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Abstract—This paper presents a comprehensive investigation of
statistical effects in deeply scaled nitride memory cells, considering
both atomistic substrate doping and the discrete and localized
nature of stored charge in the nitride layer. By means of 3-D TCAD
simulations, the statistical dispersion of the threshold voltage shift
induced by a single localized electron in the nitride is evaluated
in presence of non-uniform substrate conduction. The role of 3-D
electrostatics and atomistic doping on the results is highlighted,
showing the latter as the major spread source. The threshold volt-
age shift induced by more than one electron in the nitride is then
analyzed, showing that for increasing numbers of stored electrons
a correlation among single-electron shifts clearly appears. The
scaling trend and the practical impact of these statistical effects
on cell operation are discussed in Part II of this paper.

Index Terms—Atomistic doping, nitride memories, semiconduc-
tor device modeling, SONOS memories, TANOS memories.

I. INTRODUCTION

SONOS and TANOS memories are considered today the
most practical evolution of the floating-gate (FG) NAND

Flash technology, allowing improved reliability thanks to dis-
crete charge storage in thin silicon nitride layers [1]–[8]. To
investigate their performance, many 1-D models have been
reported to describe the charging/discharging dynamics of
relatively large area cells and capacitors [9]–[13]. However,
all these models suffer from two main limitations that ques-
tion their validity for the investigation of decananometer-sized
memory cells, i.e., the lack of 1) the real 3-D cell electrostatics
during program/erase (P/E) and read and 2) the discrete and
localized nature of stored electrons. Considering 3-D electro-
statics is mandatory to account for fringing fields at the active
area edges, determining both a non-uniform charge injection
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to/from the nitride layer during P/E and non-uniform substrate
inversion during read [14], [15]. In this context, the correct
evaluation of the threshold voltage shift (ΔVT ) determined by
the discrete and localized electrons stored in the nitride after
program requires a careful numerical simulation of source/drain
conduction during read. Moreover, the discrete nature of the
stored charge necessarily gives rise to statistical issues related
to the number and position fluctuation of the electrons in
the nitride, determining a statistical dispersion of ΔVT after
program which cannot be investigated by any 1-D model.
This statistical dispersion is further worsened when considering
the additional contribution of atomistic doping to non-uniform
substrate inversion, enhancing percolative source-to-drain con-
duction [16]–[20].

In this paper, we present a comprehensive 3-D numerical
investigation of decananometer-sized nitride memory cells,
considering both atomistic substrate doping and discrete and
localized electron storage in the nitride. To correctly capture
the stored charge effect, not only on substrate inversion but
also on source-to-drain conduction, ΔVT is evaluated from
cell drain current–gate voltage (ID–VG) transcharacteristics,
obtained solving the transport equations in the active area. By
means of Monte Carlo simulations, the statistical distribution of
the threshold voltage shift induced by a single localized electron
randomly placed in the nitride volume (ΔVT,1) is evaluated,
accounting for dopant number and position randomness in the
substrate. The role of 3-D electrostatics and atomistic doping on
the ΔVT,1 distribution is highlighted, showing the latter as the
major spread source. Then, the threshold voltage shift induced
by N electrons stored in the nitride (ΔVT,N ) is analyzed, show-
ing that for large N a correlation among single-electron shifts
clearly appears, reducing the spread of the ΔVT,N distribution.
The impact of these results on the program operation of deeply
scaled nitride-based cells is investigated in the companion paper
[1], where a scaling analysis is also presented.

II. PHYSICS-BASED NUMERICAL MODEL

We performed 3-D TCAD simulations on the template device
structure reported in Fig. 1, featuring: STI trenches at the cell
sides, atomistic doping in the substrate and discrete electrons
in the nitride layer. A bottom oxide/nitride/top oxide (ONO)
stack with thicknesses equal to 4/4.5/5 nm was assumed for the
gate dielectric, with the nitride layer patterned over cell channel
(εox = 3.9 and εN = 7.5 were used for the relative dielectric
constants of silicon oxide and nitride, respectively). Cell width
(W ) and length (L) were set to 25 nm, with a constant substrate
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Fig. 1. Schematics for the cell structure investigated in this work, highlighting
the atomistic doping region in the substrate and the discrete localized electrons
stored in the nitride. The gate dielectric comprises an oxide/nitride/oxide
(ONO) stack. Red regions: n implants; blue regions: p substrate; green regions:
nitride; oxide regions are not highlighted.

Fig. 2. Block diagram for the simulation procedure used to collect statistical
information on VT,0 and ΔVT,N . VG,1, VG,2, VG,3 and VG,4 define the
explored VG ranges for the neutral and programmed cell state.

doping Na = 3 × 1018 cm−3. A planar metal word-line was
assumed for the gate [14].

The simulation flow is schematically depicted in Fig. 2. After
the definition of the template device structure, the atomistic
doping region in the substrate was set with a depth from
the substrate/oxide interface (25 nm) larger than the average
depletion layer width at threshold. Outside this region, a con-
tinuous doping profile was used. A Monte Carlo loop was
employed to collect statistical information on the cells. The
loop includes the extraction of the actual number of dopants in

the discretization region from a Poisson statistics with average
value Nd

a = 46 (as resulting from the product of Na and the
volume of doping discretization) and their placement according
to a uniform distribution. Poisson and drift–diffusion equations
were then solved for fixed drain bias VD = 0.7 V (source and
bulk grounded) and increasing gate bias to obtain the ID–VG

transcharacteristics. This was then used to extract neutral cell
threshold voltage (VT,0) as the gate bias allowing 200 nA to
flow from source to drain. ID–VG and VT were then calculated
again after a fixed number N of electrons were randomly placed
in the nitride volume to investigate the programmed cell state,
extracting ΔVT,N . More than 100 Monte Carlo runs were used
to obtain the VT,0 and ΔVT,N statistics. Note that the maximum
number of Monte Carlo runs has to be considered when defining
the thickness of the atomistic doping region, for the cell with the
lower number of dopants out of the Poisson statistics to have a
depletion layer completely included in this region.

All the simulations were performed by means of a commer-
cial software [21], implementing in its framework the tools
to deal with atomistic substrate doping and discrete electron
placement in the nitride. To this aim, we followed a simulation
approach similar to what is reported in [22], using a constant
mobility value for the drift–diffusion simulations [18], [22]
and spreading the dopant charge in a cube of side equal to
2 nm centered in the chosen atomistic dopant position. The
cube side was selected from the compromise between a better
resolution of percolative substrate conduction and the necessity
to avoid artificial charge localizations when solving the poisson
and drift–diffusion equations in presence of Coulomb potential
wells, as discussed in detail in [18]. This compromise could be
fully solved only by more complex simulation approaches, such
as introducing quantum-corrections to the electrostatic solution
[18] or splitting the Coulomb potential into short- and long-
range components [16]. Similarly, localized electron storage in
the nitride was reproduced by placing the electronic charge in a
cube of 1 nm side centered in each selected storage position.

III. ΔVT,1 STATISTICAL DISTRIBUTION

Fig. 3 shows the statistical distribution of VT,0 obtained from
the Monte Carlo simulation analysis presented in the previous
section. Although current crowding at the cell corners deter-
mined by 3-D electrostatics impacts the average value VT,0 =
2 V of the distribution, its broadening is the result of atomistic
doping [17], [20]. In fact, substrate percolative conduction is
determined by the number and position of dopants placed in
the discretization region, with different cells showing different
VT,0 as a result of a more or less favorable configuration of
doping atoms from the source-to-drain conduction standpoint.
Note that the resulting VT,0 statistics in Fig. 3 displays a good
Gaussian behavior, with a standard deviation σ = 195 mV.

We began our investigation of the programmed cell state by
considering a single trapped electron (i.e., N = 1) randomly
placed in a localized position inside the nitride volume. The
statistical distribution of the VT shift obtained with respect to
the neutral cell state (ΔVT,1) is shown in Fig. 4 (solid line),
displaying an average value of ΔVT,1 = 22 mV and a standard
deviation σΔVT,1 = 8.5 mV. Moreover, a clear exponential tail
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Fig. 3. Simulated statistical distribution of VT for neutral (no charge in the
nitride) cells.

Fig. 4. Simulated statistical distribution of the threshold voltage shift deter-
mined by one localized electron randomly placed in the nitride volume.

departs in the positive ΔVT,1 direction, which means that single
electrons can result into very large VT shifts, though with low
probabilities. Note that this behavior cannot be predicted by
any 1-D model. In fact, in a 1-D treatment, the only spread
source for ΔVT,1 is the vertical position of the stored elec-
tron in the nitride layer. This affects the VT shift according
to ΔV 1-D

T,1 = −q′(t2/εox + tx/εN ), where q′ = q/WL is the
electron charge normalized to cell area and t2 is the top oxide
thickness. Assuming a random distance tx of the electron from
the nitride/top oxide interface, the resulting 1-D distribution
of ΔVT,1 is reported in Fig. 4 (dots). The distribution has
been calculated including a scaling factor equal to 2.09 to
the ΔV 1-D

T,1 values to obtain the same average result given by
3-D simulations, as will be explained in the companion paper
[1]. Note that this distribution is much tighter than what is
predicted by the accurate 3-D analysis, revealing a dominant
contribution of 3-D electrostatics and random dopant effects on
the ΔVT,1 statistics.

To separate the contribution of atomistic doping and
3-D electrostatics to the statistical dispersion of ΔVT,1, Fig. 4
also shows results obtained for continuous substrate doping
(dashed–dotted line). This distribution highlights the effect of
a single, localized electron in the nitride on source-to-drain
conduction, correctly taking into account 3-D electrostatics but

Fig. 5. Simulated ΔVT,1 as a function of cell VT,0, considering 3-D electro-
statics and atomistic substrate doping.

Fig. 6. ΔVT,1 as a function of the electron position along L for the case of
continuous (left) and atomistic (right) substrate doping. 0 is the channel center.

neglecting the contribution of atomistic doping to non-uniform
substrate inversion. The lower statistical dispersion of ΔVT,1

with respect to the case when atomistic doping is accounted for
reveals that percolative source-to-drain conduction has a major
role in determining the impact of a single trapped electron on
VT , and that this is strongly affected by the discrete nature of
substrate dopants. However, Fig. 5 makes clear that there is no
correlation between VT,0 and ΔVT,1.

To better understand the results of Fig. 4, we reported the
ΔVT,1 values as a function of the electron position along L, W ,
and nitride thickness tN in Figs. 6–8 for the case of continuous
(left) and atomistic (right) substrate doping. Results of Figs. 6
and 7 are similar to what was already obtained for the case
of random telegraph noise (RTN) in Flash devices [20], [23]:
the VT shift is larger when the electron is placed half-way
between source and drain, due to a more effective electrostatic
control of channel inversion, or close to the edges along W ,
due to the possibility for the electron to stop a larger part
of drain current, as field intensification at the edges locally
increases the inversion charge and the drain current density.
Fig. 8 then reveals the average increase of ΔVT,1 when the
electron is moved closer to the nitride/bottom oxide interface,
as also predicted by 1-D electrostatics.



MAURI et al.: INVESTIGATION OF STATISTICAL EFFECTS IN NITRIDE MEMORIES 2119

Fig. 7. Same as Fig. 6 but as a function of the electron position along W . 0 is
the channel center.

Fig. 8. Same as Fig. 6 but as a function of the electron position along tN . 0 is
the nitride/bottom oxide interface.

Superimposed on the average trend is the statistical disper-
sion of the results, due to fluctuations in the electron position
(e.g., in Fig. 6 the spread is due to fluctuations along W and
tN ). In particular, in Fig. 8 the ΔVT,1 spread reduces when the
electron is placed closer to the top oxide. This is ascribed to a
less-local electrostatic effect of the stored electron on the sub-
strate when the distance between electron and substrate grows,
reducing the impact of non-uniformities in the current density
profile. In the case of atomistic doping, a larger dispersion of
ΔVT,1 can be seen in Figs. 6–8, which was already evident
in Fig. 4. For our simulation set, this increased spread totally
overrides the weak average W dependence of ΔVT,1 that was
shown by the continuous doping results (see the different trend
lines). The origin of this additional spread is obviously the
enhancement of percolative conduction determined by atom-
istic doping, resulting into a statistical dispersion of ΔVT,1

that is larger than that given by 3-D electrostatics alone. In
fact, atomistic doping enhances the possibility to have cells
where source-to-drain current takes place along few strong
percolation paths, allowing a single electron to largely block
cell conduction when this is exactly placed over a path where
current crowding occurs [20], [24]–[26]. In this case, quite a
large VT shift results, contributing to the enlargement of the
ΔVT,1 statistics.

Fig. 9. Simulated ΔVT,N distribution in the case of (a) N = 14 and
(b) 50 electrons stored in the nitride layer (black lines). Red dashed lines
represent the calculated distributions assuming independent trap superposition
and the ΔVT,1 distribution of Fig. 4.

Fig. 10. Normalized average and variance of ΔVT,N as a function of the
number of electrons stored in the nitride.

IV. ΔVT,N STATISTICAL DISTRIBUTION

To investigate how multiple electrons combine their effect to
determine the VT shift, we ran Monte Carlo simulations with
N > 1. Electrons were placed randomly in the nitride volume
according to a uniform distribution, therefore neglecting any
disuniformity in the stored charge profile after program that
may arise from a non-uniform injection field in the bottom
oxide. Fig. 9 shows the statistical distributions of ΔVT,N for the
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Fig. 11. Plot of the current density at threshold for: (a) continuous doping, neutral cell; (b) continuous doping, 50 electrons in the nitride; (c) atomistic doping,
neutral cell; (d) atomistic doping, 50 electrons in the nitride. Small fluctuations along L in case (a) are due to numerical interpolations used to extract the current
density profile at the substrate surface.

case of N = 14 and 50. A larger statistical dispersion of ΔVT,N

appears with respect to the case of N = 1, contradicting the 1-
D prediction of a spread reduction due to a more stable charge
centroid in presence of a larger number of electrons in the
nitride. To further investigate this point, Fig. 9 also shows the
ΔVT,N distribution calculated from N − 1 self-convolutions
of the ΔVT,1 statistics (red dashed lines). This distribution is
expected to describe the ΔVT,N statistics in case electrons add
their individual contribution to the VT shift independently one
another. The predicted curve is in good agreement with the
simulated ΔVT,N distribution in the case of N = 14, revealing
a statistically independent effect of the stored electrons on VT

for small N . However, this is no longer true for N = 50, where
non-negligible differences appear between simulation results
and calculations, highlighting a correlation among the stored
electrons effect on VT . This can be clearly seen from Fig. 10,
where the average value and variance of ΔVT,N (ΔVT,N and
σ2

ΔVT,N
, respectively) are shown normalized to the average

value and variance of ΔVT,1 (ΔVT,1 and σ2
ΔVT,1

) as a function

of N . While the relation ΔVT,N = N × ΔVT,1 correctly holds,
σ2

ΔVT,N
equals 13.03× and 30.26 × σ2

ΔVT,1
, respectively for

N = 14 and N = 50. This result confirms that stored electrons
act independently for low N , thanks to the large distance among
them. However, when their mutual distances decrease, their
positions get closer and the spread is reduced due to their
correlated electrostatic control on substrate inversion.

Further insight can be obtained from the plots of the current
density at threshold shown in Fig. 11. The left column refers to
continuous doping for neutral (top) and programmed (bottom)
cell; the right column is analogous but related to a case of
atomistic doping. Results for continuous doping and neutral

cell clearly show the non-uniform current density profile in the
substrate determined by field enhancement at the cell corners,
locally increasing the inversion charge. A different current
density profile is instead present in the case of atomistic doping,
due to the additional and random effect of discrete dopants
on substrate inversion. However, in both cases, dicrete and
localized electrons in the nitride slightly modify the current
density profile in the substrate, due to the local nature of
the electrostatic effect of each electron on substrate inversion.
In this framework, the effect of stored electrons on substrate
conduction is similar to that of atomistic doping, introduc-
ing randomness in the percolation paths connecting source-
to-drain at threshold. Moreover, this means that a different
current density profile is present in the substrate for neutral and
programmed cells, changing, for instance, the impact on VT of
a single electron trapped in the bottom oxide. This point will
be further discussed in the companion paper [1], where RTN in
nitride cells will be addressed in detail.

V. DISCUSSION

Although the quantitative data obtained so far refer to the
particular device structure investigated and should be cautiously
applied to different (e.g., non-planar) cell geometries [14], the
picture emerging from Figs. 4 and 9 is that of a significant VT

spread following electron injection. Such a spread impacts the
VT control, which must be retained for all cells in the array,
i.e., down to very low probability levels. For example, Fig. 4
shows that a single electron may give rise to a VT shift of
50 mV with a probability of 10−2, representing a high proba-
bility level for Flash arrays. This ΔVT may, in turn, appear as a
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VT -loss during data retention, determining a critical reliability
issue for multi-level devices, where a severe control of VT

is required. Moreover, the statistical dispersion of ΔVT may
also influence the P/E operation of these devices. In fact,
due to the relatively small separation among the VT levels,
multi-level arrays usually adopt a staircase algorithm for the
program operation, resulting into very tight programmed VT

distributions. The width of these distributions is limited by
many different physical phenomena, among which electron in-
jection statistics [27], [28] and RTN [29]–[33] represent severe
reliability constraints. In the case of nitride memory cells, the
ΔVT,N statistical spread may give an additional contribution
to the dispersion of the programmed VT distribution, as will
be discussed in detail in the companion paper [1], where a
scaling analysis of the ΔVT,N statistical distribution will also
be presented.

VI. CONCLUSION

This paper presented a comprehensive investigation of sta-
tistical effects in deeply scaled nitride memory cells, high-
lighting that 3-D electrostatics, atomistic substrate doping, and
charge localization in the nitride volume result into a statistical
dispersion of ΔVT . The local electrostatic effect of stored
electrons and percolative substrate conduction were shown as
the main reason for the ΔVT spread. A scaling analysis and the
investigation of the practical impact of these statistical results
on cell operation are provided in the companion paper [1].
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