wrapper (i.e., SC_MODULE).
The wrapper module explicitly uses HDTLib types for the interface and performs the con-
versions between HDTLib and standard SystemC types. Therefore, open source (i.e., user-
defined) designs can adopt HDTLib and interact with the third-party IPs without performing
any type conversion.

The wrapper module relies on functions to convert HDL types to primitive C++ types.
For example, bit vectors are converted to their corresponding representation as unsigned in-
tegers, or as strings if their bitwidths exceed the length of an unsigned integer. Logic vectors
can be converted to their corresponding string representation. For example, the following
statement of the wrapper converts a HDTLib bit vector a to a corresponding standard Sys-
temC bit vector b:

b = a.to_uint();

Both HDTLib and the standard SystemC data library provide these conversion functions.

4 Type abstraction methodology

SystemC supports hardware modeling by providing a set of bit accurate and multi-valued
data types to recreate low level behaviors of the target physical circuit.

However, when the goal is functional verification or the design is abstracted from RTL to
TLM, simulation performance can be further improved by abstracting some low level details
typical of HDL types. Maintaining the same accuracy after the abstraction would have a huge
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impact on performance of the abstracted code. That is, the high level functionality and the
lightened communication protocol would still rely on bit accurate data types to describe HW
characteristics that are useless for the high-level functional verification.

The type abstraction methodology aims at abstracting the multi-valued logic data types
(i.e., ‘X’, ‘Z’, ‘0’, ‘1’) into a two-valued logic type (i.e., ‘0’, ‘1’). In particular, the
idea is to substitute logic types with an efficient implementation of bit vectors. In general,
this substitution creates a non-equivalent design, and thus, there are some restrictions to its
possible adoption.

Bit vectors and integers are unchanged, since for their efficient simulation HDTlib can
be adopted, still preserving an equivalent semantics.

Logic types are described in SystemC as elements able to assume four values: ‘0’
and ‘1’, just like standard bits, plus two special values, high-impedance ‘Z’ and un-
known ‘X’.

The unknown value ‘X’ is the default initial value of logic types, and it means that the
value of such an element is uncertain. It is not explicitly used for implementing the RTL
model behavior since it does not map any actual circuit value. Rather, it is used for low-level
debugging. If an unknown value is observed after initialization of the design (usually, the
reset phase) or during execution, it means that the circuit most likely contains a bug, since
a non-deterministic behavior has been introduced. Therefore, a RTL design can have an
explicit use of ‘X’ only in conditional statements introduced for verification. When apply-
ing the proposed type abstraction technique, such debugging checks can be safely removed,
while still obtaining a functionally equivalent design.

The high-impedance value ‘Z’ is used for tri-state signals (i.e., signals with more than
one driver). When a driver writes a ‘Z’ on a signal, it actually allows other drivers to set
the value. Thus, the explicit use of ‘Z’ in a RTL design can occur in two cases only: in
conditional statements inserted for debugging or in write operations. Debugging statements
can be removed (as done for unknown values) by obtaining a functionally equivalent design.
Write operations can also be removed since a correct design will always have a driver that
sets a value different from ‘Z’.

The ‘X’ meta value can also be implicitly introduced during simulation by the SystemC
resolution functions. A resolution function is a HDL-dependent function that handles the
four-valued logic. In the most common case, a ‘X’ is generated when more than one driver
tries to set different values (which are not ’Z’) on the same signal. The generation of ‘X’
notifies a design error as it represents a non-deterministic behavior of the actual circuit (e.g.,
the SystemC kernel by default stops the simulation whenever such a concurrent assignment
happens). When applying the type abstraction methodology to such non deterministic de-
signs, the resulting design will generate ‘0’ or ‘1’ non-deterministically instead of ‘X’.

The explicit use of meta values such as ‘X’ and ‘Z’ is always removable. On the other
hand, as a drawback of the proposed type abstraction methodology, the design debugging
may become harder, since debugging features useful for checking low level concurrency are
removed (such as, explicit and implicit checks on ‘X’ and ‘Z’ logic values). Moreover, a
design that makes explicit use of write operations with ‘Z’ cannot be synthesized after type
abstraction, since synthesis tools require to know whether a component has multiple drivers.

Thus, it makes sense to abstract multi-value logic when simulation aims at verifying
high-level functionality rather than debugging low level HW behavior. However, in case
of debugging, HDTLib can be adopted without type abstraction with an accepted loss of
performance.

The proposed type abstraction methodology is suitable for functional simulation, espe-
cially when the design is abstracted from RTL to TLM. When the design has been proven
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to be functionally correct, the lower level details can be re-introduced, and a slower but still
efficient simulation can be performed by using HDTlib instead of the ASI SystemC data
type library.

Finally, the reported analysis holds supposing that the original design is written follow-
ing usual conventions of RTL designs. A design could present explicit unknown and high-
impedance values for reasons different from those reported in this work. Such occurrences
can be simulated but not synthesized. In other words, such a design would be incorrect.

To summarize, the algorithm for abstracting the multi value types consists of the follow-
ing steps:

1. Replace each single logic bit with a boolean.
2. Replace each logic vector with a bit vector.
3. Remove any assignment statement containing an explicit ‘X’ or ‘Z’.
4. Remove any condition statement and the corresponding branches containing an explicit

‘X’ or ‘Z’.

The type abstraction algorithm has been implemented in the HIFSuite tool [27] and ap-
plied to several designs to analyze the simulation speed-up provided by the type abstraction,
as reported in Sect. 6.

5 HDTLib and GP-GPUs

In recent years, GP-GPUs have been investigated as a new general purpose computing plat-
form. Compute Unified Device Architecture (CUDA) is a C library extension developed by
NVIDIA to provide a programming interface to GPU devices [13]. The host CPU is respon-
sible for starting the main program and for executing serial code, while delegating parallel
execution of compute-intensive tasks to the GPU device. The CUDA programming requires
the definition of C functions, called kernels, which are executed in parallel by multiple GPU
threads when invoked. These threads run the same kernel concurrently, and each one is as-
sociated with a unique thread ID. A kernel is executed by a two-dimensional grid of thread
blocks. Threads are arranged into three-dimensional thread blocks.

The high number of available cores in GP-GPUs makes these architectures ideal can-
didates to accelerate simulation of SystemC designs, as proposed in [10–12]. In [10, 11],
the authors propose to speed-up the simulation of both RTL and TLM SystemC designs by
automatically translating SystemC designs into CUDA designs that can be executed in par-
allel. This is achieved by transforming the model of computation of SystemC discrete-event
simulation into a model of concurrent GPU threads that synchronize as and when necessary.
In [12], the authors present a framework for functional verification of RTL designs, which
is based on fault injection and parallel simulation on GP-GPUs. Given a fault model, the
framework translates the RTL code into an injected C code targeting NVIDIA GPUs, thus
allowing a very fast parallel automatic test pattern generation and fault simulation.

Both these works focus on re-implementing the SystemC process scheduler in order to
allow parallel execution on GP-GPUs. In fact, the main issue for simulating SystemC on
CUDA is porting the process scheduling. Simulation of a SystemC description is overseen
by the SystemC process scheduler, which properly executes and awakens processes accord-
ing to the events happening during simulation. In standard DES simulators, this function is
performed by the SystemC simulation kernel, which is external to the user-defined design.
In contrast, when targeting GP-GPUs, such a scheduling function must be integrated within
the kernel function (see Fig. 5) and can be parallel ([10, 11]) or single thread-based ([12]).
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Fig. 5 SystemC simulation on
CUDA GP-GPUs

The kernel function is executed by GPU threads in parallel, and is responsible for per-
forming a simulation run of the description. By carefully structuring a design description in
such a kernel function and other auxiliary functions, it is possible to exploit the computing
power provided by the GPU device to perform parallel simulation runs of the description,
thus achieving a significant simulation speed-up.

Nevertheless, no mention is made about data types. To allow parallel simulation runs, all
the statements of the SystemC description must be executable by each single GPU thread,
including data types operations. At the state of the art, to do that, designers have two alter-
natives:

1. To re-implement the design by using native C data types. Single bit or logic values can be
mapped to the bool type, whereas bit or logic vectors can be mapped to the unsigned
int type. By mapping to native data types, only built-in operators will be used, which
can be natively executed by a single GPU thread. However, this mapping does not pre-
serve multi-value logic accuracy, and requires significant manual changes in the code to
properly re-implement all data type operations (e.g., range or bit selection, concatena-
tion, etc.) performed in the description in terms of C primitive data types. Additionally,
special care must be taken to ensure that bit accuracy is preserved, since primitive data
types have architecture-dependent bit widths.

2. To modify the standard SystemC data type library source code in order to allow its execu-
tion on the GPU device. The CUDA framework requires for kernel and support functions
that run on the GPU device to be explicitly marked in the code. Furthermore, a few lim-
itations apply on the code, due to the NVIDIA CUDA architecture, as detailed in the
following paragraphs.

Both the options require manual effort. The first option requires time-consuming and
error-prone modifications to the user-defined design. The second option requires an amount
of manual modifications simply too daunting due to the complex and huge class structure of
the ASI data type library.

HDTlib allows designers to overcome this limitation thanks to its minimal class hierar-
chy. To apply to GP-GPU architectures, and in particular, to the CUDA frameworks, two
categories of methods of the original library have been modified as follows:

1. Output methods (i.e., methods printing the representation of a data object on screen).
GPU threads are not allowed to access the standard output (i.e., the output screen) and
thus only code running on the host CPU can print on the standard output. As such, output
data must be sent back from the GPU device to the host CPU in order to be printed.
However, this is more a limitation on CUDA side, and does not interfere with the use of
HDTlib.
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2. Methods operating on strings (i.e., methods that initialize a vector from its string rep-
resentation and methods that return the string representation of a vector). In fact, the
string class belongs to the C++ standard library and thus its source code can not be
modified.

In particular, the code modifications of the data type library have been the following:

1. Adding the __device__ qualifier to methods. This qualifier declares that a method can
be executed and invoked only by the device. This allows to execute all operators on data
types by GPU threads. All methods for each data type class are marked with this qualifier
except for output methods and methods operating on strings.

2. Removing output of error messages. This modification is required because GPU threads
cannot access the error (or the output) stream, as previously stated. Any operation on
HDTlib data types generating errors is not supported in CUDA.

3. Substituting string with arrays of characters in methods operating on strings. This step
allows to circumvent the string class of the C++ standard library, still retaining the func-
tionalities related to string representations of data types. For example, this change al-
lows designers to initialize a bit vector from its string representation (e.g. ta_bv_t<8>
a("00110011");) also in the GPU device code.

After applying these changes, a SystemC description that adopts HDTlib data types can
be automatically converted into a corresponding CUDA description, without requiring de-
signers to modify or re-implement all the data type operations performed in the description.

6 Experimental results

Three different sets of experiments have been conducted to evaluate the impact of HDTLib
on the overall simulation performance. The first set focuses on basic operations on bit and
logic vectors, by applying the library to synthetic SystemC designs. This allows us to eval-
uate the different impact of the data types and the corresponding operators on the overall
simulation speed.

In the second set, HDTLib has been applied to actual designs provided by industrial part-
ners to analyze the performance improvement on real test cases with different architectural
characteristics and coding styles.

In the third set, the industrial designs have been simulated on a GP-GPU device through
the CUDA framework, in order to verify the correctness and performance of HDTLib on
CUDA architectures.

The first two sets of experiments have been carried out on a 64-bit Linux server with four
2.83 GHz CPU cores and 4 GB RAM memory. The third set of experiments has been per-
formed on a 64-bit Linux server with six 2.8 GHz CPU cores and equipped with a NVIDIA
GeForce GTX 460 device.

6.1 Basic operation benchmarking

The first set of experiments consists of synthetic SystemC benchmarks containing a number
of basic operations on bit and logic vectors repeated in a loop. The basic operations are
divided in the following classes:

– initializations from unsigned integers;
– range selections and assignments;
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Table 4 Simulation time (in
seconds) of synthetic benchmarks Benchmark ASI ac_int HDTLib Speed-up (×)

bv_complete 281.05 4.72 1.90 147.9

bv_range 147.82 3.83 1.99 74.3

bv_bitwise 313.89 3.79 3.79 82.8

bv_shift 305.52 1.99 1.98 154.3

lv_complete 236.41 – 8.33 28.4

lv_range 202.07 – 6.74 30.0

lv_bitwise 298.72 – 3.80 78.6

lv_shift 294.24 – 1.99 147.9

Fig. 6 Simulation time (in
seconds) of synthetic benchmarks

– bitwise operations;
– shift operations;
– single bit selections and assignments.

Benchmarks bv_complete and lv_complete test all the operation classes within
an iteration, while all the remaining benchmarks perform only a specific operation class.

Three data type libraries have been compared: ASI SystemC, Algorithmic C [15], and
HDTLib. Although the Algorithmic C ac_int type implements an arbitrary bitwidth in-
teger, it has been used as a surrogate for representing a bit vector, since it provides all
bit-accurate operations required for this purpose. However, ac_int does not provide sup-
port for logic vectors. For this reason, it has been applied only to the first four benchmarks,
which pertain to bit vectors.

Results are reported in Table 4 and represented in Fig. 6. Time needed to adapt the bench-
marks to be compliant with the proposed technique is not reported, since the automatic tool
makes this step instantaneous. All simulation times are in seconds and have been measured
by using the time command (by considering both system time and user time). The speed-
up reported in Table 4 concerns the simulation improvement of HDTLib with regard to the
standard ASI. This set of experiments exposes the slowness of bit and logic vectors in the
ASI implementation, as HDTLib provides a speed-up up to 154.3× with respect to the ASI
implementation. Furthermore, such efficiency is not obtained to the detriment of accuracy,
as HDTLib allows to keep multi-value logic accuracy, while Algorithmic C does not.
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Table 5 RTL IP module characteristics

RTL IP
module

PIs (#) POs (#) Gates (#) FF (#) SystemC (loc)

adpcm 66 35 24,412 364 305

dist 34 66 400 35 84

div 35 33 248 19 58

root 35 33 682 59 119

gcd 67 66 636 51 100

fft 92 114 87,397 1,359 3,335

ecc 25 32 993 79 175

crc 56 34 9,213 385 492

6.2 Industrial design benchmarking

In an actual industrial design, a number of factors come into play, such as simulation kernel
overhead, synchronization between processes, etc. However, a fast implementation of data
types is fundamental for increasing simulation speed.

HDTLib and the data type abstraction have been applied to six industrial case studies:

– DIST, DIV, ROOT, CRC and ECC have been provided by STMicroelectrionics;
– FFT has been provided from CEA LETI;
– ADPCM and GCD have been downloaded from OpenCores.

Table 5 reports the structural characteristics of the RTL IP models: PIs (Primary Inputs),
POs (Primary Outputs), Gates, FF (Flip Flops) and SystemC (loc) (number of lines of HDL
code).

Six different implementations for each design have been considered:

– ASI SystemC RTL version;
– RTL version with HDTLib;
– RTL version with HDTLib and type abstraction;
– ASI SystemC TLM version;
– TLM version with HDTLib;
– TLM version with HDTLib and type abstraction.

The simulation results are reported in Table 6 and Table 7 for the RTL and TLM versions,
respectively. Columns ASI RTL, HDTLib RTL and HDTLib RTL + TA in Table 6 indicate
the elapsed simulation time in seconds for the ASI SystemC RTL version, the RTL version
with HDTLib and the RTL version with HDTLib and type abstraction, respectively. Column
Speed-up RTL shows the speed-up obtained by using HDTLib and the proposed type abstrac-
tion methodology at RTL. Results show that the advantage of using the accurate data type of
HDTLib at RTL is limited by the impact of the SystemC scheduling activity, which affects
simulation speed. This happens for example in designs ADPCM and GCD, which have a
much lower speed-up with respect to the other designs since simulation overhead is higher
than the actual functional simulation. On the other hand, the results show that HDTLib al-
ways provides at least a fair simulation speed-up, still preserving the simulation correctness.
The type abstraction methodology further improves performance with a gain up to 6×.

Table 7 and Fig. 7 report and depict the simulation performance of the TLM versions
of the same designs, obtained via RTL-to-TLM automatic abstraction. Columns ASI TLM,
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Table 6 Simulation time and speed-up of RTL versions

Design ASI RTL
(s)

HDTLib RTL
(s)

Speed-up RTL
(×)

HDTLib RTL + TA
(s)

Speed-up RTL + TA
(×)

adpcm 482.49 323.86 1.49 320.18 1.51

dist 207.98 119.49 1.74 68.26 3.05

div 456.84 165.36 2.76 151.69 3.01

root 270.26 104.37 2.59 87.15 3.10

gcd 2,493.69 1,431.16 1.74 1,327.25 1.88

fft 950.58 275.11 3.45 154.51 6.15

ecc 158.82 99.21 1.60 73.78 2.15

crc 4,976.65 1,843.20 2.70 1,637.06 3.04

Table 7 Simulation time and speed-up of TLM versions

Design ASI
TLM (s)

HDTLib
TLM (s)

Speed-up
TLM (×)

HDTLib TLM
+ TA (s)

Speed-up TLM
+ TA (×)

Speed-up
RTL-TLM (×)

adpcm 43.73 15.66 2.79 12.71 3.44 37.96

dist 102.32 14.06 7.28 5.22 19.60 39.84

div 74.04 7.40 10.00 6.35 11.66 71.94

root 136.21 18.47 7.37 15.46 8.81 17.48

gcd 14.31 12.20 1.18 6.09 2.35 409.47

fft 176.73 26.26 6.73 5.03 35.14 188.98

ecc 47.33 31.53 1.50 18.72 2.53 8.48

crc 8.77 8.02 1.09 2.17 4.03 2,287.03

Fig. 7 Graph of experiment #2

HDTLib TLM and HDTLib TLM + TA indicate the elapsed simulation time in seconds for
the ASI SystemC TLM version, the TLM version with HDTLib and the TLM version with
HDTLib and type abstraction, respectively. Column Speed-up TLM shows the speed-up ob-
tained by using HDTLib and the proposed type abstraction methodology at TLM. Simply
abstracting the RTL design to a corresponding TLM implementation does not result in a
significant speed-up if bit-accurate ASI data types are preserved. This is due to the slowness



HDTLib: an efficient implementation of SystemC data types for fast 133

Table 8 Simulation time comparison between single core and CUDA GP-GPU architectures

Design Serial
HDTLib (s)

Serial
HDTLib +
TA (s)

Serial C types
(s)

CUDA
HDTLib (s)

CUDA
HDTLib +
TA (s)

CUDA C
types (s)

adpcm 803.1 645.7 616.9 7.78 7.01 6.99

dist 331.6 285.4 224.6 6.38 5.55 4.28

div 685.0 669.7 317.6 7.92 6.98 5.56

root 3,453.6 3,265.5 2,775.8 8.77 8.76 8.74

gcd 972.0 902.0 848.0 7.28 7.21 5.98

fft – – – – – –

ecc 60.3 57.3 54.1 1.92 1.83 1.35

crc – – – – – –

of the ASI implementation of such data types, that ends up absorbing the performance im-
provement obtained by moving up to a higher abstraction level. This is where HDTLib gives
the highest benefit, by drastically lowering the simulation times thanks to an efficient and
highly optimized implementation, gaining a 10× speed-up without the type abstraction and
up to a 35× with type abstraction.

Column Speed-up RTL-TLM indicates the global speed-up obtained by abstracting the
design from RTL to TLM and using HDTLib in conjunction with the proposed type abstrac-
tion methodology. The overall speed-up depends on a number of factors, such as the impact
of accurate data types and how effective the abstraction algorithm is for handling the RTL
functionality. For example, data type abstraction has a major impact (up to 35×) in designs
such as DIST, DIV, ROOT and FFT, which use bitwise operations intensively. On the other
hand, TLM abstraction has a huge impact on all designs. Thus, the best results are achieved
when combining RTL-to-TLM abstraction with the use of HDTLib.

6.3 GP-GPU results

The third set of experiments has been carried out by simulating the industrial designs ana-
lyzed in the previous section on a GP-GPU device through the CUDA framework.

Six different versions for each design have been considered:

– Serial C++ version with C primitive data types;
– Serial C++ version with HDTLib;
– Serial C++ version with HDTLib and type abstraction;
– CUDA version with C primitives data types.
– CUDA version with HDTLib;
– CUDA version with HDTLib and type abstraction;

The C++ versions have been obtained from the starting SystemC descriptions by applying
the methodology described in [24]. It is worth noting that using HDTLib did not require any
change to the source code of the designs. On the contrary, the versions containing the C
primitive data types have required manual modifications to the source code of the design in
order to re-implement data type operations in terms of C primitive data types.

The results are reported in Table 8. Columns Serial HDTLib, Serial HDTLib + TA and Se-
rial C types show the elapsed simulation time in seconds for the serial version with HDTLib,
the serial version with HDTLib and type abstraction and the serial version with primitive C



134 N. Bombieri et al.

data types, respectively. Columns CUDA HDTLib, CUDA HDTLib + TA and CUDA C types
show the elapsed simulation time in seconds for the CUDA version with HDTLib, the serial
version with HDTLib and type abstraction and the serial version with primitive C data types,
respectively.

As expected and as already known by the literature on CUDA simulation, CUDA makes
simulation faster than the starting SystemC code as well as any sequential version of the
designs. The simulation speed-up greatly varies from design to design, according to the
inherent features of each design, e.g., the ratio between control operations and operations
on data types, the number of operations performed on data types for each iteration. The FFT
and CRC code size was too large to successfully compile with the used CUDA framework
(4.0). However, it is important to note that such designs may not have been executed on
the GPU either by using native data types or the ASI SystemC data types, since the same
memory limits apply. For all the other designs, it is worth noting that the simulation overhead
introduced by HDTLib for supporting bitwise accuracy and multi-valued logic is negligible
considering the overall massive speed-up provided by such many-core architectures.

7 Conclusions

This article presented HDTLib, a new library of data types for speeding up simulation of
SystemC designs. The article also presented a methodology for abstracting data types to
further increase the simulation performance when low level HW-specific details are not
required in high-level descriptions like TLM designs. Then, the article showed how HDTLib
has been implemented for applying to the today’s many-core architectures, in particular to
CUDA GP-GPUs. A set of experiments has been conducted to both synthetic and industrial
designs to analyze (i) the impact of the different data types and corresponding operators
on the overall simulation speed, (ii) the impact of the data type accuracy on the overall
simulation by considering the abstraction level of the design implementation, and (iii) the
difference of simulation speed obtained by adopting the standard ASI library, a commercial
SystemC library, and HDTLib. Finally, a set of experimental results has been conducted by
simulating SystemC design with HDTLib on a GP-GPU device. The results showed that
the simulation overhead introduced by HDTLib for supporting bitwise accuracy and multi-
valued logic is negligible considering the overall massive speed-up provided by such many-
core architectures.
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