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1. INTRODUCTION

In spite of their age, classic families of linear block codes, like
Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon
(RS) codes, continue to be adopted in many telecommu-
nication standards. For example, the most recent European
standard for satellite digital video broadcasting (DVB-S2)
includes an error correction scheme based on the concatena-
tion of an outer BCH code followed by an inner low-density
parity-check (LDPC) code [1]. Classic coding schemes
are adopted also for broadcast services implemented over
different networks, like packet-switched mobile networks:
the American CDMA2000 standard includes RS codes for the
deployment of high-rate broadcast data services [2].

Encoding and decoding of BCH and RS codes can be
accomplished through very simple circuits that implement
operations over finite fields. However, classic decoding
techniques rely on hard-decision decoders that allow the
correction of up to �(d − 1)/2� errors, where d is the code
minimum distance and �x� the greatest integer smaller than
or equal to x. On the contrary, the use of channel measure-
ments in soft-decision decoders can improve significantly
the error correction capability, thus approaching, for high

signal-to-noise ratios, the theoretical limit of correcting d−1
errors [3].

A good review of soft-decision decoding algorithms
applied to linear block codes, and RS codes in particular,
can be found in [4], where a new approach is also proposed,
based on the iterative belief propagation (BP) algorithm.
Thanks to the adoption of BP, LDPC codes can approach the
maximum likelihood (ML) performance, while maintaining
low decoding complexity [5].

The BP algorithm works on Tanner graphs that are
bipartite graphs with variable nodes and check nodes
corresponding to code bits and parity equations, respectively.
An edge connecting the variable node vi with the check node
z j exists if and only if the parity-check matrix associated with
the Tanner graph has a 1 at position ( j, i).

In order to achieve a good performance, BP decoding
needs a parity-check matrix with the following characteris-
tics: (i) sparsity (that is, in fact, inherent in LDPC codes), (ii)
absence of short cycles in the associated Tanner graph, and
(iii) regular or optimized irregular row and column weight
distributions. Such properties are rarely ensured by parity-
check matrices of binary cyclic codes. For example, it can be
shown that (n, k,d)-BCH codes, where n = 2m − 1 is the
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codeword length and k the number of information bits, with
rate greater than or equal to 1/2 and 3 ≤ m ≤ 8, cannot have
Tanner graphs free of length-4 cycles [6].

For these reasons, many alternative solutions have
been proposed in the literature for effectively applying
BP decoders to generic linear block codes, binary cyclic
codes, or specific classes of cyclic codes [7–15]. All these
techniques aim at finding, through different approaches, a
graph representation for the code that is well suited for BP
decoding.

In [7, 8], for example, the generalized parity-check
matrix (GPCM) is adopted to reduce the number of
short cycles. Such approach has been further investigated
in [9], where an algorithm is presented that achieves a
representation free of length-4 cycles. All techniques based
on GPCMs, however, require the introduction of auxiliary
bits that do not correspond to transmitted bits and, therefore,
do not yield information on the channel status; this fact,
in turn, may cause performance degradation. In [10], it is
demonstrated that Vardy’s technique can be used to find
sparse parity-check matrices for Reed-Solomon codes.

Maybe the best technique for soft-decoding of linear
block codes characterized by dense parity-check matrices
is the “adaptive belief propagation” algorithm [4, 11]. The
rationale of this method lies in varying the parity-check
matrix at each iteration, according to the bit reliabilities,
such that the unreliable bits correspond to a sparse sub-
matrix, suitable for the BP algorithm. Actually, significant
performance improvements with respect to hard-decision
decoding and standard BP decoding can be achieved through
this method. As a counterpart, its complexity is rather high,
and often unsuitable for implementation in real-time (or
almost-real-time) applications, as those required in many
multimedia transmissions. As described in [4], this method
requires to implement a Gaussian elimination, at each
iteration of the decoding algorithm, that generally yields a
great amount of operations. Complexity can be somehow
reduced by combining this approach with the Koetter-
Vardy algebraic soft-decision decoding algorithm [12], but
it remains, in any case, rather high.

In [13], instead, a different approach is tempted: the
author proposes to use the so-called extended parity-check
matrix (EPCM) in order to obtain a regular Tanner graph
associated with the code. The notion of EPCM will be
reminded in Section 2.2; the method is very simple and
allows to obtain matrices more suitable, in principle, for
applying BP decoding. Unfortunately, however, for most
codes, the performance achievable through this method is
very poor. Examples will be given in Section 4.

Keeping in mind, on one hand, the simplicity of the
EPCM-based techniques and, on the other hand, the aston-
ishing results of adaptive BP, in this paper, we extend an
alternative approach we have recently presented [14, 15],
based on “spread” parity-check matrices. We improve such
approach through the adoption of an adaptive version of the
algorithm, where adaptation, however, is much simpler than
in [4].

At first, we apply the new method to the case of short
BCH codes where, we show, it is able to achieve very good

performance if compared with EPCM-based techniques.
Short codes are often used in multimedia communica-
tions with very rigorous requests on delay and complexity
[16]. On the other hand, as mentioned, some important
telecommunication standards adopt nonbinary cyclic codes
or very long codes for matching the length of LDPC codes
in concatenated schemes. For this reason, we also study the
applicability of the proposed procedure to RS codes, like
those included in the CDMA2000 standard, and to long BCH
codes, like the outer codes in the DVB-S2 standard.

The paper is organized as follows. In Section 2 we analyze
the parity-check matrix of the considered codes and present
some options for its modification. In Section 3 we describe
the standard decoding algorithm and the new version
working on the spread code. In Section 4 the proposed
technique is assessed through numerical simulations. Finally,
Section 5 concludes the paper.

2. PARITY-CHECK MATRICES OF LINEAR
BLOCK CODES

In order to optimize the parity-check matrix for application
of belief propagation decoding algorithms, we consider first
binary cyclic codes that represent particular cases of linear
block codes. We obtain an alternative representation of their
parity-check matrix by considering its cyclic nature. The
proposed technique can be applied to BCH codes and can
be extended to other families of codes, as will be shown in
the following sections.

Given a binary cyclic code C(n, k) with length n,
dimension k, and redundancy r = n−k, each codeword c can
be associated to a polynomial c(x) over GF2[x]mod(xn + 1).
Moreover, all the shifted versions of c(x), that is, xic(x),
are valid codewords, due to the cyclic property of the
code. Within the set of code polynomials in C, there is a
unique monic polynomial g(x), with minimal degree r <
n, called the generator polynomial of C. Every codeword
polynomial c(x) ∈ C can be expressed uniquely as c(x) =
m(x)g(x)mod(xn + 1), where m(x) ∈ GF2[x] is a polynomial
of degree <k. The generator polynomial g(x) of C is a factor
of (xn + 1), and there exists a parity polynomial with degree
k, h(x), such that g(x)h(x) = xn + 1. Moreover, since g(x)
divides c(x), the following relationship is satisfied:

c(x)h(x) ≡ 0mod(xn + 1) ∀c(x) ∈ C. (1)

2.1. Standard parity-check matrix

The standard form of the parity-check matrix (PCM) of a
binary cyclic code is as follows [17]:

H =

⎡
⎢⎢⎢⎢⎣

hk · · · h1 h0 0 · · · 0
0 hk · · · h1 h0 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 hk · · · h1 h0

⎤
⎥⎥⎥⎥⎦

, (2)

where hi, i = 0, . . . , k, are the binary coefficients of h(x).
The form (2) of the parity-check matrix is not suitable

for BP decoding: it contains many length-4 cycles and it has
irregular and nonoptimized column weights.
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2.2. Extended parity-check matrix

The parity-check matrix (2) is a (nonsingular) submatrix of
the extended parity-check matrix (EPCM) of a cyclic code
that has the following form [13]:

HE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hk · · · h1 h0 0 · · · 0
0 hk · · · h1 h0 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 hk · · · h1 h0

h0 0 · · · 0 hk · · · h1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
· · · h1 h0 0 · · · 0 hk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

HE is a binary circulant matrix, where each row is obtained
through a cyclic shift of the previous row. The form (3) of the
parity-check matrix corresponds to a regular Tanner graph,
so, at least in principle, it is more suitable for BP decoding.

However, such form of the parity-check matrix contains
a number of short cycles even higher than matrix (2). If the
number of nonnull coefficients of h(x) increases (e.g., when
long or high-rate codes are considered, like in the DVB-S2
standard [1]), HE has an extremely high number of short
cycles that deteriorate performance.

We also observe that HE has the same density of H, but
its Tanner graph contains a larger number of edges; therefore,
the decoding complexity is increased by a factor of n/r.

2.3. Reduced parity-check matrix

In order to find a sparser representation for the code parity-
check matrix, it is possible to adopt a very simple iterative
algorithm that aims at deriving, from the EPCM, a “reduced
parity-check matrix” (RPCM), HR, whose density is lower
than that of HE. This can be done by combining linearly (that
is, summing up) couples of rows in HE. The algorithm relies
on the observation that, for a circulant matrix, the number of
overlapping 1’s between its first row and each other row can
be easily computed in terms of the periodic autocorrelation
function of the first row.

As an example, Figure 1 shows the periodic autocorrela-
tion function of the first row of HE (denoted as h1 in the
following) for the (127, 71)-BCH code. We observe that, for
a null shift, the periodic autocorrelation function takes the
(maximum) value of 48 that coincides with the Hamming
weight of h1, denoted as w1 in the following. We also notice
that, for a shift value equal to 4, the periodic autocorrelation
function assumes its maximum out-of-phase (that is for a
nonnull shift) value, which is equal to 32. It follows that, by
summing up the fifth row of HE to its first row, we obtain a
new vector, h2, with Hamming weight w2 = 2(48−32) = 32.

The new vector h2 provides a valid parity-check equation
for the original code, since it is obtained as a linear
combination of parity-check vectors. Due to the cyclic nature
of the code, any cyclically shifted version of h2 is a parity-
check vector as well. Therefore, h2 can be used to obtain
a new parity-check matrix in circulant form, with reduced
density with respect to HE. In general, given the vector hi,
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Figure 1: Periodic autocorrelation function of the first row of HE

for the (127, 71)-BCH code.

it is possible to reduce its density through this procedure if
its periodic autocorrelation function has a maximum value
(out of the null shift) greater than half of its Hamming
weight, wi/2. So, we can apply an iterative density reduction
algorithm as follows.

(1) Set i = 1; initialize h1 as the first row of HE and w1 as
its Hamming weight.

(2) Calculate the periodic autocorrelation function of hi
and its maximum value a for a shift v > 0. If a > wi/2,
go to step (3), otherwise, stop and output hi.

(3) Calculate hi+1 = hi + hvi (where hvi represents the
cyclically shifted version of hi by v positions), and its
Hamming weight wi+1 = 2(wi − a). Increment i and
go back to step (2).

When the algorithm stops, it outputs a binary vector hi with
density less than or equal to that of h1. hi is used to obtain
the reduced parity-check matrix in the form of a circulant
matrix having hi as its first row.

We say that the algorithm is successful when the RPCM
has a reduced density with respect to the EPCM, that is, the
algorithm has executed step (3) at least once.

2.4. Spread parity-check matrix

After having derived the reduced parity-check matrix HR,
the effectiveness of BP decoding can be further improved by
“spreading” the code at the decoder by means of a simple
s-times repetition of each codeword (affected by channel
noise) of the original code. Obviously, the “spread code”
must have a valid parity-check matrix. For this purpose, we
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identify a set of s binary circulant matrices, HS
i , i = 1, . . . , s,

that sum into HR. In formula

HR =
s∑

i=1

HS
i . (4)

If c is an n-bit codeword of the original code, it must be

HR · cT =
( s∑

i=1

HS
i

)
· cT = 0, (5)

where superscript T denotes vector transposition, and 0
represents the n× 1 null vector. Let us consider the following
“spread parity-check matrix” (SPCM):

HS = [HS
1

∣∣HS
2

∣∣ · · ·∣∣HS
s

]
, (6)

and the following spread codeword, obtained by repeating s
times the generic codeword c:

cS = [c|c| · · · |c]. (7)

It follows from these definitions that

HS · (cS
)T = [HS

1

∣∣HS
2

∣∣ · · ·∣∣HS
s

] · [c|c| · · · |c]T

= [HS
1 · cT + HS

2 · cT + · · · + HS
s · cT

]

= HR · cT = 0.

(8)

Therefore, HS is a valid parity-check matrix for the spread
code, and it is used by the modified decoding algorithm to
work on a more efficient graph.

In order to minimize the density of 1 symbols in HS,
we choose particular sets {HS

1, HS
2, . . . , HS

s } where, according
to (4), the blocks HS

i have Hamming weights that sum into
the Hamming weight of HR. This way, the density of 1
symbols in HS is reduced by a factor s with respect to that
of HR. We observe that, in this case, the number of edges in
the Tanner graph relative to HS is the same in the Tanner
graph relative to HR; therefore, the decoding complexity is
practically unchanged.

The spreading criterion we adopt corresponds to spread-
ing the ith column of HR into s columns of HS (those at
positions i, i + n, i + 2n, . . . , i + (s − 1)n) whose supports are
contained in the support of the original column.

In other terms, we spread the 1 symbols in the ith column
of HR among its corresponding s columns in HS. If we denote
as di the Hamming weight of the ith column of HR, the
Hamming weights of the corresponding set of columns in the
spread matrix, at positions i, i+n, i+2n, . . . , i+(s−1)n, must
take values such that

∑s−1
j=0d

S
i+ jn = di, where dSl denotes the

Hamming weight of the lth column of HS. As for the values
dSl , they are chosen in a nearly uniform way, that is, dSi+ jn �
di/s, j = 0, . . . , s−1. More precisely, we fix dSi+ jn = di/swhen s

divides di; otherwise, the dSi+ jn values may be slightly different
in order to ensure that they sum up to di.

It is important to observe that the original code and its
transmission rate are not altered by the spreading: the spread

code is used only inside the decoder, with the aim of decoding
better the original code.

It should be also noted that the proposed procedure for
spreading the parity-check matrix represents a special case
of column splitting, presented in [18]; the target of column
splitting, however, is to design new finite-geometry LDPC
codes, while our aim is to use the spread code to improve
decoding of the original code.

2.5. Adaptive spread parity-check matrix

Inspired by the adaptive belief propagation approach [4], we
have also implemented an adaptive version of our spread
parity-check matrix that evolves during decoding iterations
on the basis of the values of the bit reliabilities.

Adaptation of the SPCM consists in dynamically chang-
ing the “spreading profile” that is the set of values dSi+ jn, j =
0, . . . , (s−1) in such a way to produce unitary weight columns
in the spread Tanner graph that correspond to the least
reliable bits.

This only implies rearranging of some edges in the
Tanner graph (i.e., changing the variable nodes these edges
are connected to); thus, it does not require sums of rows and
does not alter the total number of 1 symbols in the parity-
check matrix that remains sparse. For these reasons, the
adaptation technique we propose has very low complexity,
contrary to that used in adaptive belief propagation that is
based on Gaussian elimination.

For adapting the SPCM at each iteration, we propose
the following criterion: the 1 symbols in each column of the
RPCM corresponding to the r least reliable bits are spread
in a 1-weight column in each block of the SPCM, except
the last block, in which a column with weight greater than
one can appear (due to the fact that it must contain all the
remaining 1 symbols that are present in the RPCM column).
In formulae:

dSi+ jn = min

(
1,di −

j−1∑

m=0

dSi+mn

)
, j = 0, . . . , (s− 2),

dSi+ jn = di −
s−2∑

m=0

dSi+mn, j = s− 1.

(9)

For the k = n − r remaining bits, instead, we adopt again a
uniform spreading profile, that is, dSi+ jn � di/s, j = 0, . . . , (s−
1). The spreading profile is updated at the end of each
decoding iteration and the new SPCM, for the subsequent
step, is obtained from the RPCM.

In the following, we will denote as ASPCM the adaptive
version of the SPCM.

2.6. Application to Reed-Solomon codes

Reed-Solomon codes are nonbinary BCH codes, included in
many telecommunication standards and in a huge variety
of applications. Each RS code is defined over the finite field
GF2q , with q a positive integer, and has length N = 2q − 1,
dimension K, and redundancy R = N − K . Its correction
capability is t = �(R + 1)/2� [19]. Shortened RS codes are
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often used to adapt the code length to the values required in
practical applications.

Given a primitive polynomial, p(x), with degree q, and
one of its roots, α, the latter is a primitive element of GF2q

and, hence, any other element can be expressed as a power of
α: {0,α0 = 1,α1 = α,α2, . . . ,α2q−2}. The parity-check matrix
of an RS code is an R×N matrix defined over GF2q :

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃0,0 h̃0,1 . . . h̃0,N−1

h̃1,0 h̃1,1 . . . h̃1,N−1

...
...

. . .
...

h̃R−1,0 h̃R−1,1 . . . h̃R−1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where each h̃i, j represents the power α must be raised to for
obtaining its corresponding element.

Although defined over GF2q , RS codes can be seen as
binary codes by using their binary expansions that can be
obtained on the basis of the primitive polynomial adopted.
In order to derive a valid parity-check matrix for the binary
expansion of an RS code, we can use the companion matrix,
C, of the primitive polynomial. For a q-degree polynomial,
the companion matrix is a q × q matrix whose eigenvalues
coincide with the roots of the polynomial. So, in the case of a
monic binary polynomial p(x) = p0 + p1x+· · ·+ pq−1xq−1 +
xq, the companion matrix assumes the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . p0

1 0 0 . . . p1

0 1 0 . . . p2

...
. . .

. . .
. . .

...

0 0 . . . 1 pq−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

When p(x) is a primitive polynomial, we have p0 = 1 and C
is a full-rank matrix.

A valid parity-check matrix for the binary expansion of
an RS code can be obtained as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ch̃0,0 Ch̃0,1 . . . Ch̃0,N−1

Ch̃1,0 Ch̃1,1 . . . Ch̃1,N−1

...
...

. . .
...

Ch̃R−1,0 Ch̃R−1,1 . . . Ch̃R−1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Matrix H expressed by (12) is an r × n binary matrix (with
r = qR and n = qN) that can be used for decoding the binary
expansion of the RS code. We will denote it as the “binary
expansion parity-check matrix” (BXPCM) in the following.

In order to apply the proposed soft-decision decoding
technique also to RS codes, we adopt the BXPCM in place of
the EPCM used for binary cyclic codes. However, due to the
lack of cyclic structure in the BXPCM, the density reduction
algorithm must be slightly changed. The BXPCM, in fact, is
not a circulant matrix; so, the number of overlaps between
couples of rows cannot be obtained by means of the periodic
autocorrelation function, but must be calculated by directly

resorting to the dot product among couples of rows. A single
row is replaced every time a sparser version of the same row
is found, since it is not possible to rebuild the whole parity-
check matrix through cyclically shifted versions of a row.

Finally, the SPCM is derived from the RPCM by “spread-
ing” its 1 symbols in s blocks, each with size r × n, in such a
way to minimize the number of short cycles in the associated
Tanner graph.

3. THE DECODING ALGORITHM

We consider the sum-product algorithm with log-likelihood
ratios (LLRs-SPA) [20] that is very common for decoding
LDPC codes. This algorithm is well known, and its main
steps are reminded next only for the sake of convenience.

Decoding is based on the exchange of messages between
variable and check nodes: information on the reliability of
the ith received bit ci is sent as a message Γi→ j(ci) from the
variable node vi to the check node z j , then elaborated, and
sent back as a message Λ j→i(ci) from the check node z j to the
variable node vi.

The algorithm starts by initializing both sets of messages,
that is, ∀i, j for which an edge exists between nodes vi and
z j , we set

Γi→ j
(
ci
) = L

(
ci
) = ln

[
P
(
ci = 0 | yi

)

P
(
ci = 1 | yi

)
]

, i = 1, . . . ,n,

Λ j→i
(
ci
) = 0,

(13)

where L(ci) is the initial reliability value based on the channel
measurement information, and P(ci = x | yi), x ∈ {0, 1}, is
the probability that the codeword bit ci at position i is equal
to x, given a received signal yi at the channel output.

After initialization, the LLR-SPA algorithm starts iterat-
ing. During each iteration, messages sent from the check
nodes to the variable nodes are calculated by means of the
following formula:

Λ j→i
(
ci
) = 2tanh−1

{ ∏

l∈A( j)\i
tanh

[
1
2
Γl→ j

(
cl
)]}

, (14)

where A( j) \ i represents the set of variable nodes connected
to the check node z j , with the exclusion of node vi.

Messages sent from the variable nodes to the check nodes
are then calculated as follows:

Γi→ j
(
ci
) = L

(
ci
)

+
∑

l∈B(i)\ j
Λl→i

(
ci
)
, (15)

where B(i) \ j represents the set of check nodes connected
to the variable node vi, with the exclusion of node z j . In
addition, the following quantity is evaluated:

Γi
(
ci
) = L

(
ci
)

+
∑

l∈B(i)

Λl→i
(
ci
)
, (16)
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where B(i) is the whole set of check nodes connected to vi.
Equation (16) is used to obtain an estimate (ĉ) of the received
codeword (c) as follows:

ĉi =
⎧⎨
⎩

0 if Γi
(
ci
) ≥ 0,

1 if Γi
(
ci
)
< 0.

(17)

The estimated codeword ĉ is then multiplied by the parity-
check matrix associated with the Tanner graph. If the
parity-check is successful, the decoding process stops and
gives the estimated codeword as its result. Otherwise, the
algorithm reiterates using updated messages. In this case,
a further verification is made on the number of decoding
iterations: when a maximum number of iterations is reached,
the decoder stops the estimation efforts and outputs the
estimated codeword as its result. In this case, however,
decoding is unsuccessful and the error is detected.

3.1. Adaptation to the spread code

In order to take advantage of spread parity-check matrices,
we adopt a modified version of the standard BP decoding
algorithm.

The demodulator and demapper block produces, for
each received bit, the L(ci) used to initialize the decoding
algorithm (see (13)). Then, the vector containing the L(ci)
values is repeated s times to form the new vector of L(cSi )
values, valid for the spread code. This is used to initialize the
LLR-SPA algorithm that works on the spread parity-check
matrix; the algorithm starts iterating and, at each iteration,
produces updated versions of the extrinsic [Γi→ j(cSi )] and
a posteriori [Γi(cSi )] messages. While the former are used
as inputs for the subsequent iteration (if needed), the
latter represent the decoder output, and serve to obtain an
estimated codeword that is subject to the parity-check test. In
addition, this version of the algorithm produces a posteriori
messages also for the original codeword as follows:

Γi
(
ci
) =

s−1∑

l=0

Γi+ln
(
cSi+l n

)
, i = 1, . . . ,n. (18)

Two estimated codewords, ĉS and ĉ, are derived on the
basis of the sign of Γi(cSi ) and Γi(ci), respectively, and their
corresponding parity-check tests are executed (based on HS

and HR). The test on Γi(cSi ) is passed if and only if the
test is passed by all submatrices, while the test on Γi(ci) is
passed if the test is passed by the sum of the a posteriori
messages for all the replicas of each bit. When both tests
are successful, the decoder stops iterating and outputs ĉ as
the estimated codeword; otherwise, decoding continues until
a maximum number of iterations is reached. This double
parity-check test permits to reduce significantly the number
of undetected errors (decoder failures), as we have verified
through numerical simulations.

4. NUMERICAL SIMULATIONS

In order to assess the benefits of the proposed approach,
we have simulated transmission over the additive white

Gaussian noise (AWGN) channel, in conjunction with binary
phase shift keying (BPSK) modulation for different BCH
and RS codes. In all simulations, we have used a maximum
number of iterations equal to 100.

4.1. Short BCH codes

We consider two examples of short BCH codes with dif-
ferent length and dimension, namely, (n, k) = (63, 57) and
(n, k) = (127, 71).

For the first code, the density reduction algorithm is
unsuccessful. So we apply the spreading technique directly
to the extended parity-check matrix. For the (127, 71)-BCH
code, instead, the density reduction algorithm is successful
and, starting from h1 with Hamming weight 48, a vector
h2 is obtained with Hamming weight 32, thus reducing by
1/3 the parity-check matrix density. Hence, spreading has
been applied to the reduced parity-check matrix. The main
features of the considered BCH codes are summarized in
Table 1. The number of length-4 cycles has been calculated
exhaustively by considering the overlapping ones between
each couple of rows (or columns).

We notice that, for the (63, 57)-BCH code, the spread
parity-check matrix has a number of length-4 cycles higher
than that of the classic parity-check matrix. This is because
such code is characterized by a very small r, and this reflects
in a matrix (2) with the smallest number of length-4 cycles.
Figures 2 and 3 show the bit error rate (BER) and frame
error rate (FER) as a function of the signal-to-noise ratio
Eb/N0. The curves have been obtained, through numerical
simulations, for the considered codes when decoding with
the classic parity-check matrix (PCM), the reduced parity-
check matrix (RPCM, in Figure 3 only, for the reasons
explained above), the extended parity-check matrix (EPCM),
and the spread parity-check matrix (SPCM). The figures
report also curves for the union bound (UB) [21] that can be
used as a reference for the error rate under ideal (maximum
likelihood) decoding.

We observe from Figure 2 that, for the (63, 57)-BCH
code, the new technique outperforms those based on the
classic PCM and EPCM, with a gain of more than 1 dB
over the PCM and more than 1.5 dB over the EPCM. Fur-
thermore, the curves obtained through the SPCM approach
are practically overlaid to the union bound, and the SPCM
decoder achieves almost ideal performance.

In the case of the (127, 71)-BCH code, we have reported
also the performance achieved by the ASPCM that offers the
best result, at least in the region of explored BER and FER
values, with a gain of more than 2 dB over the PCM-based
algorithm and more than 3 dB over the EPCM approach.

However, for the (127, 71)-BCH code, the curves are
rather distant from the union bound, showing that fur-
ther coding gain could be achieved, in principle. Actually,
techniques based on the adaptive belief propagation can
show better performance for the same code parameters.
Figure 3 reports also the BER and FER curves obtained
by using the software made publicly available in [22],
showing that the adaptive belief propagation can achieve
about 2 dB of further gain, though still not reaching the
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Figure 2: Simulated BER (a) and FER (b) for the (63, 57)-BCH code.

1211109876543210

Eb/N0 (dB)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E

R

UB
PCM
EPCM
RPCM

SPCM
ASPCM
Ref. [22]

(a)

1211109876543210

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

FE
R

UB
PCM
EPCM
RPCM

SPCM
ASPCM
Ref. [22]

(b)

Figure 3: Simulated BER (a) and FER (b) for the (127, 71)-BCH code.
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Table 1: Characteristics of the (63, 57) and (127, 71) BCH codes.

BCH code Rate
PCM EPCM RPCM SPCM

# 4-cycles 1 Symbols # 4-cycles 1 Symbols # 4-cycles 1 Symbols # 4-cycles 1 Symbols

(63, 57) 0.9 1800 192 234360 2016 234360 2016 7749 2016

(127, 71) 0.56 378314 2688 1356614 6096 240284 4064 4699 4064

union bound. Moreover, as a drawback, such approach
exhibits a much higher complexity than the one proposed
here.

4.2. CDMA2000 Reed-Solomon codes

As an example of application of the proposed technique to
RS codes, we have considered the codes included by the
“third-generation partnership project 2” (3GPP2) in the

CDMA2000 specification for broadcast services in high-rate
packet data systems [2].

The CDMA2000 standard adopts systematic RS codes
defined over GF256 with the following choice of the parame-
ters (N ,K): (16, 12), (16, 13), (16, 14), (32, 24), (32, 26), and
(32, 28).

We have focused on the (16, 12) and (32, 28) RS codes
that are characterized by the following parity-check matrices
over GF256 [2]:

H̃(16,12) =

⎡
⎢⎢⎢⎢⎢⎣

40 8 158 209 76 160 125 70 137 254 160 201 0 −∞ −∞ −∞
138 196 4 123 226 142 19 87 169 192 57 246 −∞ 0 −∞ −∞
141 97 250 27 198 95 59 39 244 27 53 201 −∞ −∞ 0 −∞

8 158 209 76 160 125 70 137 254 160 201 0 −∞ −∞ −∞ 0

⎤
⎥⎥⎥⎥⎥⎦

H̃(32,28) =
[

H̃a
(32,28)H̃b

(32,28)

]

(19)

with

H̃a
(32,28) =

⎡
⎢⎢⎢⎢⎢⎣

207 229 141 32 224 248 120 228 113 88 74 178 78 5 182 212

34 210 50 160 37 5 229 73 215 208 37 76 225 218 188 157

22 95 89 127 223 131 44 240 118 113 215 97 181 168 204 221

229 141 32 224 248 120 228 113 88 74 178 78 5 182 212 40

⎤
⎥⎥⎥⎥⎥⎦

,

H̃b
(32,28) =

⎡
⎢⎢⎢⎢⎢⎣

40 8 158 209 76 160 125 70 137 254 160 201 0 −∞ −∞ −∞
138 196 4 123 226 142 19 87 169 192 57 246 −∞ 0 −∞ −∞
141 97 250 27 198 95 59 39 244 27 53 201 −∞ −∞ 0 −∞

8 158 209 76 160 125 70 137 254 160 201 0 −∞ −∞ −∞ 0

⎤
⎥⎥⎥⎥⎥⎦

,

(20)

where “−∞” represents the null element (α−∞ = 0).
From (19), the BXPCMs for the (16, 12) and (32, 28)

RS codes can be easily obtained, as explained in Section 2.6,
in the form of a 32 × 128 and a 32 × 256 binary matrix,
respectively. The density reduction algorithm has been
applied to the BXPCMs, thus obtaining two RPCMs with
a reduced number of symbols 1. Finally, the RPCMs have
been used as the starting point for the adaptive spreading
algorithm that has been applied with s = 2. The features
of the parity-check matrices for the considered RS codes are
summarized in Table 2.

We observe that the density reduction algorithm is able
to produce, in the RPCMs, a density reduction of about 6%
for the (16, 12)-RS code and 11% for the (32, 28)-RS code,

with respect to the corresponding BXPCMs. This reflects
on a lower number of short cycles in the associated Tanner
graphs and in a more favorable performance, as shown in
Figures 4 and 5. The ASPCM has a further reduced density
of 1 symbols and, jointly with the spread version of the
decoding algorithm, it is able to ensure the best performance.
In particular, the BER curve in Figure 4(a), referred to the
(16, 12)-RS code, exhibits a coding gain of more than 1 dB
due to the adoption of the proposed approach, based on
spread matrices, in comparison with the more conventional
BXPCM approach. Instead, the coding gain for the (32, 28)-
RS code is less than 1 dB (see Figure 5(a)).

In comparison with the algorithm based on adaptive
belief propagation, the approach based on the ASPCM
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Figure 4: Simulated BER (a) and FER (b) for the (16, 12)-RS code over GF256.
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Figure 5: Simulated BER (a) and FER (b) for the (32, 28)-RS code over GF256.
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Figure 6: Simulated BER (a) and FER (b) for the DVB-S2 BCH code with nbch = 3240. The performance of an LDPC code with the same
length and rate is also shown for comparison.

Table 2: Characteristics of the parity-check matrices for the (16,
12) and (32, 28) RS Codes over GF256.

RS code Matrix Rows Columns 1 Symbols # 4-cycles

(16, 12)
BXPCM 32 128 1621 126756

RPCM 32 128 1519 82360

(32, 28)
BXPCM 32 256 3700 854034

RPCM 32 256 3302 502161

exhibits, for the considered codes, a loss of more than 2
dB. This is not surprising, as the method proposed in [4]
is significantly more involved than the approaches we have
proposed.

4.3. DVB-S2 BCH codes

The second revision of the European standard for satellite
digital video broadcasting (DVB-S2) adopts a forward error-
correction (FEC) scheme based on the concatenation of BCH
and LDPC codes [1]. The data stream is divided into kbch-
bit frames that are used as inputs for a systematic BCH
encoder. This produces nbch-bit frames by appending rbch =
nbch − kbch redundancy bits to the input frame. According
to the standard, rbch can assume the following values: 128,
160, and 192 for normal frames, 168 for short frames. The
output of the outer BCH encoder is given as input to an inner
systematic LDPC encoder that produces nldpc-bit frames by

appending further rldpc = nldpc − kldpc = nldpc − nbch

redundancy bits to each BCH-encoded frame.
The interest for applying an iterative soft-decision decod-

ing to the BCH code, too, is in the possibility of uniforming
the decoding procedure to that of the inner LDPC code,
with expected hardware and software advantages. The result
should be a significant reduction of the complexity that, even
adopting hard decoding, is a critical issue for BCH codes
of so large sizes. In addition, a performance improvement
should also be expected, although we show that it is not
simple to achieve it with the method proposed in the
previous sections.

We consider, in our simulations, the short frame format
that is characterized by nldpc = 16200, but the proposed
techniques can also be applied to normal frames, with
nldpc = 64800. The standard FEC parameters for short
frames, together with encoding details, are reported in [1]
and are omitted here for the sake of brevity.

BCH codes used for short DVB-S2 frames are able to
correct t = 12 errors and have code length ranging between
3240 and 14400 bits. Actually, the standard adopts shortened
BCH codes, all defined by the same generator polynomial
that can be obtained as g(x) = ∏12

i=1gi(x); the structure of
gi(x) is also given in [1]. Each factor gi(x), i = 1, . . . , 12 has
degree r = 14 and can be seen as the generator polynomial
of a Hamming code with length n = 214 − 1 = 16383
and redundancy r = 14. The corresponding parity-check
polynomial can therefore be obtained as hi(x) = (1 +
xn)/gi(x), i = 1, . . . , 12.
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Each BCH code can be seen as a shortened version of
a “mother” BCH code with length n∗ = 16n = 262128,
redundancy r∗ = 12r = 168, and dimension k∗ = 261960.
In fact, it can be easily shown that g(x) divides 1 + xn

∗
and

h(x) can be derived as follows:

h(x) = 1 + xn
∗

g(x)
= 1 + x16n

g(x)
=
(
1 + xn

)16

g(x)

=
(
1 + xn

)16

∏12
i=1gi(x)

=
12∏

i=1

hi(x) · (1 + xn
)4
.

(21)

Once having obtained h(x), the first row of HE, h1, becomes
available; it has Hamming weight w1 = 128640. Starting
from this dense vector, it is possible to execute 7 iterations
of the reduction algorithm described in Section 2.3, thus
obtaining a new vector, h8, with Hamming weight w8 =
125568. It must be said, however, that in the present case
that considers a long code with very high rate, the density
reduction algorithm is not able to produce immediately
an excellent result: the reduced parity-check matrix has a
density that is only 2.4% smaller than that of the extended
parity-check matrix.

For each iteration of the algorithm, the shift v has
taken the following values: 213318, 215694, 106013, 171879,
40909, 85749, 761. When multiple choices for v were
possible (due to the fact that the autocorrelation function
can assume its maximum out-of-phase value for more
than one shift v), a random selection criterion has been
adopted, and the experiment has been repeated several times
in order to find the best sequence among the selected
ones.

Vector h8 has been used as the first row of the RPCM
for the cyclic mother code. A valid parity-check matrix for
each shortened code derived from the mother code can be
obtained by selecting the first rbch = 168 rows and the first
nbch columns of the RPCM so found. The shortened RPCM
is then used as the starting point for the spreading algorithm
that produces the SPCM.

We have considered the case of nbch = 3240 and
applied the spreading algorithm with s = 20. The results of
numerical simulations based on the spreading technique are
shown in Figure 6. Actually, performance is not particularly
good: even by adopting the ASPCM, that outperforms the
SPCM, the simulated curves are worse than those referred
to a hard-decision decoder able to correct t = 12 errors.
However, we guess that the unsatisfactory result is due
to the difficulty in reducing the weight of the parity-
check matrix when starting from a so dense parity-check
matrix. Also in this case, the adoption of adaptive belief
propagation permits to achieve better performance (with
more than 2 dB of further gain) at the cost of increased
complexity.

In Figure 6, we also show the performance of an LDPC
code having the same parameters of the BCH code. It has
been designed through the so-called LCO technique [23],
that permits to avoid the presence of length-4 cycles but,
except for this, the parity-check matrix has not been further
optimized. So, we see that wide margins for improving

performance should exist, on condition to find more effective
representations of the parity-check matrix than those consid-
ered so far. Work is in progress in such a direction.

5. CONCLUSION

We have studied the application of some new iterative soft-
decision decoding algorithms based on belief propagation
to BCH and RS codes. The essence of the method is in
the possibility to overcome the drawbacks of the parity-
check matrix of these codes, namely, the high density of
1 symbols and the presence of short length cycles in the
Tanner graph that prevent effective application of the BP
decoding algorithm. The naive idea of matrix extension,
already proposed in the literature, has been refined through
the introduction of additional “reduction” and “spreading”
operations, the latter, eventually, in an adaptive implementa-
tion.

The procedure is very simple and quite suitable for
application in multimedia transmissions. If applied to binary
short codes, like those required in presence of stringent
requirements on the decoding delay, the method achieves
improved performance with respect to classic parity-check
matrices. The proposed approach is still outperformed by
adaptive belief propagation, particularly in the case of very
long and high-rate codes. Its complexity, however, is always
lower.
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