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This work provides a novel real-time pipeline for modeling and grasping of unknown 
objects with a humanoid robot. Such a problem is of great interest for the robotic 
community, since conventional approaches fail when the shape, dimension, or pose of 
the objects are missing. Our approach reconstructs in real-time a model for the object 
under consideration and represents the robot hand both with proper and mathematically 
usable models, i.e., superquadric functions. The volume graspable by the hand is repre-
sented by an ellipsoid and is defined a priori, because the shape of the hand is known in 
advance. The superquadric representing the object is obtained in real-time from partial 
vision information instead, e.g., one stereo view of the object under consideration, and 
provides an approximated 3D full model. The optimization problem we formulate for the 
grasping pose computation is solved online by using the Ipopt software package and, 
thus, does not require off-line computation or learning. Even though our approach is for 
a generic humanoid robot, we developed a complete software architecture for executing 
this approach on the iCub humanoid robot. Together with that, we also provide a tutorial 
on how to use this framework. We believe that our work, together with the available 
code, is of a strong utility for the iCub community for three main reasons: object mod-
eling and grasping are relevant problems for the robotic community, our code can be 
easily applied on every iCub, and the modular structure of our framework easily allows 
extensions and communications with external code.

Keywords: grasping, object modeling, real-time optimization, C++, superquadric functions

1. INTRodUCTIoN

Industrial robotics shows how high performance in manipulation can be achieved if a very accurate 
knowledge of the environment and the objects is provided. On the contrary, grasping of unknown 
objects or whose pose is uncertain is still an open problem. In this work, we present a novel frame-
work for modeling and grasping unknown objects with the iCub humanoid robot.

The iCub humanoid robot is provided with two 7DOF arms, 5 fingers human-like hands, whose 
fingertips are covered by tactile sensors and two cameras, as described in Metta et  al. (2010). 
Therefore, it turns out to be a suitable platform for investigating objects perception and grasping 
problem: the stereo vision system and the tactile sensors can be exploited together to get proper 
information for modeling and grasping unknown objects. The method and the code, we propose in 
this work, consist of reconstructing an object model through the stereo vision system of the robot 
and using this information to compute a suitable grasping pose. Once the robot reaches the desired 
grasping pose on the object surface, the tactile response of the fingertips is used to achieve a stable 
grasp for lifting the object.
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The iCub community put a great effort into the development 
of a sharable and reusable code. With this work, we want to 
contribute in this direction, detailing the code we designed for 
implementing our grasping approach for a possible user inter-
ested in executing our technique on the robot.

2. ModeLING ANd GRASPING VIA 
SUPeRQUAdRIC ModeLS

The superquadric modeling and grasping framework we make 
use of is based on the idea that low-dimensional, compact, math-
ematical representation of objects can provide computational and 
theoretical advantages in hard problems tackled in robotics, such 
as trajectory planning for exploration, grasping and approaching 
toward objects. This takes inspiration from theories conceived 
during the 90s and 2000s (Jaklic et al., 2013) where superquadric 
functions were proposed as a mathematical and low-dimensional 
model for representing objects.

In Vezzani et al. (2017), we proposed a novel approach that 
solves the grasping problem by modeling the object and the 
volume graspable by the hand with superquadric functions. The 
latter is represented by an ellipsoid and is defined a priori, because 
the shape of the hand is known in advance. The superquadric rep-
resenting the object is obtained in real-time from partial vision 
information instead, e.g., one stereo view of the object under 
consideration, and provides an approximated 3D full model. Both 
the modeling and the grasping problem are cast into an optimiza-
tion framework and solved in real-time with the software package 
Ipopt (Wächter and Biegler, 2006).

In this article, we do not go into the mathematical details 
(extensively reported in Vezzani et al. (2017)) whereas we focus 
on the description of the code designed for using the approach 
on the iCub, since we believe it to be useful for any user interested 
in object modeling and grasping tasks. A brief mathematical 
description of the methodologies is reported in the README.
md files of the Github repositories.1

3. Code STRUCTURe

We designed two modules, namely, superquadric-model and 
superquadric-grasp, which implement, respectively, the modeling 
and the grasping approached described in Vezzani et al. (2017).

Our leading idea is to develop a self-contained code that pro-
vides query services to the user. In this respect, our code handles 
only the information strictly necessary for the superquadric 
modeling and grasping approach and minimizes the dependen-
cies from external modules. The user is asked to write a wrapper 
code that communicates with the two modules and makes them 
properly interact. In this respect, we provide a tutorial code,2 
implementing a possible use case of our modules, that can be 
adapted by the user to fit in his own pipeline (see Section 3.3).

In the next paragraphs, we first describe the implementation of 
the superquadric-model and superquadric-grasp modules, which 

1 https://github.com/robotology/superquadric-model, https://github.com/robotology/ 
superquadric-grasp.
2 https://github.com/robotology/superquadric-grasp-example.

is based on the Yarp middleware (Metta et al., 2006). Then, we 
outline a possible use case implementing a complete pipeline for 
object modeling and grasping.

3.1. Superquadric-Model
The superquadric-model module computes the superquadric 
function best representing the object of interest given a partial 
3D point cloud of the object.

The module, whose structure is outlined in Figure 1, consists 
of the SuperqModule class, derived from the YARP RFModule 
class. The SuperqModule launches following two separate YARP 
Rate Threads:

•	 the SuperqComputation class, which manages the superquadric 
computation;

•	 the SuperqVisualization class, which can be enabled to show 
the estimated superquadric or the object 3D points overlapped 
on the camera image.

The SuperqModule also provides some Thrift IDL services3 
suitable for getting information on the internal state of the 
module and setting the thread parameters on the fly. Thrift is a 
software framework for scalable cross-language development, 
which allows to build services working efficiently with different 
programming languages.

While there are two threads to decouple the functionalities of 
computation and visualization, the threads share some variables 
(in particular the computed superquadric) to increase their speed.

3.1.1. SuperqComputation
The SuperqComputation thread includes the following steps:

•	 Once the object point cloud is provided (see Section 3.3 for 
a detailed description of how extract the object point cloud), 
the superquadric is estimated by using Ipopt (Wächter and 
Biegler, 2006), a C++ software package for large-scale nonlin-
ear optimization. The user can formulate its own optimization 
problem with the Ipopt C++ interface4 and, then, solve it 
through the Ipopt solver.

•	 A median filter with an adaptive window of width m can be 
enabled to stabilize the estimated superquadric over the time. 
Even if the object is not supposed to move during a grasping 
task, it may happen that the user, or anyone interacting with the 
robot, moves the object in a different location. In this case, the 
superquadric modeler should be able to track the object and the 
estimated superquadric should not be affected by previous esti-
mations in different poses. For this reason, the window width of 
the median filter changes according to the object velocity. If the 
object location changes (i.e., its velocity increases), the window 
width becomes smaller. On the contrary, if the object is not 
moved, the window width can be increased. In this way, when 
the object pose is constant, its superquadric estimation is more 
stable and accurate, while it is not affected by past estimations 
if the object pose changes. The median filter and the object 
velocity estimation are achieved by using, respectively, the iCub 
MedianFilter Class and the iCub AWLinEstimator Class.

3 https://thrift.apache.org/docs/idl.
4 https://www.coin-or.org/Ipopt/documentation/node23.html.
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FIGURe 1 | Superquadric-model code structure. The class SuperqModule, derived from the YARP RFModule class, launches two threads, respectively for 
superquadric computation and visualization. The class provides some thrift services to the user for interacting with the module. More detail on the user box is 
provided in Section 3.3 and in Figure 2.
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•	 If prior information is available on the object shape (e.g., given 
by a classifier or a vision recognition system), the module can 
use it to speed up the superquadric estimation. Particularly, 
if the object is labeled as cylinder, box or sphere, specific con-
straints can be used for improving the accuracy and reducing 
the execution time of the optimization problem.

The user can communicate with the SuperqComputation 
thread, through the SuperqModule, in the two different modes:

•	 In streaming mode—the 3D point cloud of the object should 
be sent to the module through a YARP Buffered port as a YARP 
Property. The user can access the current estimated super-
quadric through a dedicated YARP Buffered port as a YARP 
Property, where the main components of the superquadric are 
grouped as: dimensions, exponents, center, and orientation.

•	 In one-shot mode—the user can ask the module to compute 
the object superquadric by sending a single point cloud through 
a YARP RpcClient Port and getting a YARP Property including 
the estimated superquadric parameters as reply. In case the user 
asks for the superquadric filtered by the median filter, he should 
send a set of point clouds of the object in the same pose.

The superquadric computation, together with the super-
quadric filtering process, takes 0.1 s in average on Intel®Core™ 
i7-4710MQ Processor @2.50 GHz. This values is compatible with 
our real-time requirements.

3.1.2. SuperqVisualization
The visualization thread overlaps the estimated superquadric or 
the 3D points used by the optimizer on the camera image, for 

real-time visual inspection by the user (see Figure  3 (4)). The 
average visualization time is equal to 0.01 s and can be enable or 
disabled by the user while the SuperqModule is running.

3.2. Superquadric-Grasping
The superquadric-grasp module implements the approach pro-
posed in Vezzani et al. (2017) for the computation of grasping 
poses by using a superquadric modeling the object.

The superquadric-grasp module consists of the GraspModule 
class, derived from the YARP RFModule class. The GraspModule 
splits pose computation and visualization and grasp execution in 
three different classes:

•	 GraspComputation class, computing the pose for grasping the 
object;

•	 GraspVisualization class, showing the object model and the 
main information about the computed poses;

•	 GraspExecution class, which allows executing the grasping task 
once the pose is computed and one of the robot hand is selected.

As for the superquadric-model module, the superquadric-grasp 
implementation provides several Thrfit IDL services to the user 
to interact with the module and for getting information on the 
state of the module. The superquadric-grasp module structure is 
similar to the superquadric-model one, shown in Figure 1.

3.2.1. GraspComputation
This class handles the pose candidates’ computation:

•	 Given the superquadric modeling the object, received as a 
YARP Property (see 3.1.1), the grasping poses for one or both 
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the hands (according to the user query) are computed together 
with a suitable trajectory by using the method proposed in 
Vezzani et al. (2017). The optimization problem is formulated 
and solved through the Ipopt C++ interface.

•	 The user can exploit some prior information for adapting 
the grasp computation to the desired scenario. In particular, 
the user can provide the module the height of the support on 
which the object is located (i.e., a table) to prevent the robot 
hand from hitting it. In addition, the constraints about the 
final hand pose can be modified according to the experimental 
scenario. For instance, the user can define the robot workspace 
by simply varying the variable upper and lower bounds of the 
optimization problem from the configuration files.

The pose computation process takes 2.0  s in average, 
which is consistent with the time requirements of a grasp task 
execution.

3.2.2. GraspExecution
The GraspExecution class controls the arm movements to accom-
plish the grasping task. In particular:

•	 The approaching step, i.e., the pose reaching through the 
trajectory waypoints, is executed through the YARP Cartesian 
Interface (Pattacini et al., 2010);

•	 Once the final pose is reached, the grasp is executed by using 
a precision grasp method described in Regoli et al. (2016) and 
available in the Tactile Control library.5 The hand fingers close 
until the tactile sensors on the fingertips detect contact. Then, 
each finger is controlled to find a stable grasp for the object. 
Alternatively, the grasp can be performed by simply closing the 
fingers until a minimum pressure of the fingertips is measured. 
However, such an approach does not guarantee stability while 
lifting the object.

3.2.3. GraspVisualization
The visualization thread overlaps the computed poses and the 
received object superquadric on the camera image, for real-time 
visual inspection by the user (see Figure 3 (5)). Some additional 
information, such as the volume graspable by the hand and the 
trajectory waypoints can be shown at the same time.

3.2.4. Communication with the Module
Unlike the superquadric-model framework, the user can com-
municate with the GraspModule only in one-shot mode. In 
particular, the user can query the module to:

•	 Compute the grasping poses and approaching trajectory, pro-
viding to the module the estimated superquadric of the object 
as a Yarp Property (as described in 3.1.1) and selecting one or 
both the hands. The solutions are given back to the user as a 
Yarp Property.

•	 Ask the robot to reach the final pose and grasp the object by 
selecting one robot hand. In the current code implementation, 

5 https://github.com/robotology/tactile-control.

the robot performs a simple lifting test to check the stability of 
the grasp.

The additional thrift services allows setting on the fly param-
eters for grasp computation, visualization, and execution.

3.3. How to Use the Superquadric 
Framework
To use our grasping approach, the user is supposed to design 
a wrapper code to combine together the outcomes of the  
superquadric-model and superquadric-grasp modules. In addi-
tion, the implementation of a complete modeling and grasping 
pipeline requires the use of external modules for point cloud 
computation. We provide a tutorial code, which takes advantage 
of modules developed by the iCub community to achieve the 
modeling and grasping task. Hereafter, we report the main steps 
of the complete pipeline. The entire commented code is available 
on Github,6 together with a detail description on how to run the 
code in the README.md file.

 1. The object is labeled with a name through a recognition 
system.7 The object label, together with information on its 
2D bounding box, are stored by the Object Property Collector8 
(Moulin-Frier et  al., 2017). The wrapper code is given the 
object name by the user (through a RpcPort) and uses it for 
asking the object property collector for the relative 2D bound-
ing box.

 2. The 2D blob of the object is computed by the lbpExtract  
module, once it is provided with the bounding box informa-
tion. This uses Local Binary Pattern (LBP) (Ojala et al., 1996) 
to analyze the texture of what is in the robot view (a table in 
our experimental scenario). This texture is used for getting a 
general blob information both as an image, containing general 
white blobs of where the objects are, and as a Yarp Bottle con-
taining lists of bounding box points. Then, the general blob 
information allow using grabCut algorithm (Rother et  al., 
2004) to properly segment all the objects on the table.

 3. Given the 2D blob, the wrapper code reconstructs the 3D 
point cloud by querying the Structure from Motion module 
(Fanello et al., 2014). This module uses a complete Structure 
From Motion (SFM) pipeline for the computation of the 
extrinsics parameters between two different views. These 
parameters are then used to rectify the images and to compute 
a depth map.

 4. Then, the wrapper code asks the superquadric-model to 
estimate the superquadric modeling the object by sending the 
acquired point cloud to the module.

Bottle cmd, superq_bottle;
//Fill the Bottle for querying  
superquadric-model.

6 https://github.com/robotology/superquadric-grasp-example.
7 https://github.com/robotology/iol/tree/master/src/himrepClassifier.
8 https://github.com/robotology/icub-main/tree/master/src/modules/
objectsPropertiesCollector.
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FIGURe 2 | Modules communication for the implementation of the modeling and grasping pipeline. The wrapper code manages the interaction between external 
modules and the superquadric-model and superquadric-grasp frameworks. Pipeline steps enumerated as in Section 3: (1) The wrapper code asks the object 
property collector for the bounding box information of the object. (2) Given that, lbpExtract module provides the 2D blob of the object. (3) The wrapper code sends 
the 2D blob of the object to the Structure From Motion module for getting the relative 3D point cloud. (4) The 3D point cloud is then sent to the superquadric-model 
for computing the superquadric modeling the object. (5) The wrapper code sends the estimated superquadric to the superquadric-grasp module, which computes 
suitable poses. (6) Finally, the superquadric-grasp is asked to perform the grasping task.
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cmd.addString(“get_superq”);
Bottle &bottle_point = cmd.addList();
for (size_t i = 0; i < points.size(); i++)
{
Bottle &in = bottle_point.addList();
in.addDouble(points[i][0]);
in.addDouble(points[i][1]);
in.addDouble(points[i][2]);

}
superqRpc.write(cmd, superq_bottle);
//Then, extract the estimated superqua-
dric from the Bottle superq_bottle.

 5. Once the superquadric is estimated, the user code asks the 
superquadric-grasp module to compute pose candidates for 
grasping the object.

Bottle cmd, reply;
//Fill the Bottle for querying  
superquadric-grasp.
cmd.addString(“get_grasping_pose”);
//hand_for_computation can be “right“, 

“left” or “both”
cmd.addString(hand_for_computation);
graspRpc.write(cmd, reply);

//Then, extract the grasping pose  
candidate from the Bottle reply.

 6. Finally, the user can ask the superquadric-grasp to perform the 
grasping task.

Bottle cmd, reply;
//Fill the Bottle for moving the arm.
cmd.addString(“move”);
cmd.addString(hand_for_moving);
graspRpc.write(cmd, reply);
//The grasp is executed.

Figure 2 outlines the structure of the entire pipeline, fol-
lowing the steps described in this section. In Figure  3, we 
show some typical outcomes of all the steps described above. 
In addition, in the README.md files of the superquadric-
model and superquadric-grasp repository, we provide two 
videos of the execution of the modeling and the grasping 
pipeline.9

9 superquadric-model demo: https://www.youtube.com/watch?v=MViX4Ppo4WQ& 
feature=youtube. superquadric-grasp demo: https://www.youtube.com/
watch?v=eGZO8peAVao.
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4. KNoWN ISSUeS

In this section, we report the limitations of our approach, together 
with possible solutions for facing them.

•	 Our approach is currently an open-loop approach. Once the 
object model and the grasping pose are computed, the robot 
reaches for the final pose without checking if the object pose 
changes. However, we could monitor the object pose, by 
estimating only the pose of the reconstructed superquadric - 
leaving its shape unchanged - with new point clouds while the 
robot is moving and until the object is in the robot field of view. 
This is a viable solution since our modeling approach is com-
patible with real-time requirements (as shown in Section 3.1).

•	 A further limitation caused by the open-loop nature of our 
approach is the missing compensation of errors between the 
robot stereo vision and system. To properly run the grasping 
pipeline, the user is required to properly calibrate the vision 
and the robot kinematics. In case errors between the two are 
still a problem for grasping the object, empirical offsets can 
be added for compensating for the errors. More information 
are provided in the README.md of the superquadric-grasp 
repository.

•	 A quite strong limitation of our approach is that it cannot 
automatically distinguish between good and wrong poses. For 
this reason, the user need to supervise the entire process and 
ask for a new model and pose in case the current outcome is 
not suitable for grasping the objects. In particular, this prob-
lem arises when the object cannot be represented with a single 
superquadric for its geometric shape. As future work, we aim 

at extend our approach for modeling more complex objects 
with multiple superquadrics.

5. CoNCLUSIoN

In this work, we detail the implementation of the modeling and 
grasping approach pipeline described in Vezzani et  al. (2017). 
We developed two modules, namely superquadric-model and 
superquadric-grasp, that respectively model objects through super-
quadric functions and computes suitable grasping poses for the 
iCub robot. Our leading idea was to develop a self-contained code 
that provides query services to the user. Our software handles only 
the information strictly necessary for the modeling and grasping 
approach and minimizes the dependencies from external modules. 
The user is supposed to design a wrapper code to combine together 
the outcomes of the two modules. We provide also an example of 
a external code in the superquadric-grasp-example repository for 
the implementation of a complete modeling and grasping pipeline.

In the next future, we would like to improve the approach 
we use for reaching the final grasping pose, which is a current 
limitation of our approach, as described in Section 4. The iCub 
proprioception is in fact affected by a number of impairments, 
mainly caused by elastic elements, which introduce errors in the 
computation of direct kinematics. Also, the iCub is provided with 
moving cameras for simulating the human oculomotor system. 
This makes the knowledge of extrinsic parameters and, thus, the 
object information estimation quite noisy. These sources of error 
might be crucial for grasping tasks, when a final pose is required to 
be reached with errors in order of 1 cm. We can solve this problem 

FIGURe 3 | Outcomes of the modeling and grasping pipeline. (1) The object is stored by the object property collector with the label object. (2) LbpExtract provides 
the 2D blob of the object. (3) The 3D point cloud is extracted from the disparity map, by querying the Structure From Motion module. (4) The superquadric modeling 
the object is reconstructed. (5) The grasping pose and approaching trajectory for the right hand are computed. (6) The robot grasps the object. (Steps (1), (2), (4), 
and (5) are represented by screenshots from the visualizers.).
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by using the approach described in Fantacci et  al. (2017), which 
provides a precise estimate of the robot end-effector pose over time 
and a visual servoing approach without the use of markers. Another 
extension of the modeling pipeline consists in using the recognition 
system10 described in Pasquale et al. (2016) to classify the objects 
of interest according to their geometric property for using some 

10 https://github.com/robotology/onthefly-recognition.

prior information on their shape for improving and speeding up 
the superquadric estimation process, as mentioned in 3.1.1.
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