
Electronic Notes in Theoretical Computer Science 70 No. 1 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 18 pages

Reducibility: a ubiquitous method
in lambda calculus with intersection types

Silvia Ghilezan 1,3

École Normale Supérieure de Lyon, France,
Faculty of Engineering, University of Novi Sad,

Trg Dositeja Obradovića 6, Yugoslavia

Silvia Likavec 1,2,4

Dipartimento di Informatica
Università di Torino

Corso Svizzera 185, 10149 Torino, Italy

Abstract

A general reducibility method is developed for proving reduction properties of
lambda terms typeable in intersection type systems with and without the universal
type Ω. Sufficient conditions for its application are derived. This method leads
to uniform proofs of confluence, standardization, and weak head normalization of
terms typeable in the system with the type Ω. The method extends Tait’s re-
ducibility method for the proof of strong normalization of the simply typed lambda
calculus, Krivine’s extension of the same method for the strong normalization of
intersection type system without Ω, and Statman-Mitchell’s logical relation method
for the proof of confluence of βη-reduction on the simply typed lambda terms. As a
consequence, the confluence and the standardization of all (untyped) lambda terms
is obtained.

Key words: Lambda calculus, intersection types, reducibility
method, confluence, standardization.

1 Partially supported by grant 1630 “Representation of proofs with applications, classifica-
tion of structures and infinite combinatorics” (of the Ministry of Science, Technology, and
Development of Serbia).
2 Partially supported by EU within the FET - Global Computing initiative, project DART
ST-2001-33477 , and by MURST Cofin’01 project COMETA. The funding bodies are not
responsible for any use that might be made of the results presented here.
3 Email: gsilvia@uns.ns.ac.yu
4 Email: likavec@di.unito.it

c©2002 Published by Elsevier Science B. V.

mailto:gsilvia@uns.ns.ac.yu
mailto:likavec@di.unito.it

Ghilezan and Likavec

1 Introduction

The substantial idea of the reducibility method is to interpret types by suit-
able sets of lambda terms which satisfy certain realizability properties. The
reducibility method, based on realizability interpretations, was introduced in
Tait [20] for proving the strong normalization property for the simply typed
lambda calculus and further developed in Girard [11] and Tait [21] for prov-
ing the strong normalization property for polymorphic (second order) lambda
calculus. There is an overview of these proofs in Barendregt [3].

In Mitchell [16] and [15] this method is referred to as logical relations and it
is discussed that apart from the strong normalization this method can be used
for the proof of the confluence (Church-Rosser property) of βη-reduction and
other basic results of the simply typed lambda calculus. The original proof of
the Church-Rosser property of the simply typed lambda calculus using logical
relations and the reducibility method is due to Statman [19] and Koletsos [12].

In Krivine [14] and later in Ghilezan [10] the reducibility method is ap-
plied in order to characterize all and only the strongly normalizing lambda
terms in lambda calculus with intersection types without the universal type.
The reducibility method is also used in Gallier [9] for characterizing some spe-
cial classes of lambda terms such as strongly normalizing terms, normalizing
terms, head normalizing terms, and weak head normalizing terms by their ty-
peability in various intersection type systems. In Dezani et al. [7] and Dezani
and Ghilezan [6] the reducibility method is applied to characterize both the
mentioned terms and their persistent versions. The strong normalization of
an intersection type system with explicit substitution is proved in Dougherty
and Lescanne [8] using reducibility method.

This work presents the reducibility method as a general framework for
proving reduction properties of lambda terms typeable in the intersection type
system λ∩Ω with the type Ω and in the system λ∩ without it. We distinguish
two different kinds of type interpretation with respect to a given set P ⊆ Λ.
Also, we distinguish two different closure conditions which a given set P ⊆ Λ
has to satisfy. By combining different type interpretations with appropriate
closure conditions on P ⊆ Λ we prove the soundness of the type assignment
in both cases. In this way a method for proving properties of lambda terms
typeable with intersection types is obtained. We generalize the case of λ∩Ω

obtaining a reducibility method for this system, which leads to uniform proofs
of reduction properties of terms typeable in λ∩Ω.

Our focus is on the system λ∩Ω since a consequence of the reducibility
method applied on is the development of a proof methodology for untyped
lambda calculus which could be used to prove properties with suitable invari-
ance.

The paper is organized as follows. Section 2 is an overview of some ba-
sic notions regarding lambda terms, intersection types, and type assignment
systems considered. In Section 3 we prove soundness of type assignment with

2

Ghilezan and Likavec

respect to both type interpretations and develop the reducibility method for
λ∩Ω. As a consequence, we establish a method for proving reduction prop-
erties of untyped lambda terms. We show in Section 4 that the reducibility
method represents a uniform way for proving the confluence of β-reduction,
standardization, and weak head normalization property of terms typeable in
λ∩Ω. Also, we obtain the confluence of β-reduction and standardization on
all lambda terms by the method for untyped lambda terms.

2 Terms, Types, and Type Systems

First, we present some preliminary notions of reductions on lambda terms,
such as β-reduction, head reduction, and internal reduction. These notions
can be found in Barendregt [2].

Definition 2.1 The set Λ of (untyped) lambda terms is defined by the fol-
lowing abstract syntax.

Λ ::= var | ΛΛ | λvar.Λ

var ::= x | var′

We use x, y, z, . . . as meta variables that range over term variables and
M, N, P, Q, . . . for arbitrary terms.

FV (M) denotes the set of free variables of a term M . By M [x := N] we
denote the term obtained by substituting the term N for all the free occur-
rences of the variable x in M , taking into account that free variables of N
remain free in the term obtained. The syntactical equality between terms is
denoted by ≡.

The main axiom of β-reduction is

(λx.M)N →β M [x := N],

where (λx.M)N is a β-redex. The transitive reflexive contextual closure of
→β is denoted by →→β. The β-equality =(β) (β-conversion) is the symmetric
transitive closure of →→β.

If M ≡ λx1 . . . xn.(λx.M0)M1 . . . Mm, n ≥ 0, m ≥ 1, then (λx.M0)M1 is
called the head-redex of M (Barendregt [2], p.173). We write M→h M ′ if M ′

is obtained from M by reducing the head redex of M (head reduction). We
write M→i N if M ′ is obtained from M by reducing a redex other than the
head redex (internal reduction). We also use the transitive closures of these
relations, notation →→h and →→i, respectively.

A term is a weak head normal form if it starts with an abstraction, or with
a variable. A term is weakly head normalizing if it reduces to a weak head
normal form. LetW denote the set of all lambda terms that have a weak head
normal form.

W = {M ∈ Λ | (∃P, P1, . . . , Pn ∈ Λ) M→→
β

λx.P or M→→
β

xP1 . . . Pn}.

3

Ghilezan and Likavec

Let SN denote the set of strongly normalizing terms, i.e.

SN = {M ∈ Λ | ¬(∃M1, M2, . . . ∈ Λ) M→
β

M1→
β

M2→
β

. . .}.

Next we present the intersection type assignment systems λ∩ and λ∩Ω

that are originated in Coppo and Dezani [4], [5], Pottinger [17], Sallé [18], and
Barendregt et al. [1].

Definition 2.2 The sets type and typeΩ of types are defined as follows.

type ::= atom | type→ type | type ∩ type

typeΩ ::= atom | Ω | typeΩ → typeΩ | typeΩ ∩ typeΩ

atom ::= α | atom′

We use α, β, . . . as meta variables for arbitrary atoms and ϕ, σ, τ, . . . for
arbitrary types.

A type assignment is an expression of the form M : ϕ, where M ∈ Λ and
ϕ ∈ type or ϕ ∈ typeΩ. A context Γ is a set {x1 : σ1, . . . , xn : σn} of type
assignments with different term variables. Then Dom Γ = {x1, . . . , xn}. A
context extension Γ, x : σ denotes the set Γ ∪ {x : σ}, where x /∈ DomΓ.

Definition 2.3 [Preorder on type and typeΩ]

(i) The relation ≤ is defined on type by the following axioms and rules:

1. σ ≤ σ 5. σ ≤ τ, σ ≤ ρ⇒ σ ≤ τ ∩ ρ

2. σ ≤ τ, τ ≤ ρ ⇒ σ ≤ ρ 6. σ ≤ σ′, τ ≤ τ ′ ⇒ σ ∩ τ ≤ σ′ ∩ τ ′

3. σ ∩ τ ≤ σ, σ ∩ τ ≤ τ 7. σ ≤ σ′, τ ≤ τ ′ ⇒ σ′ → τ ≤ σ → τ ′

4. (σ→ ρ) ∩ (σ→ τ) ≤ σ→ ρ ∩ τ

(ii) The relation ≤Ω is defined on typeΩ by 1.-7. and the axioms:

8. σ ≤ Ω 9. σ→Ω ≤ Ω→Ω

(iii) The induced equivalence relations are defined by:

1. σ ∼ τ ⇔ σ ≤ τ & τ ≤ σ 2. σ ∼Ω τ ⇔ σ ≤Ω τ & τ ≤Ω σ

The usual axiom of the preorder on intersection types is Ω ≤ Ω→Ω
(Barendregt et al. [1]). Having this axiom one can distinguish head normaliz-
ing terms from unsolvable terms by their typeability, but cannot distinguish
weakly head normalizing terms from unsolvable terms. Instead we adopt the
axiom 8. σ→Ω ≤ Ω→Ω, which allows us to distinguish weakly head normal-
izing from unsolvable terms (Dezani et al. [7]).

Definition 2.4 [Type assignment systems λ∩ and λ∩Ω]

(i) The pure intersection type system λ∩ is generated on the set type by (ax),
(→E), (→ I), (∩E), (∩I), and (≤) given in Figure 1. The deriveability in
λ∩ is denoted by Γ ` P : ϕ.

4

Ghilezan and Likavec

(ii) The system λ∩Ω is generated on the set typeΩ by (ax), (→E), (→ I), (∩E),
(∩I), (≤Ω), and (Ω) given in Figure 1. The deriveability in the system λ∩Ω

is denoted by Γ `Ω P : ϕ.

(ax) Γ, x : σ ` x : σ

(→ E)
Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ

(→ I)
Γ, x : σ `M : τ

Γ ` (λx.M) : σ → τ

(∩E)
Γ `M : σ ∩ τ

Γ `M : σ Γ `M : τ

(∩I)
Γ `M : σ Γ `M : τ

Γ `M : σ ∩ τ

(≤(Ω))
Γ `M : σ, σ ≤(Ω) τ

Γ `M : τ

(Ω)
Γ `M : Ω

Fig. 1. Axiom and rules

3 Reducibility Method

The reducibility method is a generally accepted way for proving the strong nor-
malization property of various type systems such as the simply typed lambda
calculus in Tait [20], the polymorphic lambda calculus in Tait [21] and Gi-
rard [11], and the pure intersection type assignment system in Krivine [14].
This method was applied to the proof of the Church-Rosser property (conflu-
ence) of βη-reduction in the simply typed lambda calculus in Statman [19],
Koletsos [12], and Mitchell [16] and [15].

The general idea of the reducibility method is to provide a link between
terms typeable in a type system and terms satisfying certain reduction prop-
erties (e.g. strong normalization, confluence). For that reason types are inter-
preted by suitable sets of lambda terms: saturated and stable sets in Tait [20]

5

Ghilezan and Likavec

and Krivine [14] and admissible relations in Mitchell [16] and [15]. These
interpretations are based on the sets of terms considered (e.g. strong normal-
ization, confluence). Then the soundness of type assignment with respect to
these interpretations is obtained. A consequence of soundness is that every
term typeable in the type system belongs to the interpretation of its type.
This is an intermediate step between the terms typeable in a type system and
terms satisfying the reduction property considered.

We present the reducibility method as a general framework which leads
to uniform proofs of the basic reduction properties of lambda terms typeable
with intersection types. As a consequence of the reducibility method for λ∩Ω

we establish a method for proving reduction properties of untyped lambda
terms.

In order to develop the reducibility method we consider Λ as the applicative
structure whose domain are lambda terms and where the application is just
the application of terms. Let us distinguish the following type interpretations
with respect to a fixed subset P ⊆ Λ.

Definition 3.1 Let P ⊆ Λ.

(i) The type interpretation [[−]] : type→ 2Λ is defined by:
(I1) [[α]] = P , α is an atom;
(I2) [[σ ∩ τ]] = [[σ]] ∩ [[τ]];
(I3) [[σ → τ]] = [[σ]]⇒[[τ]] = {M ∈ Λ | ∀N ∈ [[σ]] MN ∈ [[τ]]}.

(ii) The Ω-type interpretation [[−]]Ω : typeΩ → 2Λ is defined by
(Ω1) [[α]]Ω = P , α is an atom;
(Ω2) [[σ ∩ τ]]Ω = [[σ]]Ω ∩ [[τ]]Ω;
(Ω3) [[σ → τ]]Ω = [[σ]]Ω⇒Ω[[τ]]Ω = ([[σ]]Ω⇒[[τ]]Ω) ∩ P =

= {M ∈ W | ∀N ∈ [[σ]]Ω MN ∈ [[τ]]Ω};
(Ω4) [[Ω]]Ω = Λ.

On the set type we can define another type interpretation [[−]]P : type→
2Λ by (I1), (I2), and a modified (Ω3) restricted on type, [[σ → τ]]P = {M ∈
SN | ∀N ∈ [[σ]]P MN ∈ [[τ]]P}. With the type interpretation [[−]]P one
can prove, under slightly different conditions, the same properties as with the
type interpretation [[−]], which is less restrictive, namely does not require the
intersection with SN in the interpretation of →. For this reason we decided
to work with [[−]]. On the other hand the Ω-type interpretation cannot be
changed if we want to obtain the required properties for the system λ∩Ω.
This means that the condition (Ω3) cannot be replaced by the condition (I3)
in the definition of type interpretation on typeΩ.

The following property of Ω-type interpretation is due to the condition
(Ω3) and axiom 8. of Definition 2.3 and is easy to verify. On the other hand
this property is not true for type interpretation in general (3.1(i)), but only
under some conditions which will be presented in Lemma 3.8.

6

Ghilezan and Likavec

Lemma 3.2 For every type ϕ ∈ typeΩ such that ϕ 6∼ Ω we have that
[[ϕ]]Ω ⊆ P.

Let us further define a valuation of terms [[−]]ρ : Λ→ Λ and the semantic
satisfiability relations |= and |=Ω which connect two different kinds of type
interpretations with term valuations.

In the remainder of this paper, all assertions of the form [[−]](Ω) in a state-
ment are to be interpreted either all as [[−]] or all as [[−]]Ω. Similarly for |=(Ω),
(Ω)-type interpretation, ≤(Ω), and type(Ω).

Definition 3.3 Let ρ : var→ Λ be a valuation of term variables in Λ. Then
[[−]]ρ : Λ→ Λ is defined as follows

[[M]]ρ = M [x1 := ρ(x1), . . . , xn := ρ(xn)], where FV(M) = {x1, . . . , xn}.

An alternation ρ(x := N) of a valuation ρ means that ρ(x := N)(x) = N
and ρ(x := N)(y) = ρ(y), where y 6≡ x. The following properties of term
valuation will be needed in some proofs.

Lemma 3.4(i) [[M]]ρ(x := N) ≡ [[M]]ρ(x := x)[x := N].

(ii) [[MN]]ρ ≡ [[M]]ρ[[N]]ρ.

(iii) [[λx.M]]ρ ≡ λx.[[M]]ρ(x := x).

Definition 3.5(i) ρ |=(Ω) M : ϕ iff [[M]]ρ ∈ [[ϕ]](Ω);

(ii) ρ |=(Ω) Γ iff (∀(x : ϕ) ∈ Γ) ρ(x) ∈ [[ϕ]](Ω);

(iii) Γ |=(Ω) M : ϕ iff (∀ρ |=(Ω) Γ) ρ |=(Ω) M : ϕ.

Let us impose some conditions on P ⊆ Λ.

Definition 3.6 Let P ⊆ Λ be given. We say that:

(VAR) P satisfies the variable property, notation VAR(P), if

(∀ϕ ∈ type)(∀x ∈ var) x ∈ [[ϕ]];

(VARΩ) P satisfies the Ω-variable property, notation VARΩ(P), if

(∀ϕ ∈ typeΩ)(∀x ∈ var) x ∈ [[ϕ]]Ω;

(SAT) P is saturated, notation SAT(P), if

(∀M ∈ Λ)(∀ϕ ∈ type)(∀N ∈ P) M [x := N] ∈ [[ϕ]]⇒ (λx.M)N ∈ [[ϕ]];

(SATΩ) P is Ω-saturated, notation SATΩ(P), if

(∀M, N ∈ Λ)(∀ϕ ∈ typeΩ)M [x := N] ∈ [[ϕ]]Ω ⇒ (λx.M)N ∈ [[ϕ]]Ω;

(CLO) P is closed by variable application, notation CLO(P), if

(∀ϕ ∈ type)Mx ∈ [[ϕ]] ⇒ M ∈ P ;

(CLOΩ) P is closed by abstraction, notation CLOΩ(P), if

(∀ϕ ∈ typeΩ)M ∈ [[ϕ]]Ω ⇒ λx.M ∈ P .

We will show that these properties are sufficient to develop the reducibility
method (Proposition 3.11 and 3.13).

7

Ghilezan and Likavec

The preorder on types is interpreted as the set theoretic inclusion.

Lemma 3.7 If σ ≤(Ω) τ , then [[σ]](Ω) ⊆ [[τ]](Ω).

Proof. By induction on the length of the derivation of σ ≤(Ω) τ . 2

As noticed above Lemma 3.2 cannot be proved for type interpretation
(3.1(i)), but the presence of the conditions VAR(P) and CLO(P) provides a
similar property.

Lemma 3.8 If VAR(P) and CLO(P) are satisfied, then [[ϕ]] ⊆ P for all types
ϕ ∈ type.

Proof. If ϕ is an atom, then the statement follows immediately. The interest-
ing case is when ϕ ≡ σ → τ . Take M ∈ [[σ → τ]] and show that M ∈ P . By
the definition of the type interpretation [[−]] we have that M ∈ [[σ]]⇒[[τ]]. By
VAR(P) let us take x ∈ [[σ]]. Then Mx ∈ [[τ]]. Hence M ∈ P by CLO(P). 2

Remark 3.9 Let us notice that the conditions VAR(P), SAT(P), and
CLO(P) provide that SN ⊆ P . This fact is never used in the proofs but is
necessary for the justification of the correctness of the method, since it is well
known that the system λ∩ completely characterizes all strongly normalizing
terms.

Now we can prove the following realizability property, which is referred to
as the soundness property or the adequacy property . More precisely, we prove
soundness with respect to type interpretation in Proposition 3.10 and Ω-type
interpretation in Proposition 3.12.

Proposition 3.10 (Soundness with respect to type interpretation) If
VAR(P), SAT(P), and CLO(P) hold, then

Γ ` Q : ϕ⇒ Γ |= Q : ϕ.

Proof. By induction on the derivation of Γ ` Q : ϕ.

Case 1. The last step applied is (ax), i.e. Γ, x : ϕ ` x : ϕ. Then obviously
Γ, x : ϕ |= x : ϕ, by Definitions 3.3 and 3.5.

Case 2. The last step applied is (→ E), i.e. Γ ` M : τ → ϕ, Γ ` N : τ ⇒
Γ ` MN : ϕ. Then by the induction hypothesis Γ |= M : τ → ϕ and Γ |=
N : τ . Let ρ |= Γ, then [[M]]ρ ∈ [[τ → ϕ]] = [[τ]]⇒[[ϕ]] and [[N]]ρ ∈ [[τ]], which
means that [[M]]ρ[[N]]ρ ∈ [[ϕ]]. Since by Lemma 3.4(ii) [[MN]]ρ ≡ [[M]]ρ[[N]]ρ it
follows that [[MN]]ρ ∈ [[ϕ]].

Case 3. The last step applied is (→ I), i.e. Γ, x : σ ` M : τ ⇒ Γ `
λx.M : σ → τ . By the induction hypothesis Γ, x : σ |= M : τ . Let ρ |= Γ
and let N ∈ [[σ]]. Then ρ(x := N) |= Γ since x /∈ Dom Γ and ρ(x := N) |=
x : σ since N ∈ [[σ]]. Therefore ρ(x := N) |= M : τ , i.e. [[M]]ρ(x := N) ∈ [[τ]].
By Lemma 3.4(i) this means that [[M]]ρ(x:=x)[x := N] ∈ [[τ]]. According to
Lemma 3.8 N ∈ P , hence by applying SAT(P) we get (λx.[[M]]ρ(x:=x))N ∈ [[τ]].
Now by Lemma 3.4(iii) λx.[[M]]ρ(x:=x) ≡ [[λx.M]]ρ. Thus [[λx.M]]ρN ∈ [[τ]]. We
conclude that [[λx.M]]ρ ∈ [[σ]]⇒[[τ]] since N ∈ [[σ]] was arbitrary.

8

Ghilezan and Likavec

Case 4. The last step applied is (∩E), i.e. Γ ` M : σ ∩ τ ⇒ Γ ` M :
σ, Γ ` M : τ . By the induction hypothesis Γ |= M : σ ∩ τ . Let ρ |= Γ,
then [[M]]ρ ∈ [[σ ∩ τ]] = [[σ]] ∩ [[τ]]. Therefore [[M]]ρ ∈ [[σ]] and [[M]]ρ ∈ [[τ]], i.e.
Γ |= M : σ and Γ |= M : τ .

Case 5. The last step applied is (∩I), i.e. Γ ` M : σ, Γ ` M : τ ⇒ Γ `
M : σ ∩ τ . Then by the induction hypothesis Γ |= M : σ and Γ |= M : τ .
Let ρ |= Γ, then [[M]]ρ ∈ [[σ]] and [[M]]ρ ∈ [[τ]]. Therefore [[M]]ρ ∈ [[σ ∩ τ]], i.e.
Γ |= M : σ ∩ τ .

Case 6. The last step applied is (≤), i.e. Γ ` M : σ, σ ≤ τ ⇒ Γ ` M : τ .
By the induction hypothesis Γ |= M : σ. Let ρ |= Γ, then [[M]]ρ ∈ [[σ]].
According to Lemma 3.7 [[σ]] ⊆ [[τ]], so it follows that [[M]]ρ ∈ [[τ]], i.e. Γ |=
M : τ . 2

An immediate consequence of soundness with respect to type interpretation
is the following property.

Proposition 3.11 If VAR(P), SAT(P), and CLO(P), then

Γ `M : ϕ⇒M ∈ P .

Proof. Let Γ ` M : ϕ, then Γ |= M : ϕ by Proposition 3.10. Let us take a
valuation ρ such that ρ(y) ≡ y for all y ∈ var. For every (x : σ) ∈ Γ we have
that ρ |= x : σ since x ∈ [[σ]] by VAR(P). Therefore ρ |= Γ and consequently
ρ |= M : ϕ, which means that M ≡ [[M]]ρ ∈ [[ϕ]]. By applying Lemma 3.8 we
get M ∈ P . 2

Proposition 3.12 (Soundness with respect to Ω-type interpretation)
If VARΩ(P), SATΩ(P), and CLOΩ(P), then

Γ `Ω Q : ϕ⇒ Γ |=Ω Q : ϕ.

Proof. The proof is along the lines of the proof of Proposition 3.10. Let us
reconsider Case 3.

Case 3. The last step applied is (→ I), i.e. Γ, x : σ `M : τ ⇒ Γ ` λx.M :
σ → τ . By the induction hypothesis Γ, x : σ |= M : τ . Let ρ |= Γ and let
N ∈ [[σ]]Ω. Then ρ(x := N) |= Γ since x /∈ Dom Γ and ρ(x := N) |= x : σ
since N ∈ [[σ]]Ω. Therefore ρ(x := N) |= M : τ , i.e. [[M]]ρ(x := N) ∈ [[τ]]Ω. By
Lemma 3.4(i) these means that [[M]]ρ(x:=x)[x := N] ∈ [[τ]]Ω. (Here we cannot
apply SAT(P), since σ can be Ω so we cannot claim by Lemma 3.2 that N ∈ P .
This was the reason for introducing SATΩ(P).) Hence, by applying SATΩ(P)
we get (λx.[[M]]ρ(x:=x))N ∈ [[τ]]Ω. Now by Lemma 3.4(iii) λx.[[M]]ρ(x:=x) ≡
[[λx.M]]ρ. Thus [[λx.M]]ρN ∈ [[τ]]Ω. We conclude that [[λx.M]]ρ ∈ [[σ]]Ω⇒[[τ]]Ω

since N ∈ [[σ]]Ω was arbitrary.

What we have to show is that [[λx.M]]ρ ∈ [[σ]]Ω⇒Ω[[τ]]Ω. Hence it remains
to prove that [[λx.M]]ρ ∈ P . Let us take x ∈ [[σ]] by VAR(P). By repeating
the above argument where x ∈ [[σ]] is taken instead of N ∈ [[σ]] we obtain

9

Ghilezan and Likavec

[[M]]ρ(x:=x) ∈ [[τ]]Ω, which means that λx.[[M]]ρ(x:=x) ∈ P by CLOΩ(P). Ac-
cording to Lemma 3.4(iii) λx.[[M]]ρ(x:=x) ≡ [[λx.M]]ρ, thus [[λx.M]]ρ ∈ P . 2

An immediate consequence of soundness with respect to Ω-type interpre-
tation is the following property.

Proposition 3.13 If VARΩ(P), SATΩ(P), and CLOΩ(P), then

(∀ϕ ∈ typeΩ) ϕ 6∼ Ω ∧ Γ `Ω M : ϕ⇒M ∈ P .

Proof. Let Γ `Ω M : ϕ, then Γ |=Ω M : ϕ by Proposition 3.12. Let us take
such a valuation ρ that ρ(y) ≡ y for all y ∈ var. For every (x : σ) ∈ Γ we
have that ρ |=Ω x : σ since x ∈ [[σ]]Ω by VARΩ(P). Therefore ρ |=Ω Γ and
consequently ρ |=Ω M : ϕ, which means that M ≡ [[M]]ρ ∈ [[ϕ]]Ω. Since ϕ 6∼ Ω
according to Lemma 3.2 we have that [[ϕ]]Ω ⊆ P. Thus M ∈ P . 2

Remark 3.14 Let us notice here that the required property, which states
that a typeable term belongs to P , is provided on the one hand in Proposi-
tion 3.11 by VAR)(P) and CLO(P) (Lemma 3.8) and on the other hand in
Proposition 3.13 it is provided by the condition (Ω3) of Ω-type interpretation
(Lemma 3.2).

We showed in Proposition 3.10, 3.11, 3.12, and 3.13 that the properties
VAR(P), SAT(P), CLO(P), VARΩ(P), SATΩ(P), and CLOΩ(P) are suffi-
cient to develop the reducibility method. Nevertheless in order to prove these
properties one has to proceed by induction on the construction of the type ϕ,
but then one needs stronger induction hypotheses which are easier to prove.
These stronger conditions actually unify the conditions for saturated and P-
saturated sets which are considered in reducibility methods in Krivine [14],
Barendregt [3], Gallier [9], and Koletsos and Stavrinos [13]. In the sequel we
focus on the system λ∩Ω, therefore we generalize VARΩ(P), SATΩ(P), and
CLOΩ(P).

Definition 3.15 Let P ⊆ Λ be given. We say that:

(P-VAR) X ⊆ Λ satisfies the P-variable property, notation VAR(P ,X), if

(∀x ∈ var) (∀n ≥ 0) (∀M1, . . . ,Mn ∈ P) xM1 . . . Mn ∈ X .

(P-SAT) X ⊆ Λ is P-saturated, notation SAT(P ,X), if

(∀M, N ∈ Λ) (∀n ≥ 0) (∀M1, . . . ,Mn ∈ P)

M [x := N]M1 . . . Mn ∈ X ⇒ (λx.M)NM1 . . . Mn ∈ X .

(P-CLO) X ⊆ Λ is P-closed, notation CLO(P ,X), if

M ∈ X ⇒ λx.M ∈ P .

We show that the conditions in Definition 3.15 imply the corresponding
conditions in Definition 3.6.

10

Ghilezan and Likavec

Lemma 3.16 VAR(P ,P) ⇒ (∀ϕ ∈ typeΩ) (ϕ 6∼ Ω→ τ)VAR(P , [[ϕ]]Ω(P)).

Proof. We prove the statement by induction on the construction of ϕ. Let
us assume VAR(P ,P).

Case ϕ ≡ α is an atom. Since [[α]]Ω = P , the statement holds by assump-
tion.

Case ϕ ≡ σ → τ . Let M1, . . . ,Mn ∈ P . We have to show that xM1 . . . Mn ∈
[[σ → τ]]Ω. First, xM1 . . . Mn ∈ P by assumption. It remains to prove that
xM1 . . . Mn ∈ [[σ]]Ω⇒[[τ]]Ω. Take an arbitrary Mn+1 ∈ [[σ]]Ω. If σ 6∼ Ω, then
by Lemma 3.2 Mn+1 ∈ P , hence xM1 . . . MnMn+1 ∈ [[τ]]Ω follows by the in-
duction hypothesis. If σ ∼ Ω and τ ∼ Ω, then [[σ]]Ω → [[τ]]Ω = Λ → Λ, so
xM1 . . . Mn ∈ [[σ]]Ω → [[τ]]Ω, since Λ→ Λ = Λ.

Case ϕ ≡ σ ∩ τ . Let M1, . . . ,Mn ∈ P . By the induction hypothesis
xM1 . . . Mn ∈ [[σ]]Ω and xM1 . . . Mn ∈ [[τ]]Ω. Obviously, xM1 . . . Mn ∈ [[σ]]Ω ∩
[[τ]]Ω.

Case ϕ ≡ Ω is obvious, since [[Ω]]Ω = Λ.

In the other direction: VAR(P ,P) holds, since [[α]] = P for any atom type
α. 2

An immediate consequence of Lemma 3.16 is the following statement.

Corollary 3.17 VAR(P ,P) ⇒ VARΩ(P), except for types ϕ ∼ Ω→ τ .

Proof. If VAR(P ,P) holds, then according to Lemma 3.16 VAR(P , [[ϕ]]Ω)
holds for every ϕ ∈ typeΩ. Obviously, VAR(P , [[ϕ]]Ω) implies that var ⊆ [[ϕ]]Ω

for every Ω-type ϕ. 2

We proceed similarly for the conditions SATΩ(P) and SAT(P ,P).

Lemma 3.18 SAT(P ,P) ⇔ (∀ϕ ∈ typeΩ)(ϕ 6∼ Ω→ τ)SAT(P , [[ϕ]]Ω).

Proof. By induction on the construction of ϕ. We proceed as in the previous
lemma. Let us assume SAT(P ,P).

Case ϕ ≡ α ∈ atom. Since [[α]]Ω = P , the property holds by assumption.

Case ϕ ≡ σ → τ . Let M1, . . . ,Mn ∈ P . Suppose

M [x := N]M1 . . . Mn ∈ [[σ]]Ω⇒Ω[[τ]]Ω = ([[σ]]Ω⇒[[τ]]Ω) ∩ P .

Then (λx.M)NM1 . . . Mn ∈ P , since SAT(P ,P) What remains to show is
that (λx.M)NM1 . . . Mn ∈ [[σ]]Ω⇒[[τ]]Ω. In case that σ ∼ Ω and τ ∼ Ω
the property follows since [[σ]]Ω⇒[[τ]]Ω = Λ → Λ = Λ. Let σ 6∼ Ω and
Mn+1 ∈ [[σ]]Ω, then M [x := N]M1 . . . MnMn+1 ∈ [[τ]]Ω. On the other hand by
Lemma 3.2 Mn+1 ∈ P , so by the induction hypothesis
(λx.M)NM1 . . . MnMn+1 ∈ [[τ]]Ω. Since Mn+1 was arbitrary, we obtain
(λx.M)NM1 . . . Mn ∈ [[σ]]Ω⇒[[τ]]Ω.

Case ϕ ≡ σ ∩ τ . Let M, N, M1, . . . ,Mn ∈ P . Suppose

M [x := N]M1 . . . Mn ∈ [[σ]]Ω ∩ [[τ]]Ω.

11

Ghilezan and Likavec

Then M [x := N]M1 . . . Mn ∈ [[σ]]Ω and M [x := N]M1 . . . Mn ∈ [[τ]]Ω. By the
induction hypothesis (λx.M)NM1 . . . Mn ∈ [[σ]]Ω and (λx.M)NM1 . . . Mn ∈
[[τ]]Ω, therefore (λx.M)NM1 . . . Mn ∈ [[σ]]Ω ∩ [[τ]]Ω.

Case ϕ ≡ Ω is straightforward since [[Ω]]Ω = Λ.

The other direction follows the argument of Lemma 3.16. 2

Corollary 3.19 SAT(P ,P) ⇒ SATΩ(P), except for types ϕ ∼ Ω→ τ .

Proof. By Lemma 3.18 and by Definition 3.6 of SATΩ(P). 2

Lemma 3.20 CLO(P ,P) ⇒ CLOΩ(P), except for types ϕ ∼ Ω.

Proof. Straightforward, since by Lemma 3.2 [[ϕ]]Ω ⊆ P for all types ϕ 6∼ Ω.2

Consequently, conditions VAR(P ,P), SAT(P ,P), and CLO(P ,P) are gen-
eralizations of VARΩ(P), SATΩ(P), and CLOΩ(P), respectively. The follow-
ing statement presents the general reducibility method which leads to uniform
proofs of various reduction properties of the lambda terms typeable in λ∩Ω

and will be presented in the sequel.

Proposition 3.21 (Reducibility method for typeable terms) Let
VAR(P ,P), SAT(P ,P), and CLOΩ(P ,P). Then

(∀ϕ ∈ typeΩ) ϕ 6∼ Ω ∧ ϕ 6∼ Ω→ τ ∧ Γ `Ω M : ϕ⇒M ∈ P .

Proof. According to Proposition 3.13, Corollary 3.17, 3.19, and Lemma 3.20.2

Definition 3.22 A set P ⊆ Λ is said to be invariant under abstraction if

M ∈ P ⇔ λx.M ∈ P

Now we have all necessary conditions to establish a proof method for un-
typed lambda terms.

Proposition 3.23 (Proof method for untyped terms) If P is invariant
under abstraction, VAR(P ,P), and SAT(P ,P), then P = Λ.

Proof. For all M ∈ Λ we have that λx.M is a weakly head normalizing term,
i.e. λx.M ∈ W . It is easy to verify that there is a context Γ such that
Γ `Ω λx.M : Ω → Ω. The conditions of Proposition 3.21 are satisfied since
CLO(P ,P) is one of the implications in the Definition 3.22. Hence, according
to Proposition 3.21 it follows that λx.M ∈ P . Therefore M ∈ P , since P is
invariant under abstraction. 2

12

Ghilezan and Likavec

4 Application of the methods

In this section we show that the method given in Proposition 3.21 is applicable
to the system λ∩Ω, when P is:

4.1 P = C = {M ∈ Λ | β-reduction is confluent on M};
4.2 P = S = {M | every reduction of M can be done in a standard way};
4.3 P =W = {M |M is weakly head normalizing}.

Moreover we show that the proof method presented in Proposition 3.23 is
suitable in Case 4.1 and 4.2.

4.1 Confluence of →→β in Λ

The first proof of confluence of simply typed lambda calculus using the re-
ducibility method is due to Statman [19] and Koletsos [12]. Applying the
reducibility method we prove the confluence of β-reduction on lambda terms
typeable in λ∩Ω by appropriate types. As a direct consequence we obtain the
confluence of β-reduction on the set Λ of all (untyped) lambda terms.

Let C be the set of all lambda terms on which β-reduction is confluent.
We shall prove that VAR(C, C), SAT(C, C), and CLO(C, C) hold. Then the
confluence of β-reduction on lambda terms typeable in λ∩Ω by an appropriate
type is a direct consequence of the method presented in the previous section in
Proposition 3.21. For the sake of simplicity in this section we write→ instead
of →β and →→ instead of →→β.

Definition 4.1 C = {M ∈ Λ |M1←←M→→M2 ⇒ (∃M3 ∈ Λ) M1→→M3←←M2}.

Lemma 4.2 VAR(C, C).

Proof. Let xM ′
1 . . . M ′

n←←xM1 . . . Mn→→xM ′′
1 . . . M ′′

n . The only possibility
for the reductions is M ′

i←←Mi→→M ′′
i for 1 ≤ i ≤ n. Since Mi ∈ C, there is

M ′′′
i , for each i, 1 ≤ i ≤ n, such that M ′

i→→M ′′′
i ←←M ′′

i . But then

xM ′
1 . . . M ′

n→→xM ′′′
1 . . . M ′′′

n ←←xM ′′
1 . . . M ′′

n .

2

Lemma 4.3 SAT(C, C).

Proof. Let M, N ∈ Λ and M1, . . . ,Mn ∈ C and M [x := N]M1 . . . Mn ∈ C. Let
P ≡ (λx.M)NM1 . . . Mn and suppose R←←P →→S. Depending on whether the
head redex of P is reduced we consider the following cases.

Case (λx.M ′)N ′M ′
1 . . . M ′

n←←P →→(λx.M ′′)N ′′M ′′
1 . . . M ′′

n with
M ′←←M→→M ′′, N ′←←N→→N ′′, and M ′

i←←Mi→→M ′′
i for 1 ≤ i ≤ n. Then

M ′→→M ′′′←←M ′′, N ′→→N ′′′←←N ′′, and M ′
i→→M ′′′

i ←←M ′′
i for 1 ≤ i ≤ n, so

(λx.M ′)N ′M ′
1 . . . M ′

n→→(λx.M ′′′)N ′′′M ′′′
1 . . . M ′′′

n ←←(λx.M ′′)N ′′M ′′
1 . . . M ′′

n .

Case R←←M ′[x := N ′]M ′
1 . . . M ′

n←←P →→M ′′[x := N ′′]M ′′
1 . . . M ′′

n→→S with
M ′←←M→→M ′′, N ′←←N→→N ′′, and M ′

i←←Mi→→M ′′
i , for 1 ≤ i ≤ n. Then

13

Ghilezan and Likavec

R←←M ′[x := N ′]M ′
1 . . . M ′

n←←M [x := N]M1 . . . Mn →→M ′′[x := N ′′]M ′′
1 . . . M ′′

n

→→S, so the result follows from P →→M [x := N]M1 . . . Mn ∈ C.
Case R←←M ′[x := N ′]M ′

1 . . . M ′
n←←P →→(λx.M ′′)N ′′M ′′

1 . . . M ′′
n with

M ′←←M→→M ′′, N ′←←N→→N ′′, and M ′
i←←Mi→→M ′′

i for 1 ≤ i ≤ n. Let
M ′→→M ′′′←←M ′′, N ′→→N ′′′←←N ′′ and M ′

i→→M ′′′
i ←←M ′′

i for 1 ≤ i ≤ n. Then
R←←M ′[x := N ′]M ′

1 . . . M ′
n←←M [x := N]M1 . . . Mn→→M ′′′[x := N ′′′]M ′′′

1 . . . M ′′′
n

so from M [x := N]M1 . . . Mn ∈ C there is Z ∈ Λ such that
R→→Z←←M ′′′[x := N ′′′]M ′′′

1 . . . M ′′′
n . But then also

R→→Z←←M ′′′[x := N ′′′]M ′′′
1 . . . M ′′′

n ←←(λx.M ′′)N ′′M ′′
1 . . . M ′′

n .

2

Lemma 4.4 (CLO(C, C)) M ∈ C ⇒ λx.M ∈ C.

Proof. Let M ∈ C. Assume R←←λx.M→→S. Then R ≡ λx.R′ and S ≡ λx.S ′

with R′←←M→→S ′. Hence, there is Z ∈ Λ such that R′→→Z←←S ′. Thus
λx.R′→→λx.Z←←λx.S ′. 2

Proposition 4.5 Let M ∈ Λ be given. If Γ `Ω M : ϕ for some context Γ and
ϕ 6∼ Ω, ϕ 6∼ Ω→ τ , then β-reduction is confluent on M .

Proof. By Proposition 3.21 and Lemma 4.2, 4.3, and 4.4. 2

An important consequence of Proposition 4.5 is the confluence of β-reduction
on the set Λ of all (untyped) lambda terms. In order to prove that the
conditions of Proposition 3.23 are fulfilled it remains to prove the inverse
of Lemma 4.4.

Lemma 4.6 Let M ∈ Λ. Then:

λx.M ∈ C ⇒M ∈ C.

Proof. Assume λx.M ∈ C. The only way to β-reduce λx.M is to β-reduce
M . Hence, M ∈ C. 2

Notice that the previous property does not hold for βη-reduction.

Corollary 4.7 (Confluence of β-reduction) If M ∈ Λ, then M ∈ C.

Proof. By Proposition 3.23 and Lemma 4.2, 4.3, 4.4, and 4.6. 2

4.2 Standardization in Λ

The property of lambda terms that each reduction can be decomposed into
head reductions followed by internal reductions (these notions are mentioned
in Section 2) is referred to as the standardization (Barendregt [2]). Here we
prove standardization of terms typeable in λ∩Ω applying the techniques of the
reducibility method. As a direct consequence we obtain the standardization
of all (untyped) lambda terms.

14

Ghilezan and Likavec

Let S denote the set of all lambda terms that satisfy the standardization
property. We prove VAR(S,S), SAT(S,S), and CLO(S,S). In this section
we write → instead of →β and →→ instead of →→β.

Definition 4.8 S = {M ∈ Λ |M→→Z ⇒ (∃N ∈ Λ) M→→h N→→i Z}.

Lemma 4.9 VAR(S,S).

Proof. If xM1 . . . Mn→→Z, then xM1 . . . Mn→→i Z since the term has no head
redexes. 2

Lemma 4.10 SAT(S,S).

Proof. Let M, N, M1 . . . Mn ∈ S and let M [x := N]M1 . . . Mn ∈ S. Suppose
P ≡ (λx.M)NM1 . . . Mn→→Z.

Case Z ≡ (λx.M ′)N ′M ′
1 . . . M ′

n, M→→M ′, N→→N ′, Mi→→M ′
i for 1 ≤ i ≤

n. Then the reduction is internal: P →→h P →→i Z.

Case P →→(λx.M ′)N ′M ′
1 . . . M ′

n→M ′[x := N ′]M ′
1 . . . M ′

n→→Z, M→→M ′,
N→→N ′, and Mi→→M ′

i for 1 ≤ i ≤ n. Then M [x := N]M1 . . . Mn→→
→→M ′[x := N ′]M ′

1 . . . M ′
n→→Z. Since M [x := N]M1 . . . Mn ∈ S we have that

(λx.M)NM1 . . . Mn→h M [x := N]M1 . . . Mn→→h Z ′→→i Z, which means that
(λx.M)NM1 . . . Mn ∈ S. 2

Lemma 4.11 (CLO(S,S)) M ∈ S ⇒ λx.M ∈ S.

Proof. Suppose M ∈ S and λx.M→→Z. Then Z ≡ λx.M ′ with M→→M ′, so
M→→h N→→i M

′ for some term N . But the head redex of M is also a head
redex of λx.M and vice versa, so λx.M→→h λx.N →→i λx.M ′, which means
that λx.M ∈ S. 2

Proposition 4.12 Let M ∈ Λ be given. If Γ `Ω M : ϕ for some context Γ
and ϕ 6∼ Ω, ϕ 6∼ Ω→ τ , then M ∈ S.

Proof. By Proposition 3.21 and Lemma 4.9, 4.10, and 4.11. 2

An important consequence of Proposition 4.12 is the standardization prop-
erty for all lambda terms. First, let us prove the inverse of Lemma 4.11 in
order to establish the invariance of S under abstraction.

Lemma 4.13 Let M ∈ Λ. Then:

λx.M ∈ S ⇒M ∈ S.

Proof. The only way to head reduce λx.M is to head reduce M . Hence,
the standard reduction of λx.M is the standard reduction of M as well, i.e.
M ∈ S. 2

Corollary 4.14 (Standardization in Λ) If M ∈ Λ, then M ∈ S.

Proof. By Proposition 3.23 and Lemma 4.9, 4.10, 4.11, and 4.13. 2

15

Ghilezan and Likavec

4.3 Existence of weak head normal form in λ∩Ω

A term is a weak head normal form if it starts with an abstraction, or with a
variable. A term is weakly head normalizing if it reduces to a weak head nor-
mal form. LetW denote the set of all lambda terms that have a weak head nor-
mal form. We shall prove that VAR(W ,W), SAT(W ,W), and CLO(W ,W)
are satisfied. Then the existence of a weak head normal form of lambda terms
typeable in λ∩Ω by appropriate types is a direct consequence of the method
presented in the previous section in Proposition 3.21. For the sake of simplicity
in this section we write → instead of →β and →→ instead of →→β.

The setW of weakly head normalizing terms is already defined in Section 2:

W = {M ∈ Λ | (∃P, P1, . . . , Pn ∈ Λ) M→→
β

λx.P or M→→
β

xP1 . . . Pn}.

It is easy to verify the required properties in this case since:

- VAR(W ,W) holds because all terms of the form xM1 . . . Mn are weak head
normal forms;

- SAT(W ,W) holds because the set W of weakly head normalizing terms is
closed under β-conversion;

- CLO(W ,W) holds because all terms of the form λx.M are weak head normal
forms.

Proposition 4.15 Let M ∈ Λ be given. If Γ `Ω M : ϕ for some context Γ
and ϕ 6∼ Ω, ϕ 6∼ Ω→ τ , then M has a weak head normal form.

Proof. By Proposition 3.21 and the previous discussion. 2

5 Discussion

What are the limits of the methods? In the reducibility method it suffices
to consider terms typeable by types satisfying certain conditions in order to
change the proposed set P . In this way we can prove that terms typeable in
λ∩Ω by certain types are head-normalizing and normalizing.

The intersection type system can be changed by changing the preorder
on types. If the axiom σ → Ω ≤ Ω → Ω is replaced by the usual axiom
Ω ≤ Ω→ Ω, then the system obtained is not able to distinguish weakly head
normalizing terms from unsolvable terms. In this system solvable terms are
known to be typeable by types not equivalent to Ω (non-trivial types). Hence,
in this system the method can be applied to sets containing all solvable terms.

The proof methodology for untyped lambda calculus presented here is suit-
able for sets of lambda terms P ⊇ W that are invariant under abstraction
(M ∈ P ⇔ λx.M ∈ P). Obviously P = W cannot be the case, since this
would lead to the contradiction Λ = W . This is prevented by the invariance
under abstraction, which W does not satisfy.

16

Ghilezan and Likavec

Contributions of the presented methods? The reducibility method pre-
sented here is an abstract method which unifies different known formulations
discussed in Introduction. It derives necessary conditions which a set P ⊆ Λ
has to fulfill in order to be a candidate for the application of the method. The
proof methodology for untyped lambda calculus presented as a consequence
of reducibility applied to λ∩Ω seams to be new up to our knowledge.

Possible applications of the methods? The reducibility method for λ∩ is not
completely developed here. One has to define a condition which will generalize
condition SAT(P). This can be done similarly to SAT(P ,P). Hence, the
method obtained in this way will provide a uniform way to prove various well-
known reduction properties of terms typeable in λ∩ such as existence of (βη)
normal form, uniqueness of (βη) normal form, termination of the leftmost-
outermost reduction, strong normalization, and others. The method can be
applied to the simply typed lambda calculus as well. The applicability of this
method to other type systems can be one of the areas of further investigation.

Finiteness of developments in the set Λ of all untyped lambda terms can
be proved along the lines of proofs presented in Section 4.

Acknowledgement

The authors thank Viktor Kunčak for participating in the initial stages of this
work. The authors are grateful to Mariangiola Dezani-Ciancaglini and Pierre
Lescanne for valuable suggestions and remarks. Detailed comments of anony-
mous referees lead to improvements both in correctness and presentation.

References

[1] Barendregt, H., M. Coppo and M. Dezani-Ciancaglini, A filter lambda model
and the completeness of type assignment, Journal of Symbolic Logic 48 (1983),
pp. 931–940 (1984).

[2] Barendregt, H. P., “The Lambda Calculus: its Syntax and Semantics,” North-
Holland, Amsterdam, 1984, revised edition.

[3] Barendregt, H. P., Lambda calculi with types, in: S. Abramsky, D. Gabbay
and T. Maibaum, editors, Handbook of Logic in Computer Science, Volume
B, Oxford University Press, Oxford, 1992 pp. 117–309.

[4] Coppo, M. and M. Dezani-Ciancaglini, A new type-assignment for lambda
terms, Archiv für Mathematische Logik 19 (1978), pp. 139–156.

[5] Coppo, M. and M. Dezani-Ciancaglini, An extension of the basic functionality
theory for the λ-calculus, Notre Dame Journal of Formal Logic 21 (1980),
pp. 685–693.

[6] Dezani-Ciancaglini, M. and S. Ghilezan, A lambda model characterizing
computational behaviours of terms, in: Y. Toyama, editor, Proceedings of the

17

Ghilezan and Likavec

International Workshop Rewriting in Proof and Computation, RPC’01, 2001,
pp. 100–119.

[7] Dezani-Ciancaglini, M., F. Honsell and Y. Motohama, Compositional
characterization of λ-terms using intersection types, in: M. Nielsen and
B. Rovan, editors, Mathematical Foundations of Computer Science 2000,
Lecture Notes in Computer Science 1893 (2000), pp. 304–314.

[8] Dougherty, D. and P. Lescanne, Reductions, intersection types, and explicit
substitution, in: S. Abramsky, editor, Typed Lambda Calculi and Application,
5th International Conference, TLCA 2001, Lecture Notes in Computer Science
2044 (2001), pp. 121–135.

[9] Gallier, J., Typing untyped λ-terms, or reducibility strikes again!, Annals of
Pure and Applied Logic 91 (1998), pp. 231–270.

[10] Ghilezan, S., Strong normalization and typability with intersection types, Notre
Dame Journal of Formal Logic 37 (1996), pp. 44–52.

[11] Girard, J.-Y., Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’elimination des coupures dans l’analyse et la théorie des types,
in: J. Fenstad, editor, 2nd Scandinavian Logic Symposium, North-Holland,
Amsterdam (1971), pp. 63–92.

[12] Koletsos, G., Church-Rosser theorem for typed functionals, Journal of Symbolic
Logic 50 (1985), pp. 782–790.

[13] Koletsos, G. and G. Stavrinos, The structure of reducibility proofs, in:
P. Kolaitis and G. Koletsos, editors, Proceedings of the Second Panhellenic Logic
Symposium, 1999, pp. 138–144.

[14] Krivine, J.-L., “Lambda-calcul types et modèles,” Masson, Paris, 1990.

[15] Mitchell, J. C., “Foundation for Programmimg Languages,” MIT Press, Boston.

[16] Mitchell, J. C., Type systems for programming languages, in: J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B, Elsevier,
Amsterdam, 1990 pp. 415–431.

[17] Pottinger, G., A type assignment for the strongly normalizable λ-terms, in:
J. Seldin and J. Hindley, editors, To H. B. Curry: essays on combinatory logic,
lambda calculus and formalism, Academic Press, London, 1980 pp. 561–577.

[18] Sallé, P., Une extension de la thorie des types en lambda -calcul, in: G. Ausiello
and C. Böhm, editors, Fifth International Conference on Automata, Languages
and Programming, Lecture Notes in Computer Science 62 (1978), pp. 398–410.

[19] Statman, R., Logical relations and the typed λ-calculus, Information and Control
65 (1985), pp. 85–97.

[20] Tait, W. W., Intensional interpretations of functionals of finite type I, Journal
of Symbolic Logic 32 (1967), pp. 198–212.

[21] Tait, W. W., A realizability interpretation of the theory of species, in: Logic
Colloquium, Lecture Notes in Mathematics 453 (1975), pp. 240–251.

18

	Introduction
	Terms, Types, and Type Systems
	Reducibility Method
	Application of the methods
	Confluence of - - - - - in
	Standardization in
	Existence of weak head normal form in

	Discussion
	Acknowledgement
	References

