
On the Expressiveness of Relative-Timed

Coordination Models

I. Linden and J.-M. Jacquet1

Institute of Informatics
University of Namur

Namur, Belgium

K. De Bosschere2

ELIS
Ghent University
Ghent, Belgium

A. Brogi3

Department of Computer Science
University of Pisa

Pisa, Italy

Abstract

Although very simple and elegant, Linda-style coordination models lack the notion of time, and are
therefore not able to precisely model real-life coordination applications. Nevertheless, industrial
proposals such as TSpaces and JavaSpaces, inspired from Linda, have incorporated time constructs.
This paper aims at a systematic study of the introduction of relative time in coordination models.
It builds upon previous work to study the expressiveness of Linda, Linda extended with a delay
mechanism and Linda primitives extended to support the duration of tuples and of the suspension
of communication operations.

Keywords: Temporal coordination languages, semantics, expressiveness

1 Email: ili,jmj@info.fundp.ac.be
2 Email: kdb@elis.rug.ac.be
3 Email: brogi@di.unipi.it

Electronic Notes in Theoretical Computer Science 97 (2004) 125–153

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.04.034
Open access under CC BY-NC-ND license.

mailto:{ili,jmj}@info.fundp.ac.be
mailto:kdb@elis.rug.ac.be
mailto:brogi@di.unipi.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

As motivated by the constant expansion of computer networks and illustrated
by the development of distributed applications, the design of modern software
systems centers on re-using and integrating software components. This induces
a paradigm shift from stand-alone applications to interacting distributed sys-
tems, which, in turn, naturally calls for well-defined methodologies and tools
aiming at integrating heterogeneous software components.

In this context, a clear separation between the interactional and the com-
putational aspects of software components has been advocated by Gelernter
and Carriero in [15]. Their claim has been supported by the design of a model,
Linda ([9]), originally presented as a set of inter-agent communication prim-
itives which may be added to almost any programming language. Besides
process creation, this set includes primitives for adding, deleting, and testing
the presence/absence of data in a shared dataspace.

A number of other models, now referred to as coordination models, have
been proposed afterwards. Some of them extend Linda in different ways,
for instance by introducing multiple dataspaces and meta-level control rules
(e.g., Bauhaus Linda [22], Bonita [26], µLog [18], PoliS [11], Shared Prolog
[5]), by addressing open distributed systems (e.g., Laura [33]), middleware
web-based environments (e.g., Jada [12]), or mobility (e.g., KLAIM [23]). A
number of other coordination models rely on a notion of shared dataspace, e.g.,
Concurrent Constraint Programming [29], Gamma [2] and Linear Objects [1],
to cite only a few. A comprehensive survey of these and other coordination
models and languages has been recently reported in [25].

However, the coding of applications reveals that data rarely has an eternal
life and that services have to be provided in a bounded amount of time. For in-
stance, a request for information on the web has to be satisfied in a reasonable
amount of time. More crucial is even the request for an ambulance which, not
only has to be answered eventually but within a critical period of time. The
list could also be continued with software in the areas of air-traffic control,
manufacturing plants and telecommunication switches, which are inherently
reactive and, for which, interaction must occur in “real-time”.

Although there is an obvious application need, the introduction of time
has not been deeply studied in the context of coordination languages and
models, the notable exceptions being [4,24,27,28], yet proposed in the context
of concurrent constraint programming, and [7,8].

This paper aims at contributing to the study of time in coordination lan-
guages and models. More precisely, it builds upon [19] to perform a system-
atic and exhaustive study of two extensions proposed there. These extensions

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153126

adopt the classical two-phase functioning approach to real-time systems illus-
trated by languages such as Lustre ([10]), Esterel ([3]) and Statecharts ([16]).
This approach may be described as follows. In a first phase, elementary ac-
tions of statements are executed. They are assumed to be atomic in the sense
that they take no time. Similarly, composition operators are assumed to be
executed at no cost. In a second phase, when no actions can be reduced or
when all the components encounter a special timed action, time progresses by
one unit.

Although simple, this approach has been proved to be effective for mod-
elling reactive systems. For instance, in many reactive systems, timed actions
determine instants at which inputs are sampled or output is produced. In the
coordination context, it still leaves room for several variants:

(i) time may be introduced in the form of delays, stating that a communi-
cation primitives should only be processed after some units of time;

(ii) time may also be introduced by stating that tuples on the tuple space are
only valid for some units of time; similarly, requests for tuples cannot be
postponed indefinitely;

(iii) time may finally be introduced by specifying intervals of time in which
actions should be processed.

In this paper, we consider only the first two extensions. These extensions
were introduced in [19] with some expressiveness results. However, as will be
appreciated by the reader, this paper aims at a much deeper study of these
expressiveness results. In particular, all the results of sections 3 and 4.2 are
original with respect to [19] while the comparisons of sections 4.1 and 4.3 have
lead to 8 new results with respect to [19].

We postpone the comparison with other work to section 5 when technical
notions and results necessary for the discussion will have been introduced.

The rest of this paper is structured as follows. Section 2 introduces the
families of languages under study in the paper. All of them rest on common
sequential, parallel and choice operators. The Linda-like languages are first
modelled as the L family. Relative delays are then introduced and relative
timing primitives are defined thereafter. The expressiveness hierarchy of each
family of languages, considered in isolation, is studied in section 3. The inter-
family comparison is discussed in section 4. In order to keep the size of this
paper within reasonable limits, only the most difficult proofs have been done.
We refer the interested reader to [20] where all the results are demonstrated.
Finally, in section 5 we draw our conclusion and discuss related work.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 127

General rule

A ::= C | A ; A | A || A | A + A

L rule

C ::= tell(t) | ask(t) | get(t) | nask(t)

D rule

C ::= tell(t) | ask(t) | get(t) |

nask(t) | delay(d)

R rule

C ::= telld(t) | askd(t) | getd(t) | naskd(t)

Fig. 1. Comparative syntax of the languages.

2 The families of languages

2.1 Common syntax and rules

All languages considered in this paper contain sequential, parallel and choice
operators. They differ only in the set of communication primitives they em-
body. As a result, assuming such a set, the syntax of a statement, subsequently
called agent, is defined by the “general rule” of figure 1 and its semantics is
provided by rules (S), (P), and (C) of figure 2. There, configurations are of
the form 〈A | σ〉 where A represents the agent under consideration and σ

represents a memory, to be specified for each family of languages.

Note that, for simplicity of presentation, only finite processes are treated
here, under the observation that infinite processes can be handled by extending
the results of this paper in the classical way, as exemplified for instance in [17].

2.2 The family of Linda-like concurrent languages

To start with, consider the family of languages L(X), parameterized on the
set of Linda-like communication primitives X . This set X consists of the basic
Linda primitives out, in, and rd, for putting an object in a shared dataspace,
getting it and checking for its presence, respectively, together with a primitive
testing the absence of an object from the dataspace. Formally, the language
is defined as follows.

Definition 2.1 Let Stoken be an enumerable set, the elements of which are
subsequently called tokens and are typically represented by the letters t and
u. Define the set of communication actions Scom as the set generated by the

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153128

General rules

(S)
〈A | σ〉 −→ 〈A′ | σ′〉

〈A ; B | σ〉 −→ 〈A′ ; B | σ′〉

(P)

〈A | σ〉 −→ 〈A′ | σ′〉

〈A || B | σ〉 −→ 〈A′ || B | σ′〉

〈B || A | σ〉 −→ 〈B || A′ | σ′〉

(C)

〈A | σ〉 −→ 〈A′ | σ′〉

〈A + B | σ〉 −→ 〈A′ | σ′〉

〈B + A | σ〉 −→ 〈A′ | σ′〉

L rules

(T) 〈tell(t) | σ〉 −→ 〈E | σ ∪ {t}〉

(A) 〈ask(t) | σ ∪ {t}〉 −→ 〈E | σ ∪ {t}〉

(N)
t �∈ σ

〈nask(t) | σ〉 −→ 〈E | σ〉

(G) 〈get(t) | σ ∪ {t}〉 −→ 〈E | σ〉

D rule

(D1)
A �= E,A �= A−, 〈A | σ〉 �→

〈A | σ〉 � 〈A− | σ〉

(D2) 〈delay(0) | σ〉 −→ 〈E | σ〉

R rule

(T0) 〈tell0(t) | σ〉 −→ 〈E | σ〉

(Tr)
d > 0

〈telld(t) | σ〉 −→ 〈E | σ ∪ {td}〉

(Ar)
d > 0

〈askd(t) | σ ∪ {tk}〉 −→ 〈E | σ ∪ {tk}〉

(Nr)
d > 0, � ∃k : tk ∈ σ

〈naskd(t) | σ〉 −→ 〈E | σ〉

(Gr)
d > 0

〈getd(t) | σ ∪ {tk}〉 −→ 〈E | σ〉

(Wr)
A �= E, A �= A− or σ �= σ−, 〈A | σ〉 �→

〈A | σ〉 � 〈A− | σ−〉

Fig. 2. Comparative semantics of the languages.

L rule of figure 1. Moreover, for any subset X of Scom, define the language
L(X) as the set of agents A generated by the general rule of figure 1.

For any X , computations in L(X) may be modelled by a transition system
written in Plotkin’s style. Following the intuition, most of the configurations
consist of an agent together with a multi-set of tokens denoting the tokens
currently available for the computation. To easily express termination, we
shall introduce particular configurations composed of a special terminating
symbol E together with a multi-set of tokens. For uniformity, we shall abuse

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 129

language and qualify E as an agent. However, to meet the intuitive expectaion,
we shall always rewrite agents of the form (E ; A), (E || A), and (A || E) as A.
This is technically achieved by defining the extended set of agents as follows,
and through simplifications derived by imposing a bimonoid structure.

Definition 2.2 Define the extended set of agents Seagent by the following
grammar

Ae ::=E | C | A ; A | A || A | A + A

Moreover, we shall subsequently assert that the structure (Seagent, E, ; , ||)
is a bimonoid and simplify elements of Seagent accordingly.

Definition 2.3 Define the set of stores Sstore as the set of finite multisets
with elements from Stoken.

Definition 2.4 Define the set of configurations Sconf as Seagent × Sstore.
Configurations are denoted as 〈A | σ〉, where A is an (extended) agent and σ

is a multi-set of tokens.

Definition 2.5 The transition rules for the L agents are the general ones of
figure 2 together with rules (T), (A), (N), (G) of that figure, where σ denotes
a multi-set of tokens.

Rule (T) states that an atomic agent tell(t) can be executed in any store
σ, and that its execution results in adding the token t to the store σ. Rules
(A) and (N) state respectively that the atomic agents ask(t) and nask(t) can
be executed in any store containing the token t and not containing t, and that
their execution does not modify the current store. Rule (G) also states that
an atomic agent get(t) can be executed in any store containing an occurrence
of t, and it deletes the occurence of t from the resulting store. Note that the
symbol ∪ actually denotes multiset union.

We are now in a position to define the operational semantics.

Definition 2.6

(i) Let δ+ and δ− be two fresh symbols denoting respectively success and
failure. Define the set of final states Sfstate as the set Sstore×{δ+, δ−}.

(ii) Define the operational semantics O : Sagent → P(Sfstate) as the fol-
lowing function: For any agent A,

O(A)= {(σ, δ+) : 〈A | ∅〉 →∗ 〈E | σ〉}

∪ {(σ, δ−) : 〈A | ∅〉 →∗ 〈B | σ〉 �→, B �= E}

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153130

2.3 Normal form

A classical result of concurrency theory is that modelling parallel composition
by interleaving, as we did, allows agents to be considered in a normal form.
We first define what this actually means, and then state the proposition that
agents and their normal forms are equivalent in the sense that they yield the
same computations.

Definition 2.7 Given a subset X of Scom, the set Snagent of agents in
normal form is defined by the following rule, where N is an agent in normal
form and c denotes a communication action of X .

N ::= c | c ; N | N + N

Proposition 2.8 For any agent A, there is an agent in normal form N such
that O(A) = O(N).

2.4 The family of Linda-like concurrent languages with delay

One way of introducing time in coordination languages is to postpone the exe-
cution of the primitives for some period of time. This amounts to introducing
a special delay primitive.

Definition 2.9 Let Stime be the set of positive integers. Define the set
Sdcom as the set generated by the D rule of figure 1, where t ∈ Stoken

and d ∈ Stime. Moreover, for any subset X of Sdcom \ {delay}, define the
language D(X) as the set of agents generated by the general rule of figure 1
for C ∈ X ∪ {delay}.

The configurations to be considered here are similar to those used for the
L family. However, time needs to be taken into account explicitly in the
transitions. This done in two ways. First, by the introduction of a new rule
(D1), which defines a new transition relation � to express the progress of
time by one unit. In fact, the → reduction is used to model the first phase of
the two-phase functioning approach to real-time while the � relation is used
to model the second phase of this approach.

Second, as a result of the progress of time, delays under reduction, must
be decreased by one unit. This is achieved by the A− construct. Note that,
to avoid that the computation infinitely tries to decrease blocked non-delay
primitives, rule (D1) requires A− to express some progress, namely to be
different than A.

Finally, rule (D2) is introduced to reduce a delay of 0 unit of time to E.

Summing up, the transitions to be considered are defined as follows.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 131

Definition 2.10 Define the set of configurations Sdconf as Seagent′×Sstore,
where Seagent′ is the set of extended agents defined as in definition 2.2 but
by taking C ∈ Sdcom instead of C ∈ Scom.

Definition 2.11 Given an agent A ∈ D(X), we denote by A− the agent
defined inductively as follows where d > 0

tell(t)− = tell(t)

ask(t)− = ask(t)

nask(t)− = nask(t)

get(t)− = get(t)

delay(0)− = delay(0)

delay(d)− = delay(d − 1)

(B ; C)− = B− ; C

(B || C)− = B− || C−

(B + C)− = B− + C−

Definition 2.12 Define the transition rules for the D agents as the general
ones of figure 2 and rules (T), (A), (N), (G), (D1) and (D2) of that figure.

The operational semantics is defined by integrating the two phase-relations
in one relation.

Definition 2.13

(i) Let �−→ be the relation defined by 〈A | σ〉 �−→ 〈B | τ〉 iff 〈A | σ〉 → 〈B |
τ〉 or 〈A | σ〉 � 〈B | τ〉.

(ii) Define the operational semantics Od : D(Sdcom) → P(Sfstate) as the
following function: For any timed agent A,

Od(A) = {(σ, δ+) : 〈A | ∅〉 �−→∗ 〈E | σ〉}

∪ {(σ, δ−) : 〈A | ∅〉 �−→∗ 〈B | σ〉 ��−→, B �= E}

2.5 The family of Linda-like concurrent languages with relative durations

A second way of introducing time in the family L(X) consists of enriching the
primitives ask, nask, get, and tell themselves by durations. Formally, the new
family of languages R(X) is defined as follows.

Definition 2.14 Define the set Stcom of timed communication primitives
as the one generated by the R rule of figure 1, where t ∈ Stoken and d ∈
Stime ∪ {∞}. For any subset X of Stcom, define the language R(X) as the
set of agents generated by the general rule of figure 1.

The configurations to be considered for the family R(X) are similar to
those used for the family L(X). The introduction of time induces here the
following adaptations:

(i) The intuition behind the construct telld(t) is that t is added to the store
but for d units of time only. To capture this fact, the tokens of the store

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153132

have associated durations.

(ii) As another consequence, this duration has to be updated after each tick
of the clock. This motivates the introduction of the − operator acting
on the store.

(iii) Similarly, the intuition behind the askd(t), naskd(t), and getd(t) primi-
tives is that, if needed, suspension may occur only up to d units of time.
As a result, a similar operator, also denoted −, has to be introduced to
decrease the period of suspension after each tick of the clock.

This intuition leads to the following definitions.

Definition 2.15

(i) Given an agent A ∈ R(X), we denote by A− the agent defined inductively
as follows: 4

telld(t)
− = telld(t)

askd(t)
− = askmax{0,d−1}(t)

naskd(t)
− = naskmax{0,d−1}(t)

getd(t)
− = getmax{0,d−1}(t)

(B ; C)− = B− ; C

(B || C)− = B− || C−

(B + C)− = B− + C−

(ii) Define the set of timed stores Ststore as the set of multisets of elements
of the form td where t is a token and d is a duration. Given a timed store
σ, we denote by σ− the new store obtained by decreasing the duration
associated with the tokens by one unit and by removing those associated
in σ with 1 unit of time: precisely, if all the notations are understood to
relate to multi-sets: σ− = {td−1 : td ∈ σ, d > 1}

(iii) Define the set of configurations Sconf as Seagent× Ststore. Configura-
tions are denoted as 〈A | σ〉, where A is an (extended) timed agent and
σ is a timed store.

Due to the introduction of time, the operational semantics is defined by
means of the transition relations → and � describing the two phase approach.
They basically adapt the relations defined for the L family. Accordingly, rules
(Tr), (Ar), (Nr), and (Gr) adapt respectively rules (T), (A), (N), (G) in the
obvious way by requiring that communication primitives be executed only for
a strictly positive duration. Moreover, rule (T0) states that telling a token for
a zero duration succeeds by not updating the store. Rule (Wr) is the analogue
of rule (D1).

4 We extend classical arithmetic on natural numbers by ∞− 1 = ∞.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 133

Definition 2.16 Define the transition rules for the R agents as rules (S), (P),
(C), (T0), (Tr), (Ar), (Nr), (Gr), (Wr) of figure 2.

The operational semantics is defined by using an auxiliary relation �−→,
defined in a similar way as in the previous subsection. We shall subsequently
write this semantics as Or.

Definition 2.17 Define the operational semantics Or : R(Srcom) → P(Sfstate)
as the following function: For any timed agent A,

Or(A) = {(σ∗, δ+) : 〈A | ∅〉 �−→∗ 〈E | σ〉}

∪ {(σ∗, δ−) : 〈A | ∅〉 �−→∗ 〈B | σ〉 ��−→, B �= E}

where σ∗ denotes the multiset of the tokens present in σ without their duration.

3 Intra-family comparison

3.1 Modular embedding

A natural question to ask is whether the time extensions we just introduced
strictly increase the expressivness of the Linda language and, if so, whether
some of the timed primitives may be expressed in terms of others.

A basic approach to answer that question has been given by Shapiro in
[30] as follows. Consider two languages L and L′. Assume given the semantic
mappings (observation criteria) S : L → O and S ′ : L′ → O′, where O and O′

are some suitable domains. Then, according to [30], L can embed L′ if there
exists a mapping C (coder) from the statements of L′ to the statements of L,
and a mapping De (decoder) from O to O′, such that De(S(C(A))) = S ′(A),
for every statement A ∈ L′.

This approach is however too weak since, for instance, the above equa-
tion is satisfied by any pair of Turing-complete languages. To circumvent this
problem, De Boer and Palamidessi have proposed in [13] to add three con-
straints on the coder C and on the decoder De. First, De should be defined in
an element-wise way w.r.t. O:

∀X ∈ O : De(X) = {De
el(x) | x ∈ X} (P1)

for some appropriate mapping De
el. Second, the coder C should be defined in

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153134

a compositional way w.r.t. the sequential, parallel and choice operators: 5

C(A ; B) = C(A) ; C(B)

C(A || B) = C(A) || C(B)

C(A + B) = C(A) + C(B)

(P2)

Finally, the embedding should preserve the behavior of the original processes
w.r.t. deadlock, failure and success (termination invariance):

∀X ∈ O, ∀x ∈ X : tm′(De
el(x)) = tm(x) (P3)

where tm and tm′ extract the information on termination from the observables
of L and L′, respectively. An embedding satisfying these properties (P1, P2,
P3) is said to be modular.

The existence of a modular embedding from L′ into L is subsequently
denoted by L′ ≤ L. It is easy to see that ≤ is a pre-order relation. Moreover
if L′ ⊆ L then L′ ≤ L, that is, any language embeds all its sublanguages. This
property descends immediately from the definition of embedding, by setting
C and De equal to the identity function.

When two languages L and L′ embed each other, they are said to be
equivalent. This is denoted as L ≡ L′. Finally, we write L′ < L when L′ ≤ L

but L �≤ L′

The study of the embedding in the L(X) family has been done in [6]. We
can thus limit our exploration to the D and R families of languages.

3.2 The hierarchy of the languages with delay

We now turn to the D family of languages. A first result is that any language
embeds all its sublanguages.

Proposition 3.1 For all subsets X and Y of {ask, nask, get, tell} such that
X ⊆ Y , one has D(X) ≤ D(Y)

The primitive nask alone has no more power than delay.

Proposition 3.2 D(∅) ≡ D(nask).

The primitives tell and ask introduce new forms of computations, the first
one by modifying the store and the second by introducing failures. While
D(tell) and D(ask) are both strictly more powerful than D(∅), they are not
comparable to one another.

5 Actually, this is only required for the parallel and choice operators in [13].

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 135

Proposition 3.3 D(tell) �≤ D(∅), D(ask) �≤ D(∅), D(ask) �≤ D(tell), and
D(tell) �≤ D(ask).

Without the tell primitive, the store stays empty and the get and nask do
not provide more power than the ask an delay primitives.

Proposition 3.4 D(ask) ≡ D(get) ≡ D(ask, get) ≡ D(ask, nask)
≡ D(nask, get) ≡ D(ask, nask, get).

We now consider the languages D(ask, tell) and D(nask, tell) obtained
by extending D(tell) with the ability of checking the presence and the ab-
sence of data, respectively, in the dataspace. It is easy to establish that both
D(ask, tell) and D(nask, tell) are strictly more expressive than D(tell).

Proposition 3.5 D(ask, tell) �≤ D(tell) and D(nask, tell) �≤ D(tell).

While D(ask, tell) extends stricly D(ask), D(nask, tell) is not comparable
with D(ask).

Proposition 3.6 For any X ⊆ {nask, get, tell}, one has

(i) D(ask, tell) �≤ D(ask)

(ii) D(nask, tell) �≤ D(ask)

(iii) D(ask, X) �≤ D(nask, tell)

Proof. Cases (i) and (ii) are easily proved by contradiction. For case (iii), let
us proceed also by contradiction and assume that D(ask, X) ≤ D(nask, tell)
and that the coder C and decoder De satisfy properties P1 to P3. The proof
is based on the examination of the normal form of the coding of the primitives
delay and ask.

First, consider C(delay(i)) for i > 0. Since C(delay(i)) is in D(nask, tell),
its normal form can be written as

C(delay(i))= (delay(j1) ; A1) + . . . + (delay(jn) ; An)

+ (nask(t1) ; B1) + . . . + (nask(tm) ; Bm)

+ (tell(s1) ; C1) + . . . + (tell(sl) ; Cl)

for some times ji’s and tokens ti’s and si’s, with n, m, l ≥ 0. Our first obser-
vation is that the coding can not contain any choice starting with a nask, a
tell or a delay(0) primitive, i.e. m = 0, l = 0 and jk > 0(1 ≤ j ≤ n). Indeed,
if there is one choice starting with a nask primitive, then the coding of the
agent delay(i) + (delay(0) ; ask(t)) accepts the following derivation

〈C(delay(i) + (delay(0) ; ask(t)) | ∅〉 → 〈B1 | ∅〉

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153136

As delay(i) succeeds on the empty store, the agent B1 has to suceeds. This
derivation provides then a valid prefix for a successful derivation of the agent.
This contradicts, by property P3, the fact that delay(i) + (delay(0) ; ask(t))
has only failling computations on the empty store. The absence of choice
starting with a tell and delay(0) primitive can be shown similarly.

Consequently, the agent C(delay(i)) for i > 0 has then a normal form of
the following type: C(delay(i)) = (delay(j1) ; A1) + . . . + (delay(jn) ; An),
where jk > 0 (1 ≤ j ≤ n).

A second observation about C(delay(i)) is that the jk’s (1 ≤ k ≤ n) are
greater than i. This property can be proved by induction on i. For i = 1, it
results from the first observation. Now consider any delay(i), delay(i+1) and
their coding

C(delay(i))= (delay(j1) ; A1) + . . . + (delay(jn) ; An)

C(delay(i + 1))= (delay(k1) ; B1) + . . . + (delay(km) ; Bm)

We denote by kK the smallest kl’s (1 ≤ l ≤ m). If kK is less than any jl, the
coding of the agent delay(i + 1) + (delay(i) ; ask(t)) accepts the following
derivation

〈C(delay(i + 1) + (delay(i) ; ask(t)) | ∅〉

�
kK 〈. . . + (delay(0) ; BK) + . . . | ∅〉 → 〈BK | ∅〉

As delay(i + 1) succeeds on the empty store, this derivation provides a valid
prefix for a successful derivation of the agent. This contradicts, by property
P3, the fact that delay(i + 1) + (delay(i) ; ask(t)) has only failing com-
putations on the empty store. Any kl must then be strictly greater than at
least one of the jl. By the induction principle, any jl is greater than i, and
therefore any kl is greater than i + 1.

Secondly, observe the coding of an agent ask(t). By observing the deriva-
tions of C(ask(t) + delay(0)), we conclude in a similar way to delay(i) that
the agent C(ask(t)) has a normal form of the following type:

C(ask(t)) = (delay(t1) ; A1) + . . . + (delay(tm) ; Am)

We are now in a position to establish a contradiction. Assume we have
such a coding of ask(t) and denote by ti the minimum of the tk(1 ≤ k ≤ m).
Now, the coding of delay(ti) is

C(delay(ti))= (delay(j1) ; B1) + . . . + (delay(jn) ; Bn)

where jk ≥ ti(1 ≤ j ≤ n). The agent delay(ti) + ask(t) accepts the following
derivation

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 137

〈C(delay(ti) + ask(t)) | ∅〉�
ti 〈. . . + (delay(0) ; Ai) + . . . | ∅〉

→ 〈Ai | ∅〉

As ask(t) fails on the empty store, this derivation provides a valid prefix
for a failing derivation of the agent. This contradicts, by property P3, the
fact that delay(ti) + ask(t) has only successful computations on the empty
store. �

Proposition 3.7 D(nask, tell, X) �≤ D(ask, tell), for any X ⊆ {ask, get}.

Proof. The proof, similar to that of the previous proposition, is based on
the examination of the normal form of the coding of the primitives delay and
nask. �

In the presence of tell and get primitives, ask primitive is redundant.

Proposition 3.8

(i) D(get, tell) ≡ D(ask, get, tell)

(ii) D(nask, get, tell) ≡ D(ask, nask, get, tell)

Proof. (i). The inequality D(get, tell) ≤ D(ask, get, tell) is obvious. The
converse inequality is obtained by coding each get, tell and delay primitive by
itself and each ask(t) primitive by get(t) ; tell(t).

(ii). The inequality D(nask, get, tell) ≤ D(ask, nask, get, tell) is immediate.
To establish the converse inequality, we first code any token t by a pair of
tokens which we denote (t1,t2). Note that this can be done because Stoken

is enumerable: for instance, it is sufficient to associate the token associated
with the integer n to the tokens associated with the integers 2n and 2(n + 1).
Given such a coding of tokens, we define the coder C as follows.

C(ask(t)) = get(t2) ; tell(t2)

C(nask(t)) = nask(t1)

C(get(t)) = get(t2) ; get(t1)

C(tell(t)) = tell(t1) ; tell(t2)

C(delay(n)) = delay(n)

Moreover, the decoder De is defined as follows: De
el((σ, δ)) = (σ, δ) where σ is

composed of the tokens t for which t1 and t2 are in σ, the multiplicity of occur-
rences of t being that of pairs (t1, t2) in σ. To conclude, it remains to establish
that Od(A) = De(Od(C(A))), for any agent A of D(ask, nask, get, tell). The
key point for this proof consists of first establishing that if, A′ denotes C(A),
for any agent A, and, if σ′ denotes the store obtained by coding the tokens of σ,
for any store σ, then 〈A | σ〉 −→ 〈B | τ〉 if and only if 〈A′ | σ′〉 −→∗ 〈B′ | τ ′〉,

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153138

for any agents A, B and any stores σ, τ . This in turn is proved by inductively
reasoning on the structure of the agent A and for parallelly composed agents
by reasoning on their normal forms. �

The language D(get, tell) happens to be strictly more expressive than
D(ask, tell).

Proposition 3.9 D(ask, tell) ≤ D(get, tell) and D(get, tell) �≤ D(ask, tell)

To be complete, we show now that, if a language contains the tell primitive,
nask and get are incomparable. The following lemma will help us in this task.

Lemma 3.10 For any agent A in D(ask, nask, tell), if 〈A | σ〉 �→∗ 〈B |
σ ∪ τ 〉 then 〈A || A | σ〉 �→∗ 〈B || B | σ ∪ τ ∪ τ〉 where ∪ denotes union on
multisets.

Proof. The proof is conducted by induction on the number of steps of the
computation 〈A | σ〉 �→∗ 〈B | σ ∪ τ 〉. �

Proposition 3.11 For any X ⊆ {ask, get} and Y ⊆ {ask, nask}, one has

(i) D(nask, tell, X) �≤ D(get, tell)

(ii) D(get, tell, Y) �≤ D(ask, nask, tell)

Proof. For case (i), the proof is similar to that of proposition 3.7. For
case (ii), let us proceed by contradiction and assume that D(get, tell) ≤
D(ask, nask, tell). In that case, as Od(tell(t) ; get(t)) = {(∅, δ+)}
any computation of A = C(tell(t)) ; C(get(t)) starting in the empty
store is successful by P3. By lemma 3.10, there is a computation
of B = C(tell(t)) ; (C(get(t)) || C(get(t))) starting in the empty
store that is successful, which contradicts, by P2 and P3, the fact that
Od(tell(t) ; (get(t) || get(t))) = {(∅, δ−)}. �

3.3 The hierarchy of the languages with relative duration

As expected, the first result for the R family of languages is that any language
embeds all its sublanguages.

Proposition 3.12 For all subsets X and Y of {ask, nask, get, tell} such that
X ⊆ Y , one has R(X) ≤ R(Y)

The primitives tell and ask respectively introduce the possibility of modi-
fying the store and the getting of failures. While R(tell) and R(ask) are both
strictly more expressive than R(∅), they are not comparable to one another.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 139

Proposition 3.13 For any X ⊆ {nask, get, tell}, one has R(tell) �≤ R(∅),
R(ask) �≤ R(∅), R(tell) �≤ R(ask), and R(ask, X) �≤ R(tell).

On the empty store, the ask and get primitives have the same behaviour.

Proposition 3.14 R(ask) ≡ R(get) ≡ R(ask, get).

In the R family, the nask primitive alone is strictly more expressive than
the ask primitive alone.

Proposition 3.15 R(ask) ≤ R(nask) and R(nask) �≤ R(ask).

The ask and get primitives do not add any expressive power to R(nask).

Proposition 3.16 R(nask) ≡ R(ask, nask) ≡ R(nask, get) ≡ R(ask, nask, get).

While R(nask) is strictly more expressive than R(ask), it is still incom-
parable to R(tell).

Proposition 3.17 For any X ⊆ {ask, get, tell} and Y ⊆ {ask, nask, get},
one has R(nask, X) �≤ R(tell) and R(tell, Y) �≤ R(nask).

R(ask, tell) turns out to be strictly more expressive than R(nask).

Proposition 3.18 R(nask) ≤ R(ask, tell) and R(ask, tell) �≤ R(nask).

While R(ask, tell) and R(nask, tell) are both strictly more powerful than
R(tell) and R(nask), they are incomparable.

Proposition 3.19 For any X ⊆ {nask, get} and Y ⊆ {ask, get}, one has
R(ask, tell, X) �≤ R(nask, tell) and R(nask, tell, Y) �≤ R(ask, tell).

The primitives {get, tell} are strictly more expressive than the pair of
primitives {ask, tell}. Moreover adding ask to R(get, tell) does not yield in
an additional expressiveness.

Proposition 3.20

(i) R(ask, tell) ≤ R(get, tell)

(ii) R(get, tell) �≤ R(ask, tell)

(iii) R(get, tell) ≡ R(ask, get, tell)

Proof. (i). Because of the infinite enumerability of the tokens, we associate
with each token t a pair of tokens that, for simplicity, we denote tf and ti.
Intuitively, they correspond to a token t on the store with, a finite or infinite
duration, respectively. As there is no nask primitives, decreasing the duration
of finite tokens in the transitions will occur only in case of failing computation.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153140

In this context, there will be temporal transitions until the current store σ

satisfies σ− = σ, i.e. until all tokens with finite duration disappear.

We can then define the coder C as follows, with d1, d2 > 0 and with d1

finite.

C(tell0(t)) = tell0(t) C(telld1(t)) = tell∞(tf)

C(tell∞(t)) = tell∞(ti) C(ask0(t)) = ask0(t)

C(askd2(t)) = (get1(tf) ; tell∞(tf)) + (get1(ti) ; tell∞(ti))

The associated decoder De is defined by :

De((σ, δ)) =

(σ∞, δ−) if δ = δ−

(σf , δ
−) if δ = δ+

where σ∞ = {t : ti ∈ σ} and σf = {t : ti ∈ σ ∨ tf ∈ σ}.

(ii). Assume that R(get, tell) ≤ R(ask, tell) and consider tell1(a) ; get1(a).
Since C is compositional and since Or(tell1(a) ; get1(a)) = {(∅, δ+)}, the
termination mark of any element of Or(C(tell1(a)) ; C(get1(a))) is success-
ful. As C(get1(a)) is composed of ask and tell primitives only and since
ask, tell primitives do not destroy elements, it follows that any element of
Or(C(tell1(a)) ; C(get1(a)) ; C(get1(a))) has a successful termination mark.
However, Or(tell1(a) ; get1(a) ; get1(a)) = {(∅, δ−)} which contradicts prop-
erty P3.

(iii). The inequality R(get, tell) ≤ R(ask, get, tell) follows directly from
the inclusion of languages. To prove the converse inequality, we consider
the coder of point (i), extended by C(get0(t)) = get0(t) and C(getd2(t)) =
get1(tf) + get1(ti) �

Moreover the languages R(ask, nask, tell) and R(get, tell) are incompara-
ble. To establish this property, we introduce an auxiliary lemma.

Lemma 3.21 For any agent A in R(ask, nask, tell), if 〈A | σ〉 �→∗ 〈B | τ〉
then for some τ ′ ⊆ τ : 〈A || A | σ〉 �→∗ 〈B || B | τ ∪ τ ′〉 where ∪ denotes union
on multisets.

Proposition 3.22 For any X ⊆ {ask, get} and Y ⊆ {ask, nask},

(i) R(get, tell, Y) �≤ R(ask, nask, tell)

(ii) R(nask, tell, X) �≤ R(get, tell)

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 141

Proof. (i). Let us proceed by contradiction and assume that R(get, tell) ≤

R(ask, nask, tell). In that case, as Or(tell1(t) ; get1(t)) = {(∅, δ+)},
any computation of A = C(tell1(t)) ; C(get1(t)) starting in the empty
store is successful by P3. By lemma 3.21, there is a computation
of B = C(tell1(t)) ; (C(get1(t)) || C(get1(t))) starting in the empty
store that is successful, which contradicts, by P2 and P3, the fact that
Or(tell1(t) ; (get1(t) || get1(t))) = {(∅, δ−)}.

(ii). The proof similar to that of proposition 3.19 (ii). �

4 Inter-family comparisons

4.1 Comparing the L and D families

The comparison between the L and D families is substantiated by the re-
sults presented in this section together with those established in [19] and in
section 3.2.

The main observation here is that – except in the case of nask primitive
alone – the D(X) language is strictly more expressive than the corresponding
L(X) and no L is more expressive than a D language. In other words, the delay

primitive can not be expressed by (any combination of) the other primitives.

The first result is that, as intuitively expected, for the same set of primitives
X, the language D(X) is more powerful than L(X).

Proposition 4.1 For any X ⊆ {ask, nask, get, tell}, L(X) ≤ D(X).

The only member of the D family equivalent to a L(X) is D(nask).

Proposition 4.2 One has L(nask) ≡ D(nask).

If the language contains at least one primitive other than nask, the delay

primitive cannot be expressed in any L(X).

Proposition 4.3 For any X, Y ⊆ {ask, nask, get, tell}, if X contains at least
one primitive other than nask, then D(X) �≤ L(Y).

Proof. There are three cases to consider, where the primitive in X other than
nask is ask, get or tell.

Case 1: ask ∈ X. Consider the agents A = delay(0) and B = delay(1) ; ask(t).
The agent A + B is in D(X) and Od(A + B) = {(∅, δ+)}.

We proceed by contradiction. Assume that D(X) ≤ L(Y) and that there
is a coder C from agents of D(X) to agents of L(Y). We shall establish that

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153142

O(C(A + B)) contains a failing computation which is imposssible in view of
property P3.

By property P2, one has C(delay(1) ; ask(t)) = C(delay(1)) ; C(ask(t)).
As Od(delay(1)) = {(∅, δ+)} and Od(delay(1) ; ask(t)) = {(∅, δ−)}, one
should have 〈C(B) | ∅〉 −→ 〈T | τ〉 for some agent T ∈ L(Y) and some
store τ , with 〈T | τ〉 leading to a failing computation. By property P2, one
has C(A + B) = C(A) + C(B). The thesis then results from the fact that
〈C(A) + C(B) | ∅〉 −→ 〈T | τ〉 is a valid computation prefix of C(A + B)
which leads to a failing computation.

Case 2: get ∈ X. This case is treated as the first one by considering the
agents A = delay(0) and B = delay(1) ; get(t).

Case 3: tell ∈ X. Consider the agents A = tell(a) and B = delay(1) ; tell(b).
The agent A + B is in D(X) and Od(A + B) = {({a}, δ+)}.

We proceed by contradiction. Assume that D(X) ≤ L(Y) and that there
is a coder C from agents of D(X) to agents of L(Y) and a decoder De which
satisfies the constraints P1 to P3.

The definition of coder and decoder gives:

De(O(C(A))) = Od(A) = {({a}, δ+)}

De(O(C(B))) = Od(B) = {({b}, δ+)}

As all the computations of C(A) and C(B) are succesfull, O(C(A) + C(B)) =
O(C(A)) ∪O(C(B)). Properties P1 and P3 then give

De(O(C(A + B))) =De(O(C(A) + C(B)))

=De(O(C(A)) ∪O(C(B)))

=De(O(C(A))) ∪ De(O(C(B)))

= {({a}, δ+), ({b}, δ+)}

�

In addition to the L(X) ≤ D(X) inclusions of property 4.1, one has the
quite unexpected following inequality.

Proposition 4.4 L(ask, nask) ≤ D(nask, tell).

In the rest of the section we show that there is no other inclusions between
those two hierarchies. This corresponds to the fact that, except for the empty
store, the delay primitive is not able to express any other primitive.

Proposition 4.5 For any X ⊆ {ask, nask, get, tell}, if X �⊆ {nask} then
L(X) �≤ D(nask)

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 143

Proposition 4.6 L(ask, X) �≤ D(tell), L(get, Y) �≤ D(tell), and
L(nask, tell) �≤ D(tell), for any X ⊆ {nask, get, tell}, Y ⊆ {ask, nask, tell}.

Proposition 4.7 L(tell, X) �≤ D(ask), for any X ⊆ {ask, nask, get}.

Proposition 4.8 L(ask, tell, X) �≤ D(nask, tell) and L(get, tell, Y) �≤
D(nask, tell), for any X ⊆ {nask, get}, Y ⊆ {ask, nask}.

Proposition 4.9 L(nask, tell, X) �≤ D(ask, tell) and L(get, tell, Y) �≤
D(ask, tell), for any X ⊆ {ask, get}, Y ⊆ {ask, nask}.

Proposition 4.10 For any X ⊆ {ask, nask}, Y ⊆ {ask, get},

(i) L(get, tell, X) �≤ D(ask, nask, tell)

(ii) L(tell, nask, Y) �≤ D(get, tell)

Proof. (i). We proceed by contradiction and assume that L(get, tell) ≤
D(ask, nask, tell). In that case, as O(tell(t) ; get(t)) = {(∅, δ+)}, any
computation of A = C(tell(t)) ; C(get(t)) starting with the empty store
is successful by P3. Lemma 3.10 gives that, as a consequence, there is a
computation of B = C(tell(t)) ; (C(get(t)) || C(get(t))) starting with the
empty store that is successful, which contradicts, by P2 and P3, the fact that
O(tell(t) ; (get(t) || get(t))) = {(∅, δ−)}.

(ii). Again we proceed by contradiction. Otherwise, C(tell(a)) ; C(nask(a))
has only successful computations, which, by P3, contradicts the fact that
O(tell(a) ; nask(a)) = {({a}, δ−)}. Indeed, since O(tell(a)) = {({a}, δ+)},
by P3 any computation of C(tell(a)) (starting with the empty store) is success-
ful. Similarly, it follows from O(nask(a)) = {(∅, δ+)} that any computation
starting with the empty store is successful, and consequently, so is any com-
putation starting from any store, since C(nask(a)) is composed of get, tell
and delay primitives. Summing up, any (successful) computation of C(tell(a))
starting with the empty store can be continued by a (successful) computation
of C(nask(a)). �

4.2 Comparing the L and R families

The first result in the comparison between the L(X) and R(X) families is
that, as intuitively expected, for the same set of primitives X, the language
R(X) is more expressive than the language L(X).

Proposition 4.11 L(X) ≤ R(X), for any X ⊆ {ask, nask, get, tell}.

The two empty languages are equivalent.

Proposition 4.12 L(∅) ≡ R(∅).

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153144

The languages L(X) and R(X) do not differ if X contains only one of the
primitives ask, get or tell.

Proposition 4.13

L(ask)≡L(get) ≡ L(ask, get) ≡ R(ask) ≡ R(get) ≡ R(ask, get)

L(tell)≡R(tell)

Unlike the other primitives nask is sufficient to distinguish L(nask) and
R(nask).

Proposition 4.14 R(nask) �≤ L(nask).

The pairs of primitives (ask, nask), (nask, get), (ask, tell) and (get, tell)
do not dinstinguish the languages L and R.

Proposition 4.15

L(ask, nask)≡R(ask, nask)

L(get, nask)≡R(get, nask)

L(ask, tell)≡R(ask, tell)

L(get, tell)≡R(get, tell)

The pair of primitives nask, tell distinguish the two families L and R.

Proposition 4.16 R(nask, tell, X) �≤ L(Y), for any X ⊆ {ask, get} and
Y ⊆ {ask, nask, get, tell},

4.3 Comparing the D and R families

We finally compare the D and R families. The first main observation is that
the delay primitive cannot be expressed in any R(X) language. The second
one is that, when R(X) is more expressive than L(X) – i.e. if {nask, tell} ⊆ X

– the corresponding D(X) and R(X) languages are not comparable. The
only member of the D(X) languages that is less powerful than some R(Y) is
D(nask).

Proposition 4.17 D(nask) ≤ R(nask), R(nask) �≤ D(nask), D(nask) ≤
R(tell), and R(tell) �≤ D(nask)

If a language contains at least one of the primitives ask, get and tell, the
delay primitive cannot be expressed in any R(X) language.

Proposition 4.18 For any X, Y ⊆ {ask, nask, get, tell} such that X ∩
{ask, get, tell} �= ∅, one has D(X) �≤ R(Y)

Proof. The proof is conducted according to the inequality X∩{ask, get, tell} �=
∅, which naturally leads to three cases: ask ∈ X, get ∈ X, tell ∈ X.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 145

Case 1. ask ∈ X. For contradiction, suppose that D(X) ≤ R(Y) and
consider the coder C and the decoder De which satisfy the properties P1 to
P3.

By property P3, the coding of delay(1) has only successful computations
on the empty set. The first step of any such computation corresponds to the
execution of a telld(t) or naskd(t) primitive on the empty set and thus is not
a temporal step. Any computation can be represented as follow.

〈C(delay(1)) | ∅〉 → 〈C ′ | σ〉 �→∗ 〈E | τ〉

where De((τ, δ+)) = (∅, δ+).

We now consider the agent delay(1) ; ask(t). By property P3, its coding
has only failing computations. Property P2 then gives that the following
computation is a valid prefix for a failing computation.

〈C(delay(1)) ; C(ask(t)) | ∅〉 → 〈C ′ ; C(ask(t)) | σ〉 �→∗ 〈C(ask(t)) | τ〉

As the first step is not a temporal transition, this gives, by definition
of + , a valid prefix for a failing computation of the coding of the agent
delay(0) + (delay(1) ; ask(t)). That contradicts the fact that, by P3, this
agent has only successful computations.

Case 2. get ∈ X. It is sufficient to replace ask by get in the previous proof.

Case 3. tell ∈ X. We proceed by contradiction as for the first case and
consider the agent delay(1) ; tell(t). By property P3, its coding has only
successful computations. By property P2, such a computation begin with a
successful computation of C(delay(1)) and goes on with a successful compu-
tation of C(tell(t)). One thus has

〈C(delay(1)) ; C(tell(t)) | ∅〉 → 〈C ′ ; C(tell(t)) | σ〉 �→∗ 〈C(tell(t)) | τ〉 �→∗ 〈E | µ〉

where De((µ, δ+)) = ({t}, δ+).

As the first step is not a temporal transition, this gives by the definition
of + a valid successful computation of the coding of the agent delay(0) +
(delay(1) ; tell(t)). This contradicts the fact that any computation of this
agent finishes on the empty set. �

We have argued in section 4.2 that if X is a set of primitives that is not
the {nask} singleton and does not contain the pair {nask, tell}, the languages
L(X) and R(X) are equivalent. The following results are the transcription of
the comparison of D(X) and L(X) languages of section 4.1 in the comparison
between the D(X) and R(X) languages due to these equivalences.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153146

Proposition 4.19

R(∅) ≤ D(∅)

D(∅) �≤ R(∅)

R(tell) ≤ D(tell)

R(nask) ≤ D(ask)

R(nask) ≤ D(nask, tell)

R(ask, tell) ≤ D(ask, tell)

R(ask, tell) �≤ D(ask)

R(ask, tell) �≤ D(nask, tell)

R(get, tell) ≤ D(get, tell)

R(get, tell) �≤ D(ask, nask, tell)

The nask and tell primitives taken together cannot be expressed in any
language in the D family.

Proposition 4.20 R(nask, tell, X) �≤ D(Y), for any X ⊆ {ask, get} and
Y ⊆ {ask, nask, get, tell}.

Proof. Since D(ask, nask, get, tell) ≡ D(nask, get, tell), it is sufficient to
prove that R(nask, tell, X) �≤ D(nask, get, tell).

For contradiction, suppose that R(nask, tell, X) ≤ D(nask, get, tell) and
consider the coder C and decoder De satisfying properties P1 to P3. The
proof is based on the examination of the normal form of the coding of the
primitives nask.

For any i ∈ Stime, the agent C(naski(t)) is in D(ask, nask, get, tell), and
its normal form can then be written as

C(naski(t)) = (delay(j1) ; A1) + . . . + (delay(jn) ; An)

+ (nask(t1) ; B1) + . . . + (nask(tm) ; Bm)

+ (get(u1) ; C1) + . . . + (get(ul) ; Cl)

+ (tell(v1) ; D1) + . . . + (tell(vk) ; Dk)

where n, m, l, k ≥ 0.

Our first observation is that the coding can not contain any choice starting
with a tell or a delay(0) primitive, i.e. k = 0 and jx > 0 (1 ≤ x ≤ n). Indeed,
if there is one choice starting with a tell primitive, then the coding of the
agent telli+1(t) ; (naski(t) + nask1(s)) accepts the following derivation

〈C(telli+1(t) ; (naski(t) + nask1(s)) | ∅〉

�→∗ 〈C(naski(t) + nask1(s)) | σti+1〉 → 〈D1 | σti+1 ∪ {v1}〉

As the computation of telli+1(t) ; naski fails, this derivation provides a valid
prefix for a failing derivation of the agent. That contradicts, by property P3,
the fact that telli+1(t) ; (naski(t) + nask1(s)) has only successful computa-

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 147

tions on the empty store. The absence of an alternative in the choice starting
with a delay(0) primitive can be shown similarly.

Now, denote by σtj (j ∈ Stime) any store such that

〈C(tellj(t)) | ∅〉 �→
∗ 〈E | σtj〉.

The second observation is that any of the nask(tk) (k = 1, . . . , m) and
get(uk) (k = 1, . . . , l) primitives appearing in the coding of nask(i) fails on
any σtj(j ∈ Stime). Indeed if there is a nask(tK) that succeeds with σtJ ,
the coding of the agent tellJ (t) ; (naski(t) + nask1(s)) has the following
derivation

〈C(tellJ (t) ; (naski(t) + nask1(s)) | ∅〉 �→
∗ 〈C(naski(t) + nask1(s)) | σtJ〉

→ 〈BK | σtJ〉

On the one hand, if J ≤ i, tellJ (t) ; naski(t) fails and this provides a valid
prefix for a failing derivation of the agent. On the other hand, if J > i, this
derivation provides a successful derivation with a final configuration decoded
as (δ+, ∅). Both cases contradict, by property P3, the fact that the semantics
of telli+1(t) ; (naski(t) + nask1(s)) is {(δ+, {v})}. The absence of successful
get(uk) on σtj can be shown similarly.

The third observation is about the delay primitives appearing in the cod-
ing. None of the j1, . . . , jl > 0 can have 1 as value. Indeed, if jJ = 1, in
view of our second observation, the coding of the agent telli(t) ; (naski(t) +
naski+1(t)) accepts the following derivation

〈C(telli(t) ; (naski(t) + naski+1(t)) | ∅〉

�→∗ 〈C(naski(t) + naski+1(v)) | σti〉

� 〈. . . + (delay(0) ; AJ) + . . . | σti
−〉

→ 〈AJ | σti
−〉

As telli(t) ; naski(t) fails, this derivation provides a valid prefix for a failing
derivation of the agent. That contradicts, by property P3, the fact that
telli+1(t) ; (naski(t) + naski+1(t)) has only successful computations on the
empty store.

An inductive reasoning leads similarly to the property that no value of
Stime is possible for tj .

All these observations together lead to the fact that the coding of a naski(t)
primitive has a normal form of the following type:

C(naski(t)) = (nask(t1) ; B1) + . . . + (nask(tm) ; Bm)

+ (get(u1) ; C1) + . . . + (get(ul) ; Cl)

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153148

where every nask(tk)(k = 1, . . . , m) and get(uk)(k = 1, . . . , l) primitive ap-
pearing in the coding of nask(i) fails on any σtj(j ∈ Stime). Consequently,
〈C(tell1(t) ; nask2(t)) | ∅〉 �→

∗ 〈C(nask2(t)) | σt1〉 is a valid prefix for a failling
computation of C(tell1(t) ; nask2(t)). However, this contraditcs, by property
P3, the fact that tell1(t) ; nask2(t) has only successful computations. �

5 Conclusion

In this paper we studied two extensions of Linda in order to introduce relative
time in coordination languages. Both are based on the two-phase functioning
approach to real-time systems already employed by languages such as Lustre
([10]) and Esterel ([3]).

The resulting families of languages have been described by means of transi-
tion systems written in Plotkin’s style. Their expressiveness has been studied
by means of the concept of modular embedding introduced in [13]. The com-
plete expressiveness hierarchy of each family has been examined. We have
also compared the expressiveness of languages of different families. All these
results are summed up in figure 3. On the point of notations, an arrow from
a language L1 to a language L2 means that L2 strictly embeds L1, that is
L1 < L2.

This paper is a continuation of our previous work [19]. There the families
D and R were introduced and some expressiveness results were presented.
However, this paper presents a much deeper study of the expressiveness of D
and R. In particular, none of the results of sections 3 and 4.2 have appeared
in [19]. Moreover, the comparisons of sections 4.1 and 4.3 have lead here to
13 propositions whereas only 5 were presented in [19].

Other related proposals for the introduction of time in coordination-like
languages are [27] and [28]. Both pieces of work concern concurrent constraint
languages ([29]), which may be viewed as a variant of Linda restricted to two
communication primitives putting information in a tuple space and checking
the presence of information in it. Technically, concurrent constraint languages
can thus be viewed as the language L({ask, tell}). The paper [27] introduces
time in this context by identifying quiescent points in the computation where
no new information is introduced and by providing an operator for delaying
computations by one unit. At each quiescent point in time, the tuple space
is reinitialized to an empty content. The paper [28] extends this framework,
on the one hand, by introducing a primitive for checking the absence of in-
formation and reacting on this absence during the same unit of time and, on
the other hand, by generalizing the delay(1) mechanism in a hence A con-
struct which states that A holds at every instant after the considered time.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 149

L(∅)

R(∅)

L(nask) L(ask)

D(∅) L(get)

D(nask) L(ask, get)

R(ask)

R(get)

R(ask, get)

L(tell) L(ask, nask)

R(tell) L(nask, get)

L(ask, nask, get)

R(nask)

R(ask, nask)

R(nask, get)

R(ask, nask, get)

L(nask, tell) D(tell) L(ask, tell) D(ask)

R(ask, tell) D(get)

D(ask, get)

D(ask, nask)

D(nask, get)

D(ask, nask, get)

D(nask, tell) R(nask, tell) L(ask, nask, tell) D(ask, tell) L(get, tell)

L(ask, get, tell)

R(get, tell)

R(ask, get, tell)

R(ask, nask, tell) D(ask, nask, tell) L(nask, get, tell) D(get, tell)

L(ask, nask, get, tell) D(ask, get, tell)

R(nask, get, tell) D(nask, get, tell)

D(ask, nask, get, tell)

R(ask, nask, get, tell)

Fig. 3. Comparison of the L, D and R families of languages

The resulting languages are called tcc and tdcc. In fact, rephrased in our
framework, these languages correspond respectively to restricted variants of
our D({ask, tell, nask}).

Although weaker than, for instance, the whole R language, the paper [32]

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153150

has shown that the language tcc can embed one classical representative of
the state oriented synchronous languages, namely Argos ([21]), and one rep-
resentative of the declarative class of dataflow synchronous languages, namely
Lustre ([10]). It follows from section 4 that the same result holds for most of
the languages we have proposed.

De Boer, Gabbrielli, and Meo have presented in [4] a timed interpretation
of concurrent languages by fixing the time needed for the execution of parallel
tell and ask operations as one unit and by interpreting action prefixing as the
next operator. A delay mechanism is presented in Oz ([31]), a language which
combines object oriented features with symbolic computation and constraints,
and, (relative) time-outs have been introduced in TSpaces ([34]) and JavaS-
paces ([14]). A formal semantics of these time-outs and other mechanisms,
different from our expressiveness study, is presented in [7].

Another piece of work on the expressiveness of timed constraint systems
is [24]. There, various extensions of the tcc languages have been studied:
extension with replication and recursive procedures with static scoping. De-
cidability results are proved as well as several encodings, which are however
not of the form of modular embeddings studied in this paper.

Finally, [8] investigates the impact of various mechanisms for expired data
collection on the expressiveness of coordination systems. However, the study
is based on Random Access Machines, on ordered and unordered tells of timed
data and on decidability results. In contrast, we study a richer class of mech-
anisms and foccus on modular embeddings.

References

[1] J.-M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in Inheritance.
New Generation Computing, 9(3-4):445–473, 1991.

[2] J. Banatre and D. LeMetayer. Programming by Multiset Transformation. Communications of
the ACM, 36(1):98–111, 1991.

[3] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. Science of Computer Programming, 19, 1992.

[4] F.S. De Boer, M. Gabbrielli, and M.C. Meo. A Timed Concurrent Constraint Language.
Information and Computation, 161(1):45–83, 2000.

[5] A. Brogi and P. Ciancarini. The Concurrent Language Shared Prolog. ACM Transactions on
Programming Languages and Systems, 13(1):99–123, January 1991.

[6] A. Brogi and J.-M. Jacquet. On the Expressiveness of Linda-like Concurrent Languages.
Electronic Notes in Theoretical Computer Science, 16(2):61–82, 1998.

[7] N. Busi, R. Gorrieri, and G. Zavattaro. Process Calculi for Coordination: from Linda to
JavaSpaces. In Proc. AMAST, Lecture Notes in Computer Science. Springer Verlag, 2000.

[8] N. Busi and G. Zavattaro. Expired Data Collection in Shared Dataspaces. Theoretical
Computer Science, 298:529–556, 2003.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 151

[9] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM, 32(4):444–458,
1989.

[10] P. Caspi, N. Halbwachs, P. Pilaud, and J. Plaice. Lustre: a Declarative Language for
Programming Synchronous Systems. In Proc. POPL’87. ACM Press, 1987.

[11] P. Ciancarini. Distributed Programming with Logic Tuple Spaces. New Generation
Computing, 12(3):251–284, 1994.

[12] P. Ciancarini and D. Rossi. Jada: Coordination and Communication for Java Agents. In
Proc. 2nd International Workshop on Mobile Object Systems, volume 1222 of Lecture Notes in
Computer Science, pages 213–228. Springer-Verlag, 1996.

[13] F.S. de Boer and C. Palamidessi. Embedding as a Tool for Language Comparison. Information
and Computation, 108(1):128–157, 1994.

[14] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces: Principles, Patterns, and Practice.
Addison-Wesley, 1999.

[15] D. Gelernter and N. Carriero. Coordination Languages and Their Significance.
Communications of the ACM, 35(2):97–107, 1992.

[16] D. Harel. Statecharts: a Visual Formalism for Complex Systems. Science of Computer
Programming, 8, 1987.

[17] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully abstract denotational models for
nonuiform concurrent languages. Information and computation, 115(1):125–178, 1994.

[18] J.-M. Jacquet and K. De Bosschere. On the Semantics of µLog. Future Generation Computer
Systems, 10:93–135, 1994.

[19] J.-M. Jacquet, K. De Bosschere, and A. Brogi. On Timed Coordination Languages. In A. Porto
and G.-C. Roman, editors, Proc. 4th International Conference on Coordination Languages and
Models, volume 1906 of Lecture Notes in Computer Science. Springer, 2000.

[20] I. Linden, J.-M. Jacquet, K. de Bosschere, and A. Brogi. On the expressiveness of relative-
timed coordination models. Technical report, Institute of Informatics, University of Namur,
Belgium, 2003.

[21] F. Maraninchi. Operational and Compositional Semantics of Synchronous Automaton
Composition. In Proc. Concurr’92, volume 630 of Lecture Notes in Computer Science. Springer,
1992.

[22] D. Gelernter N. Carriero and L. Zuck. Bauhaus Linda. In In P. Ciancarini, O. Nierstrasz, and
A. Yonezawa, editors, Object based models and languages for concurrent systems, volume 924
of Lecture Notes in Computer Science, pages 66–76. Springer-Verlag, 1994.

[23] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 1998.

[24] M. Nielsen, C. Palamidessi, and F.D. Valencia. On the Expressive Power of Temporal
Concurrent Constraint Programming Languages. In Proceedings of the 4th international ACM
SIGPLAN conference on Principles and practice of declarative programming, pages 156–167.
ACM, 2002.

[25] G.A. Papadopolous and F. Arbab. Coordination Models and Languages. Advances in
Computers, 48, 1998.

[26] A. Rowstron and A. Wood. A Set of Tuple Space Primitives for Distributed Coordination.
In Proc. 30th Hawaii International Conference on System Sciences, volume 1, pages 379–388.
IEEE Press, 1997.

[27] V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in Timed Concurrent Constraint
Languages. In B. Mayoh, E. Tougu, and J. Penjam, editors, Computer and System Sciences,
volume ASI-131 of NATO. Springer Verlag, 1994.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153152

[28] V. Saraswat, R. Jagadeesan, and V. Gupta. Timed Default Concurrent Constraint
Programming. Journal of Symbolic Computation, 11, 1996.

[29] V.A. Saraswat. Concurrent Constraint Programming Languages. The MIT Press, 1993.

[30] E.Y. Shapiro. Embeddings among Concurrent Programming Languages. In W.R. Cleaveland,
editor, Proceedings of CONCUR’92, pages 486–503. Springer-Verlag, 1992.

[31] G. Smolka. The Oz Programming Model. In J. Van Leuwen, editor, Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pages 324–343. Springer Verlag, 1995.

[32] S. Tini. On the Expressiveness of Timed Concurrent Constraint Programming. Electronics
Notes in Theoretical Computer Science, 1999.

[33] R. Tolksdorf. Coordinating Services in Open Distributed Systems with LAURA. In
P. Ciancarini and C. Hankin, editors, Coordination’96: First International Conference on
Coordination Models and Languages, volume 1061 of Lecture Notes in Computer Science.
Springer-Verlag, 1996.

[34] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. TSpaces. IBM Systems Journal,
37(3), 1998.

I. Linden et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 125–153 153

	Introduction
	The families of languages
	Common syntax and rules
	The family of Linda-like concurrent languages
	Normal form
	The family of Linda-like concurrent languages with delay
	The family of Linda-like concurrent languages with relative durations

	Intra-family comparison
	Modular embedding
	The hierarchy of the languages with delay
	The hierarchy of the languages with relative duration

	Inter-family comparisons
	Comparing the L and D families
	Comparing the L and R families
	Comparing the D and R families

	Conclusion
	References

