Electronic Notes in Theoretical Computer Science 59 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 31 pages

Linear Embedding for a Quantitative
Comparison of Language Expressiveness

Antonio Brogi, Alessandra Di Pierro

Department of Computer Science, University of Pisa, Italy

Herbert Wiklicky

Department of Computing, Imperial College London, UK

Abstract

We introduce the notion of linear embedding which refines Shapiro’s notion of em-
bedding by recasting it in a linear-space based semantics setting. We use this notion
to compare the expressiveness of a class of languages that employ asynchronous com-
munication primitives 4 la Linda. The adoption of a linear semantics in which the
observables of a language are linear operators (matrices) representing the programs
transition graphs allows us to give quantitative estimates of the different expressive
power of languages, thus improving previous results in the field.

1 Introduction

The evolution of Computer Science has been accompanied by the creation of
a huge number of different programming languages. Quoting [9]:

All reasonable programming languages are equivalent, since they are Turing-
complete. However, if the differences between them were not material, we
would not have invented so many of them.

On the other hand, in the practice of programming, certain languages are
considered to be more “powerful” than others for their capability to express
control and data structures.

Comparing the expressiveness of languages gets more complicated when
considering concurrent languages. Nondeterminism and non-successful com-
putations play a crucial role there, and there is no correspondent for the
notion of Turing-completeness to measure the absolute expressive power of a
language.

The question of formally comparing the expressiveness of languages has
been the object of a quite large body of research (see [2] for an introduction).
A natural way to compare the expressive power of two languages is to verify

(©2002 Published by Elsevier Science B. V.

Brogai, D1 PIERRO, WIKLICKY

Obsy
Ll Ol
C D
L .
2 Obss O

Fig. 1. Embedding

whether all programs written in one language can be “easily” and “equiva-
lently” translated into the other one. This idea is formalised by the notion of
embedding introduced in [9]:

Let L, Ly be two languages. Assume given the observation criteria Obs; :
Li — Oy and Obsy : Ly — Oy where O; and O, are some suitable domains.
Then Ly embeds L if there exists a mapping C (compiler) from L; to Ly and
a mapping D (decoder) from O, to O; such that the diagram in Figure 1
commutes, that is, for every program P € Ly:

Obs, (P) = D(Obsy(C(P))).

The notion of embedding, and the refined notion of modular embedding [2],
have been employed to compare the relative expressive power of a number of
different languages by establishing qualitative separation results (L; < Lo and
Ly £ Ly) as well as equivalence results (L; < Ly and Ly < Ly).

Our aim is to introduce quantitative aspects in the comparison of the ex-
pressiveness of languages. We will present a methodology to assign quantita-
tive estimates to separation results, so as to estimate “how much” a language
is more expressive than another one.

Our approach can be summarised as follows:

e We introduce a notion of linear embedding as a base to quantitatively com-
pare the expressive power of languages. We start from the standard notion
of embedding as introduced by Shapiro [9] and recast it in a linear setting
by taking linear spaces as semantic domains. Additionally, we require the
“compositionality” of C and D (as in [2]), that is we require C to be defined
compositionally on the program structure, and D to be a linear map.

* The observation criteria are defined in terms of a linear semantics which
associates to each program a linear operator in a suitably defined linear
algebra.

* The notion of linear embedding induces a partial order over the languages
and allows us to establish separation (L; < Ly) and equivalence (L; = Ly)
results between languages. We then annotate each separation result with a
quantity representing the difference in expressive power. This quantity de-
pends on the dimensions of the algebras associated with the two languages.

2

Brogai, D1 PIERRO, WIKLICKY

Intuitively, the dimension of an algebra gives an estimate of the number of
different possible behaviours expressible with that language.

* We apply our notion of linear embedding and quantitative comparisons to
a family of Linda-like languages and we compare the results with the ones
established in [1].

In the next section we introduce a family of simple Linda-like languages
which we will use to exemplify the linear semantics, the notion of linear em-
bedding and the quantitative comparison based on the latter. The general
definition of linear embedding is then introduced in Section 3, while quanti-
tative estimates are discussed in Section 4.

2 The Family of Linda-like Languages

2.1 The Syntaz of L(X)

Following [1], we consider a family of languages £(X) which differ from one
another for the set X of communication primitives used. These primitives
correspond to the basic Linda primitives for adding a token to a shared data-
space, getting it from the data-space, and checking for its presence or absence
in the data-space. The languages £(X) also include standard prefix and choice
operators.
The syntax of £(X) is formally defined by the following grammar:
P ::=stop | C.P | P+ P
C ::=ask(t) | nask(?) | tell(t) | get(t)
where t is a generic element called token in a denumerable set 7, P is a
process and C' a communication action (or prefix). The parameter X defining
our Linda-like languages is a subset of the primitives defined by C.
A program in £(X) is therefore either an inactive, trivial program stop, or
a sequential composition C.P or a choice P + P. As usual we omit a trailing

stop if it is prefixed by a non-empty sequence of basic actions C'. Note also
that for the current treatment we do not consider a parallel construct.

2.2 A Linear Semantics for L(X)

A computation in £(X) consists of a set of processes which share a common
store represented as a multi-set of tokens, and perform communication actions
on it. We model such a computation as a transformation of a state (initial
store) into another state (final store). We represent states as vectors in the
free vector space V(S) on the set S of all possible stores (viz multi-sets of
tokens). The free vector space V(S) on S is defined as the set of all formal
linear combinations of elements of S:
Tg €]R} .

V(S) = { > a8

seES

3

Brogai, D1 PIERRO, WIKLICKY

The idea is to encode the effect of executing the program P in a state z
which is represented by a vector Z in terms of a linear operator on V(S). That
is, if M(P) represents a program P and & the state where it is executed in,
then the resulting state is represented by 7 - M = ¢/, i.e. the vector obtained
by multiplying #* with the matrix M.

If S is a finite set of cardinality n, then these linear operators are finite-
dimensional or, more precisely they are n X n matrices. For denumerable sets
of stores, we have instead to consider infinite-dimensional linear operators.
Although we assume our languages £(.X) to be defined in general on a count-
able set of stores, we will always refer to finite sets in our reasoning and in
the examples shown throughout the paper.

In particular, we will denote by L£(X) the finite approximations of the
language £(X) defined on ¢ tokens and on stores of size at most s. The
number of all possible stores of size s which can be constructed with ¢ tokens
is given by the following basic combinatorial formula (e.g. [6, Sect. 1.4]):

~(i+t—1 s+t

£ (7))
1=0

For every number ¢ between 0 and the maximal store size s we count the

number of possible multisets (i.e. combinations with repetitions) containing ¢
different types of tokens, and sum them up.

Example 2.1 Consider a language £3(X). The set S of stores for £L2(X) can
be enumerated:

{Il}v {Itll}a Jl]tQI}v {It3|}v {Itla tll}a ﬂtlv tQI}v {Itla t3|}7 ﬂth tQI}v {It27 t3|}7 ﬂt?n t3|}'

The free vector space V(S) is then 10-dimensional and therefore isomorphic
to R'?. In this vector space, the set of stores

{ﬂ|}7 {|t2]}7 {Ith t2|}7 ﬂtla t3]}}

is represented by the vector

(1,0,1,0,0,1,1,0,0,0).

In order to correctly model the behaviour of a program when considering
finite approximations on n stores, we have to introduce an additional overflow
state w. This allows us to deal with the case in which the addition of a
further token to the store make its size bigger than n. Such a state has the
property that once it is reached no further transitions which leave that state
are possible.

The linear operators associated to the basic communication actions are
defined as follows (we denote by M;; the element at row i and column j of the
linear operator M). We denote the operators representing a program P by
[P] or M(P). For all stores s; # w the entries in the operators representing

4

Brogai, D1 PIERRO, WIKLICKY

the basic actions or commands are defined as:
Lif 55 = s U{t} and [|s2]] <n
([tell(t)])s,s. = § 1if s, =w and [[s; U {t}|| > n

0 otherwise

1ift € sy and s9 = 53

(lask(®)])s1s» =

0 otherwise

(lget()])srss = Lift € s; and s = 51\ {t}

0 otherwise

1ift € s; and s9 = s
([nask(t)])s, .5, = '
0 otherwise

where U and \ denote multi-set union and difference, respectively. For s; = w,
the entries for all of the four basic commands tell(t), ask(t), get(t), and
nask(t) are defined in the same way:

lif sy —w
([CODs1so =

0 otherwise.

Prefix and nondeterministic choice are modelled by multiplication and sum
over the algebra of linear operators:

[C.P] =[C]-[F] and [P+ Q] = [P] + [Q].
Finally, stop is represented by the identity operator on C(S), i.e.

1if S1 = So
([[St()p]l)51,52 = .
0 otherwise.

This linear semantics for Linda-like languages £(X) can be seen as a vector
space encoding of the standard operational semantics for £(X) as presented
for example in [1].

The linear operator M = M(P) in effect encodes the transition relation
(P|so) — (Qi]s;) on configurations, i.e. pairs (P|s) consisting of a program
P and stores s: If (P|sg) can make transitions to a number of (Q;|s;), for
i=1,...,k, then one can show that M -5, = >"" 5.

In other words, each row in M(P) encodes the observables of P when
executed in the store corresponding to this row. If a program P is deadlocked
in a certain store, then the corresponding row is “empty”, i.e. contains only
Zeros.

In this sense we can distinguish between successful termination of (P|sq) —
if row sy in M(P) contains a non-zero entry — and failure or deadlock — if row
so in M(P) contains only zeros. In the following we will call two programs
P and @ equivalent if they have the same semantics, that is if [P] = [Q].

5

Brogai, D1 PIERRO, WIKLICKY

This means, of course, that for all initial stores the observables (for successful
computations) are the same.

Example 2.2 Consider the language £3(X), where X is the set of all com-
munication actions and the number of possible stores is n = 6. Therefore, we
can represent programs in £3(X) by means of 7 x 7 matrices — allowing also
for the overflow store w.

As examples, we present in the following the linear operators for tell(ts),
get(t1), ask(t;) and ask(t1).tell(ty). We assume the following enumeration
of stores:

{IPU {Itlﬂﬁ {ItQPU ﬂtlﬂ tll}ﬁ {Ith t2|}7 ﬂt% t2]}7 w

Then the operators representing some of the basic actions are given as:

[tell(t2)] [get(t1)] [ask(t1)]
0010000 0000000 0000000
0000100 1000000 0100000
0000010 0000000 0000000
0000001 0100000 0001000
0000001 0010000 0000100
0000001 0000000 0000000
0000001 0000001 0000001

[ask(t1)] [tell(ts)] [ask(t;).tell(ts)]
0000000 0010000 0000000
01000060 00001060 0000100
0000000 0000010 0000000
0001000 0000001 0000001
0000100 0000001 0000001
0000000 0000001 0000000
0000001 0000001 0000001

The semantics of, for example, ask(¢;).tell(¢y) is the product:

3 Linear Embedding

Given two languages L, and Ly, we consider their linear semantics, namely
the mappings S; : L1 — Ay and Sy : Ly +— Ay, where A; and A, are two

6

Brogai, D1 PIERRO, WIKLICKY

S1

Ly Ay
C D
L2 S5 > ./42

Fig. 2. Linear Embedding

linear algebras. To simplify the presentation, we assume that both languages
are defined over the same set of stores S. The A; and Aj are linear algebras
over V(8), i.e. algebras of linear operators on the free vector space over the
states S.

We then define the notion of linear embedding in terms of the commuta-
tivity of the diagram depicted in Figure 2. This is essentially the notion of
embedding introduced by Shapiro [9] translated into a linear (i.e. vector space
based) setting. Similarly to [2,1], we put additional requirements on the com-
piler C and the decoder D, requesting a modular translation between L; and
Ly. We recall first the three conditions for modular embedding (cf. Figure 1),
e.g. [2] or [1]:

Definition 3.1 We say that language Lo modularly embeds Ly (L < Lg) if
there exists a map C : Ly — Lo, a compiler, and a map D : Oy — Oy, a
decoder, such that for all statements A € L; we have:

Obsy(4) = D(Obs(C(A))
where:
(i) Cis compositional, i.e. for all P;, Py in L:
(ii) D is defined element-wise on Oy, i.e. there exists a Dg; such that:
VXEOZI D(X):{Del(a:)|xEX},
(iii) D preserves the termination mode.

As in [1], the termination mode expresses whether a program computation
starting in a given initial store s reaches the final configuration (stop,u) for
some store u (successful termination) or not (deadlock). In the linear seman-
tics the first case is expressed by a 1 in the entry M, of the matrix associated

to the program, while the second case corresponds to the row indexed by s in
the matrix being the zero vector.

Definition 3.2 We say that language Lo linearly embeds Ly (L; < Lg) if
there exists a map C : L; — Lo, a compiler, and a map D : A, — A, a
decoder, such that for all statements A € L; we have:

S1(A) = D(5:(C(A4)))
7

Brogai, D1 PIERRO, WIKLICKY

Ly Obs, O, lift A
C D Dy
Obs i
S L —
Sa

Fig. 3. Lifting

where:

(i) C is defined compositionally, and

(ii) D is a linear map.

The last two conditions in Definition 3.1 are reflected in the linearity of
the decoder in the notion of linear embedding, as will be made clear in the
proof of Proposition 3.3.

The previously introduced notion of a modular embedding defines a partial
order on languages and can be used to establish separation results (L' < L
and L £ L', denoted by L' < L) and equivalence results (L'’ < L and L < L/,
denoted by L' = L). A similar order < on languages is introduced by linear
embedding. The following proposition shows that this ordering is qualitatively
the same as the one induced by the modular embedding.

Proposition 3.3 Let L, and Lo be two languages. Then Ly modularly embeds
Ly iff Ly linearly embeds L;.

Proof.

(=) Suppose that (C,D) is a modular embedding of L; in L, that is the
diagram in Figure 1 commutes for the languages L; and L, and that the
conditions in Definition 3.1 hold. We show how to lift the semantics Obs;
and Obs, to linear semantics S; and Sy (see Figure 3).

To this purpose, consider the following “input dependent” formulation of
the observation criteria Obs; and Obs,:

ObSl(Pl) : X1 = P(Xl) and ObSQ(PQ) : X2 —> ’P(XQ)

where X (or X3) represents the input domain for the programs in L; (or
Ly), and P(X;) (or P(X3)) is a suitable domain contained in the power-
set of Xy (or X3), whose elements represent the possible outcomes of a
computation of a program in L; (or Ly). Thus, the map Obs; (or Obss) can
be seen as a map associating to each program in L; (or L) and each input
the corresponding results.

We can then define the linear semantics S; and S, by lifting the observa-
tion criteria Obs; and Obs, as follows. For each program P € L; we define

8

Brogai, D1 PIERRO, WIKLICKY

Ob51

Ll S1 Al supp 01
C D Dm

S R ————

ObSQ

Fig. 4. Support

the operator

1ify € Obsi(P)(x
(Su(PY)ay = { LV PN
0 otherwise.

The semantics Sy for the language Lo is defined similarly. The domain
A; (Ay) is the minimal algebra containing the operators Si(P) (Se(P)) for
all P € L, (P € Ly).

Starting from the modular embedding (C, D) we can define a linear em-
bedding (C;, Dy) with C; = C, and D, defined as the linear extension on A,
of the map D} defined on all elements Sz(C(P;)) by:

1if D.(z) and z € Obsy(C(P,))(C(x
DSy | 11FY € Pl and = € ObC(P)Clr)
0 otherwise
where D,; is the element-wise definition of D, z,y € X1, z € Xy, and C(x)
denotes the compiled input for C(Py). If we assume that the stores space
for both Ly and L, we can take C(z) = x.
As Dj is defined via D,; it is linear. We know that Sy (C(Py))+S2(C(FP2)) =
Sy(C(Py) + C(Py)) from the definition of the linear semantics. Therefore:

(Dy(S2(C(P1)) + S2(C(P2))))ay = (Dy(S2(C(F1) + C(F1)))ay = 1
iff y € Dei(z) for z in Obsy(C(P1) + C(P,))(C(z)). But as Obsy(C(Py) +
C(P,))(C(x)) = Obsy(C(Py)) + Obse(C(P2) z must be in Obsy(C(Py)) or in
Obsy(C(P,). This means that (Dy(S2(C(Pr)))zy = 1 or (Dy(S2(C(%)))zy =
1. In other words for all z and y we have:
(Dy(S2(C(P1)) + S2(C(12))))ay = (Di(S2(C(P1)))ay + Dy(S2(C(F2)))ay

(<) Suppose that (C, D) is a linear embedding of L; in L, according to Def-
inition 3.2. Starting from the linear semantics S; and S5 we construct two
observation criteria Obs; and Obs, for L and L, respectively, as the support
of S and Sy (see Figure 4).

For the language L1, this is defined as follows: For all P, € Ly and x € X},

Obs1(P1)(x) = {y € X1 |y € supp(51(P1)(2))},
where for a vector 2= (z1,...,2,), supp(Z) = {z; | z; # 0}. We then define
9

Brogai, D1 PIERRO, WIKLICKY

the domain O, as

Oy = supp(A) = | supp(T),
TeA
where supp(7T') = {O | O = supp(T'(x)),z € X;}. Clearly, O, is contained
in the power-set of X; and contains Obs; (P;)(z) for all P, € Ly and x € X.
Analogously we define Obss and Os.
We now construct the embedding (C,,, D,,), by taking C,, = C and D,), :
05 — O; the map defined by

Dn(0) = D(T),

for all O € Oy, with O = supp(T) for some T € A,.

The first condition for a modular embedding is satisfied trivially: C is
compositional. Furthermore, it is easy to see that D,, is defined element-
wise by

D (0) = {Dy(x) | x € O},

where Dy (x) = supp(D(T)(x). The linearity of D also ensures that the
third condition of Definition 3.1 holds: empty rows are mapped to empty
rows, it preserves deadlock, and by definition it also preserves successful
termination.

It remains to show that (C,,, D;,) is an embedding, that is the correspond-
ing diagram commutes. Since by definition Obs(C(P;)) = supp(S2(C(F1))),
we have that D,,(Obss(C(Py))) = supp(D(S2(C(P1)))). Moreover, by defi-
nition Obs;(P;) = supp(S1(P;)) holds too. Thus, we have

D, (Obsy(C(Py))) = Obsy (Py),
for all P, € L.

4 Measuring the Expressive Power

Our ultimate aim is to quantify the difference between the expressive power of
Linda-like languages. To this end, we annotate the separation results devised
by modular/linear embedding with a quantity which measures “how much” a
language is more or less expressive than another. This quantity is defined in
terms of the “dimension” of the operator algebras defining the linear semantics
of the languages we are comparing.

4.1 Algebras and Dimensions

A standard way of constructing an algebra is to generate all possible linear
combinations starting from a set of basic operators (generators). We adopt
this method to associate to each language its algebra of operators.

Definition 4.1 [5] Given a set M = {M,},.; C Lin(V) of linear operators
10

Brogai, D1 PIERRO, WIKLICKY

on a vector space V. A word over M is a linear operator on V of the form:
w=]]Mm;
jet
with J a multi-set of indices in I. We denote the set of all words W over M
by W = W(M).
The algebra A(M) generated by M is given by the set of all linear combi-
nations of words Wy over M, i.e. operators of the form (with z; € R):

k

The algebra A(M) generated by a set of linear operators M is thus the
linear span (W(M)) of words Wy, over M.

Definition 4.2 We define the algebra A4(X) associated to a language L£(X)
as the algebra generated by the basic actions B = {[C] | C € X}.

It is easy to show that for the class of Linda-like languages we consider, the
algebra generated by the basic actions is the smallest algebra which contains
the semantics of all programs in the language.

Proposition 4.3 Let £L(X) be a Linda-like language with basic actions B.
Then
(S(L(X))) = A(X)
where S(L(X)) C Lin(V) denotes the semantical image of L(X), i.e.
S(L(X)) =A{[P] | P € L(X)}
Proof.
(S(L(X))) € A(X):

By structural induction:

* The stop agent is represented by the identity operator I. It is in B by
definition, and therefore in A(X).

 Each of the basic operations ask(t), nask(¢), tell(t), and get(t) is repre-
sented by an operator in A(X) (cf. Section 2), and therefore belongs to
A(X).

* Suppose we have program of the form C.P where [P] € A(X) and [C] €
B. Then [P] is some linear combination of words in Wy, € W(B):

The semantics of C.P is therefore:

[C.P)=[C]-[P)=[C]) ax Wi =) =z-[C]- W,

As the product of an operator representing a basic action [C] and any
word W) gives another word we can conclude that [C.P] is also a linear
combination of words, i.e.

[C.P] € (W(B)) = A(X).
11

Brogai, D1 PIERRO, WIKLICKY

* Suppose we have program of the form P + @ where [P] € A(X) and
[Q] € A(X). Then [P] and [Q] are some linear combinations of words
W, € W(B) and V, € W(B)

[P] = vak'wk and [Q] = sz -V
k !
The semantics of P + @ is therefore:
[P+QI=[P1+[QI =D o Wi+ z-V,
k !

i.e. a linear combination of words over B, and so we have:
[P+ Q] € (W(B)) = A(X).
A(X) € (S(L(X))):

» We show that for all W € W(B) there exists P € £(X) such that [P] =
W.
Given a word W = M -M; ... M,, of length n, then each of the M; € B
corresponds to a basic action B;. Therefore, there exists at least one
program ! P such that [P] = W. In fact,

[[P]]:[[BlBQ Bn]]:MlMQMn:W
* The set of words formed by basic actions is thus a subset of the semantics
of programs in £(X), i.e.
W(B) C S(L(X)).
The same relation holds thus also for the linear span (W) — the algebra
A(X) — and the linear span (S(£(X))), i.e.
A(X) = (W) C(S(L(X))).
(Il

We now recall the definition of the dimension of a linear space, i.e. a vector
space or a linear algebra like A(X).

Definition 4.4 [7] Let Z be a linear space over a field IK. A sequence of
elements aq,...a, in Z is called linearly dependent if there exists a sequence
x1,...,%, in IK such that not all the z; are equal to 0 and x1a,+. ..4+z,a, = 0.
A sequence in Z is called linearly independent if it is not linearly dependent.

The maximal number of linearly independent objects in a vector space or
an algebra defines its dimension.

Definition 4.5 [7] Let S be a linear space over a field IK. The dimension
of Z, dim(Z), is the number n such that there exists a linearly independent
sequence of n elements in Z, and no sequence of n+1 elements in Z is linearly
independent.

! Note that the same W might be the product of different combinations of basic actions.

12

Brogai, D1 PIERRO, WIKLICKY

For a language defined on a finite number of stores we will denote by
dim(L£) the dimension of the algebra associated to the language £. In practical
terms, we only need to determine the number of linearly independent words
generated by the basic actions in order to calculate the dimension of the
algebra associated to L.

Proposition 4.6 Given a set of generators M, the dimension of the A(M)
is the mazimal number of linearly independent words W over M.

Proof. Let w be the maximal number of linearly independent words over M.

dim(A(M)) > w: Obviously there are already w linearly independent objects
in A(M), namely the linearly independent words W € W. The dimension
of A(M) must thus be at least as large as w.

dim(A(M)) < w: Suppose there is an element A in A(M) which is linearly
independent of the words over M, i.e.

W,;ew
for any z; # 0. But this contradicts the assumption that A is in the algebra
generated by M, i.e. that A s a linear combination of words over M.
(I

We will use the notion of dimension to quantify the expressive power of a
language. Since for any non-trivial language on an infinite set of stores the
corresponding algebra is an infinite-dimensional vector space, we will consider
for a given language £(X) its finite approximations £ (X'), that is the language
restricted to sets of n(s,t) < oo stores. For these approximations we can
calculate the dimension of the associated algebras. This dimension is clearly
a function of the number of stores n(s,t), and we can use its growth rate as a
measure for the expressiveness of £(X).

Example 4.7 Consider the language £3(tell). For this language we have two
generators. Using the enumeration of stores

U e, {1, 2l w,

the program stop is represented by the identity matrix (indicating zero entries
simply by .):

I = [stop] =

13

Brogai, D1 PIERRO, WIKLICKY

and the basic action tell(t) is represented by:

M = [tell()] =
.1

.1

We can use M to generate two additional linearly independent operators,
namely

1.
) 1
M? =M - M = [tell(t).tell(t)] =
1
1
and
1
1
M? =M - M - M = [tell(t).tell(t).tell(t)] =

1
1

For all 7 > 3 we have M’ = M’"!. Hence the dimension of the algebra
A(tell(t)) is 4. More precisely the algebra generated by tell(t) is of the form:

abed)
.abc+d
A(tell(t)) = < a,b,c,de R ;.
.ab+c+d
...a+b+b+c J
\

In order to determine the dimension of Linda-like languages it will be
sufficient to consider — as in the example above — only the words generated
by the basic actions (cf. Proposition 4.6).

It is clear that every program in L(tell), L(ask,tell), etc, is a choice
between sequential compositions of ask, nask, get and tell. Using the dis-
tributivity in the algebra of matrices representing the semantics of programs
we assume that there are only “top level” choices, e.g.:

(PP + B)] = [P1] - ([P2] + [B]) = [P - [P2] + [P - [55]

As the sum, i.e. linear combination, does not contribute to the dimension
of algebra generated we can restrict ourself to determine how many (purely) se-
quential programs there are in a particular language £(X) which have linearly
independent matrices associated by the semantics. These sequential programs

14

Brogai, D1 PIERRO, WIKLICKY

L(tell)

T

L(nask, tell) L(ask, tell)

R

L(ask, nask, tell) ﬁ(get', tell)«— L(ask, get, tell)

Y

L(ask, nask, get, tell) «— L(nask, get, tell)

Fig. 5. The hierarchy of languages.

are obviously each represented by a word generated by the basic actions, i.e.
generators in M.

4.2 Measuring the Ezxpressiveness of Linda-like Languages

By Proposition 3.3, the same hierarchy on the Linda-like languages established
in [1] with respect to the modular embedding also holds with respect to the
linear embedding.

The whole set of separation and equivalence results are summarised in
Figure 5, where an arrow from a language £, to a language £, means that
Lo embeds L, that is £; < L,. Note that, thanks to the transitivity of
embedding, the figure contains only a minimal amount of arrows. However,
apart from these induced relations, no other relation holds. In particular,
when there is one arrow from £; to £ but there is no arrow from Lo to L,
then L; is strictly less expressive than Lo, that is £; < L.

We now apply the technique described in Section 4.2 to annotate this
hierarchy with quantities describing the difference in expressiveness of two
languages which are qualitatively separated in the hierarchy. As explained
in Section 4.2 such quantities are given in terms of the rate of growth of the
dimensions of the algebras associated to the languages when increasing the
number of stores n(s,t).

We will show that this quantitative notion of expressiveness induces an
equivalence relation on the set of languages £(X) which is coarser than the
one represented in Figure 5: it identifies languages which are separated by
modular embedding. In particular, we will show that the set of languages
L(X) can be partitioned in three classes by the equivalence relation ~ defined
in the following. This relation identifies two languages whose dimensions have
the same rate of growth. By using the notation in [4, (9.8)], this can be defined
for two generic functions f(n) and g(n) as follows:

f(n) = g(n) iff [f(n)] < klg(n)| and [g(n)] < k|f(n)],
15

Brogai, D1 PIERRO, WIKLICKY

for some constant k and for all sufficiently large n.

Definition 4.8 Let £, and £, be two Linda-like languages, and let (£;),, and
(L), be their approximations on n < oo stores. Then

Ly~ Lo iff dim((Ly)n) < dim((L2)n)-

Strictly speaking, the dimension of the truncated languages we consider
L(X)n = L(X)nsy) = L£(X)] depends on two parameters, namely the store
size s and the number of distinct tuples t. In order to simplify our treatment
of the languages comparison we will concentrate on the “diagonal growth”, i.e.
the case s = t. This corresponds to assuming that when n tends to infinity, s
and ¢ tend to infinity with the same speed, that is the ratio s/t is 1.

Proposition 4.9 The quotient set L(X)/~ consists of the following three
classes:

[£(tell)]/~
[L(ask, tell)]/~
[L(get, tell)]/~

{L(tell)},

{L(ask, tell), L(nask, tell), L(ask, nask, tell)},

= {L(get, tell), L(ask, get, tell), L(nask, get, tell),
L(ask, nask, get, tell)}.

The proof of this proposition will be given by calculating the dimension
of each language in £(X). In general, it is easy to see that there is an upper
limit for the dimension for all (£(X)), given by (n+1)?, i.e. the dimension of
the algebra of all n + 1 x n + 1-matrices modelling the programs in (£(X)),.
The particular nature of the overflow w allows us to tighten this upper limit:

Proposition 4.10 For all languages (L(X)),, we have:
dim(L(X)), <n(n+1)+ 1.

Proof. The general form of a matrix representing a program in (£(X)), for
n =n(s,t) is

mip M2 ... Mip My pt1
M21 Moz ... Moy M2 p41
M=\
Mp1 Mp2 - Mpnp mn,n+1
0 0O ... 0 1

The values of entries m;; depend on the program represented by M. However
the last row, corresponding to the overflow state w, is the same for all matrices
representing any program in (£(X)),, and expresses the fact that once it is
reached it is not possible to make a transition to any other state. O

4.2.1 The Language L(tell)
In this section we calculate the dimension of the languages £ (tell) approxi-
mating L(tell).

16

Brogai, D1 PIERRO, WIKLICKY

For the product [P] - [Q] of two operators [P] and [@] representing two
programs in £} (tell) the following observation is often helpful.

Lemma 4.11 Let [P] = (P);; and [Q] = (Q)i; be two operators representing
two programs P and Q) in Li(tell), and let S be the set of stores. Then the
entry (PQ)x in their product matriz PQ is given by:

L if there exist R € L(X) and s, € S :
(PQ)u. = (P,s;) —> (R, $m) N (R, sm) — (P, sg)
0 otherwise,
where — s a transition relation defining a small step operational semantics
for Li(tell).
Proof. The multiplication of linear operators is defined by:

(PQ)ik = _ Pim - Qur

As [P] = (P);; and [Q] = (Q);; have 0/1 entries the entry (PQ) is non-zero
if and only if there exists at least one summand Py, - Q,,x # 0. This means
that there must be a store s, € S such that Py, # 0 and Q,,x # 0, that is
the transitions (P, s;) — (R, s,) and (R, s,,) — (P, si) must take place. O

In £ (tell) we refer to a program of the form P = tell(t,).tell(ts) .. . tell(t;)
as a prefiz of length i. For each pair of values (s, t), the language £;(tell) sat-
isfies the following properties

Proposition 4.12 For the language L;(tell) we have that

(i) All prefizes P of length i > s are equivalent.

(ii) All permutations of a prefiz P of length i, with 1 < i < s are equivalent
to P.

Proof.

(i) Consider a prefix P of length s. Because of the limited size of the store
any number of tell(ty), to € 7 following P can only produce an overflow.
Therefore, by Lemma 4.11 all matrices for P.(Q with () a prefix of length
> 1 will be of the form:

0 0 . 0 1

0 0 . 0 1
M =[P.Q] =

0O 0 ...0 1

0O 0 ...0 1

(ii) Let P = tell(ty).tell(ty) ... tell(t;), let m be any permutation of {1, ..., 1},
and let) = tell(tw(l)).tell(tﬁ(g)) .. .tell(tw(i)).

17

Brogai, D1 PIERRO, WIKLICKY

Independently of the order in which the tell(¢;), j € {1,...,i}, are ex-

ecuted we always end up with the same final store {¢1,%s,...,¢;[}. There-
fore, the matrices associated to the programs P and @ are the same (by
Lemma 4.11).

(Il

Proposition 4.13 For the languages L;(tell) we have:
dim (L (tell)) = n(s,t) + 1.

Proof.

dim(L(tell)) < n + 1: By Proposition 4.12 (i7) we note that for each length
0 < i < s of the store there are exactly (Ht._l) non-equivalent prefixes.
Moreover, by Proposition 4.12 (i) there is a single class for all programs
generating an overflow.
The number of all non-equivalent prefixes of L£;(tell) is therefore exactly
Sy (7)) 1= n(s,0) 41
Since all other matrices representing programs in £ (tell) are linear com-
binations of the matrices associated to the prefixes we can conclude that

dim(L5(tell)) < n + 1.
dim(L;(tell)) > n + 1: For M; = [tell(t;,).tell(z;,) . .. tell(¢;,] associated to
the prefix P; = tell(¢;,).tell(¢;,) . .. tell(¢;,) we have a single non-zero entry

in the first row, in position &k corresponding to the store {ji, jo, ..., jil}:

M) 0 for k corresponding to {71, jo, - - -, Jil}
J15J25+++3J4 lvk
1 otherwise.

The matrices associate to the following n(s,t) + 1 non-equivalent prefixes
stop, tell(t,), tell(t,) ..., tell(t,), tell(t,).tell(t,), ..., tell*"'(¢,) are there-
fore linearly independent. This shows that dim(L;(tell)) > n + 1.

(Il

4.2.2 The Languages in [L(get, tell)]/~
We compute explicitely the dimension of £;(get, tell) and we show that this is
exactly the same as the dimension of £ (ask, get, tell) and £{ (nask, get, tell).

We will need the following lemma which guarantees the existence of an
appropriate enumeration of stores.

Lemma 4.14 There ezists an enumeration oy = {|},09,...,04,0p41 = w of
stores for L(X), which is compatible with the inclusion order, i.e.

o; C o; = 1< 7J.
Proof. Consider an ordering where oy = {}}, then (in any order) all singleton

stores, i.e. stores with |o| = 1, then all stores (in any order) with |o| = 2,
etc. a

18

Brogai, D1 PIERRO, WIKLICKY

We now show that the dimension of £(get, tell) is equal to the maximal
dimension for any language L as established in Proposition 4.10.

Proposition 4.15 For the the languages L;(tell, get) we have:
dim(L;(tell, get)) = n(n+ 1) + 1.

Proof. The proof is based on the fact that for an enumeration of stores such
that

0, Co; = 1<,
(cf Lemma 4.14) one can construct for each pair of stores o;, 0, a program
Py, 5, € Li(tell, get)

such that its semantics [P, ,,] = M;; is given by a matrix of the form:

0...0 0 0 ...0 0

O S S S G

0O...0 0 0 ...0 1

where ? denotes any matrix entry. The definition of M;; is therefore:

;

0 ifk<e
0 ifk=candl<j
1 ifk=diand =7

(Mij) ke =
0 ifk=n+landl<n+1
1 ifk=l=n+1
\ ? otherwise.
For example, the program P, , for o; = {t;,ti,,...,t;, |} and o; =

{tj, tj, - ,tz-sjﬂ is given by P,, ;. = get(o;).tell(o;), or more precisely by
Py, o, = get(ti,).get(t;,) ... get(t;,).tell(t;).tell(t;,) ... tell(t;,).
Fori=j=1, P, ,, = stop.
For a store o, with k& £ i we have o, € o;. Therefore there is at least
one (multiple occurrence of) t € {{t;,,t;,,...,t;, | for which the corresponding

get(t) in P, , fails. That means that there is no transition for P, ,, if
executed in o and thus the corresponding row in M;; contains only zeros.

19

Brogai, D1 PIERRO, WIKLICKY

As P, 5, is deterministic we know that the row corresponding to any store
— in particular for store o; — contains at most one non-zero entry. Clearly
this non-zero entry in row o; is in the column corresponding to o; as P, 5,
first removes all tuples in o; to obtain the empty store {} and then puts all
tuples of o; back into the store.

The remaining entries in M;; can take any value except for the last row
which corresponds to the overflow state w.

Clearly the matrices M;; are linearly independent as for each pair of stores
we get a different leading 1.

There are exactly n(n + 1) + 1 such matrices. Since the maximal number
of linearly independent matrices for any language £;(X) is also n(n + 1) + 1,
this is exactly the dimension of £ (tell, get). O

Example 4.16 Consider the language £1(tell, get). The number of possible

stores, including the over-full state, is (IJ{I) +1= (f) + 1 = 3, namely:

{F {e, .

The dimension of £}(tell, get) is therfore:
dim(L;(tell,get)) =2(2+1)+1=7.

The seven linearly independent matrices and their corresponding programs
are given as follows:

177

777 | = [stop]

001

017 001

777 | = [tell(?)] 7727 | = [tell(t).tell(t)]
001 001

000 000

177 | = [get(t)] 017 | = [get(t).tell()]
001 001

000 000

001 | = [get(t).tell(t).tell(t)] | 000 | = [get(t).get(t)]
001 001

It is now easy to see that the languages £(nask, get, tell), £(ask, get, tell),
and L(ask, nask, get, tell) are all equivalent to L£(get, tell).

20

Brogai, D1 PIERRO, WIKLICKY

Corollary 4.17 For the languages L(nask, get, tell), L(ask, nask, get, tell),
and L(ask, get, tell) we have:

dim(L; (ask, get, tell)) = n(n+ 1) + 1
dim(L;](nask, get, tell)) = n(n + 1) + 1
dim(L; (ask, nask, get, tell)) =n(n+ 1) + 1
and therefore we get:
L(get, tell) ~ L(nask, get, tell)
~ L(ask, nask, get, tell)
~ L(ask, get, tell).

Proof. For any subset of communication actions X which contains {get, tell}
the algebras associated to the languages £ (X) contain A({get, tell}), so their
dimension cannot be smaller than the dimension of £;(get, tell). Therefore,
by Proposition 4.10 and Proposition 4.15 we have:

n(n+ 1)+ 1 =dim(L;(get, tell)) < dim(L;(X)) <n(n+1)+ 1.

This shows that for any set X; and X5 of communication primitives which
contain {get, tell} we have: £7(X;) =< L£;(X3). O

4.2.3 The Languages in [L(ask, tell)]/~

Analogously to the case of L(tell), we construct standard representations
of sequential programs containing all the primitives of the languages we are
considering, namely tells and the “passive” guards ask and nask.

Lemma 4.18 FEvery program P which is a sequential composition of ask,
nask and tell respectively in L(ask, tell), L(nask, tell) and L(ask, nask, tell)
s equivalent to a program of the form:

ask(t,,) ...ask(t,,).nask(ty,) ... nask(t,).tell(z.,) ... tell(t.,)

with tal, .. .,tak,tbl, ce ;tb
the zero matriz O.

, all different, or a blocked program represented by

Proof. The proof is based on a number of obvious structural equivalences,
which allow either to remove a ask or nask which is not at the beginning of
P, to move them to the beginning of P, or to identify P as being equivalent
to the zero matrix O.

ask(t;).ask(t;) = ask(t;)
ask(t;).ask(t;) = ask(t;).ask(t;)

nask(t;).nask(t;)

nask(ti)
nask(;).nask(?;) = nask(t;).nask(t;)

tell(t;).tell(t;) = tell(t;).tell(t;)
21

Brogai, D1 PIERRO, WIKLICKY

;) = nask(¢;).tell(t;)
|

This canonical representation of sequential programs allows us to enumer-
ate all basic programs.

Lemma 4.19 The number of standard or canonical programs in L(ask, tell)
and L(nask, tell) of the forms:
ask(t,,) ...ask(t,,).tell(t.,) ... tell(¢.,,)
nask(t,) . .. nask(t,).tell(z.,) ... tell(z.,)

(SONSC) - (50) ()

The number of standard programs in L(ask, nask, tell) of the form:
ask(t,,)...ask(t,,).nask(t,) ... nask(t,).tell(t.,) . . . tell(t.,,)

S(OX () - (B O) ()

)

Proof.

(i) Guards: We observe that the order of asks and nasks at the beginning of
a normalised programs is irrelevant. Furthermore it makes only sense to
consider one ask/nask per different token, multiple asks/nask for the
same token can be replaced by a single ask/nask.

We can therefore conclude that the number of different ask/nask-
prefixes for programs in L(ask, tell) and £(nask, tell) is:

()

im0 \'

For programs in L(ask, nask, tell) we have to partition the tokens in
two disjoint sets corresponding to the ask and nask guards respectively:

>()x () -2 ()

22

s given by

18

Brogai, D1 PIERRO, WIKLICKY

(ii) Tells: As in the case of the L£(tell) language any number up to s tells
with repetition can be part of a normalised program:
i <j+t—1) B <s+t>
, i S\ s)]
7=0
O

However not all of these basic programs are linearly independent. Basically,
whenever we ask or nask for a particular token ¢ a number of initial stores
will result in a blocked program — those which contain or do not contain ¢.
This means that certain rows in the matrix representing tell(z.,) ... tell(t.,)
are “deleted”, i.e. set to be zero.

The result of this is that all those tell-sequences for which the matrices are
different on only those “deleted” rows result in linearly independent matrices
when combined with certain asks or nasks.

Example 4.20 Consider the language L£3(tell, ask). The number of possible

stores, including the over-full state, is (2;2) +1= (;1) +1=6+1=7namely:

{Il}v {Itll}v {It2|}v {Itla t1|}7 ﬂtlv tQI}v {It27 t2|}7 w

Take as an example the guard sequence ask(t;).ask(ty), its matrix is given
by:

lask(ti).ask(t)]=| ...1 ... |- ||=

...... 1 P | P |

If we combine the guard sequence ask(t).ask(ty) with, for example, tell(t;)
and tell(t;) with

.. ... 1
1 1
1 1
[tell(t)] =1 1 [tell(t)] = | 1
...... 1 A |
...... 1 A |
...... 1 R |

Brogai, D1 PIERRO, WIKLICKY

we get the same matrix:

B Y

A I

O N IR

...... 11=1......

.. (... .. iy 1...... 1
...... 1

1/ \...... 17 \...... 1
B Y

O

N N I

...... 11=1......

oo 1. ... iy ... 1
...... 1

B 17 \...... 1

representing two different canonical programs, namely ask(t;).ask(ty).tell(¢;)
and ask(t1).ask(ty).tell(ts).

Indeed we get the same result for all tell-sequences: Combining the guard
sequence ask(t;).ask(ty) and any tell-sequence results either in a deadlock
(for all those stores which do not contain ¢; and ¢) or in an overflow (for the
stores {t1,ts} and w). All these canonical programs are is represented by the
same matrix.

As a result, the dimension of the algebra generated by the canonical pro-
grams — i.e. the dimension of the algebra associated to the truncated lan-
guages L (ask, tell), £;(nask, tell) and L] (ask, nask, tell) — is smaller than
the number of canonical programs.

Proposition 4.21 For the finite languages L (ask, tell), £f(nask, tell) and
L$(ask, nask, tell) we have:

dim(L; (tell, ask)) t }

' £\ s (j+t—1
dim(L:(tell, nask)) - Z 2’ Z j)
dim(L;(tell, ask, nask)) =0 §=0

Proof. The number of linearly independent matrices we get by considering
the canonical programs in £} (ask, tell), £;(nask, tell) and £ (ask, nask, tell)

24

Brogai, D1 PIERRO, WIKLICKY

— and thus their dimensions — is given for all three languages by:

t

t
#{ask/nask} - #{“valid” tell} + 1 = Z <> - #{ “valid” tell} + 1
7

=1

where “valid” tell-sequences are those tell-sequences which result in linearly
independent matrices. Additionally we also have to consider again the “iden-
tity program”, i.e. stop. The number of “valid” tell-sequences is the same
for all three languages. However the reason for this is different for asks and
nasks.

(1)

(ii)

(i)

L (tell, ask): If we have i different asks in the prefix we know that they
will block any program which is executed in a store with less than ¢
tokens. This program might also be blocked in stores with more tokens,
but we are sure that if there are less tokens in the store at least one
ask will fail. On the other hand for every set of ¢ different asks in the
prefix there is one store where the program continues past the ask-prefix
(namely the store containing exactly the tokens we ask for).

This implies that after ¢ asks only at most s — i tells will not result in
an overflow w of the store. This therefore limits the number of different
tell sequences which lead to non-equivalent, i.e. linearly independent,
programs. We get for ¢ asks:

#{wmm”mU}:(§i<j+;_l>+1>.

=0
That is: After ¢ asks we can (i) tell up to s — 1 tokens and obtain a store
with up to s tokens in it, or (i7) or we end up with and overflow store w.

L:(tell, nask): If we have i different nasks in the prefix, then we know
that the matrices representing the tell-sequences which follow will get
those rows “deleted” which correspond to the stores containing these ¢
tokens.

In other words, the tell-sequences which differ only on stores containing
these i tokens will result in the same matrix. This means, for every 7 we
have to subtract the number of “possible” tell-sequences by the number
of those stores which contain the ¢ tokens in order to obtain the number
of “valid” tell-sequences. Therefore we get again after i nasks:

. St
#{ “valid” tell} = < _) +1]).
L:(tell, ask, nask): For this we only have to combine the arguments for

the asks and nasks in order to obtain the same expression.
O

Example 4.22 Consider the languages £3(X,tell) for X C {ask,nask}.
The possible stores are:

{Il}v {Itll}v {It2|}v {Itla t1|}7 ﬂtlv tQI}v {It27 t2|}7 w
25

Brogai, D1 PIERRO, WIKLICKY

Programs are therefore represented by 7 X 7 matrices.

The possible guard combinations are:

[stop] [ask(t1)]
(U S o
... .. 1.....
S N I
1 1

1 1
..... 1.
...... 1 |

[nask(t1)] [nask(t;)]
1_ 1 .
....... 1

1.

....... 1.

1

26

Brogai, D1 PIERRO, WIKLICKY

The possible tell combinations are:

[tell(t))] [tell(t)] tell(t)).tell(t,)
S R N

1 1 .1

1 1 .1
...... 1 R | .1
...... 1 R | .1
...... 1 R | 1
...... 1 R | 1

[tell(t)).tell(t)] [tell(t,).tell(tz)] [tell(t,)-tell(t,).tell(t,)]

B T (R L 1

I I R Y 1
I I R Y 1
I I R 1
I I R Y 1
A R R Y 1
O R N 1

If we now look at combinations of guards and tells. First, we observe that
all six matrices for the tell sequences are linearly independent. If we therefore
combine stop, i.e. the identity, with either of them we get six independent
matrices. The same happens, perhaps surprisingly, if we combine the tell
sequences with nask(t¢;).nask(t,), as they all differ in the first row, the only
one which “survives” the multiplication with [nask(¢;).nask(¢,)].

If we continue this way, constructing all linearly independent combina-
tions of ask/nask-guards and tell-sequences we get as the dimension of these
languages:

dim(L3(X, tell)) = 18.

4.2.4 Comparison
We have now a method to associate to each language £(X) a measure of its
expressiveness given in terms of the dimension

gx (s, 1) = dim(L3 (X)),

of its finite approximation £§(X') on stores of finite length s containing a finite
number ¢ of tokens. We can therefore compare two languages by comparing

27

Brogai, D1 PIERRO, WIKLICKY

s| t| n| dim(L(tell)) | dim(L:(ask, tell)) | dim(LL(get, tell))
1(1] 2 3 6 7
112] 3 4 10 13
113 4 5) 16 21
114 5 6 26 31
211 3 4 8 13
212| 6 7 18 43
213110 11 34 111
214115 16 58 241
311 4) 10 21
31210 11 30 111
313120 21 72 421
31435 36 146 1261
411 5 6 12 31
412115 16 46 241
413135 36 138 1261
41470 71 338 4971

Table 1
Growth rate of dim(L%(X))

the growth rate of the dimension of the algebras associated to their finite
approximations.

The dimensions we calculated for the languages £(X) are functions in
the two variables s and ¢ and allow us to quantitatively compare the various
languages for any fixed choice of s and ¢ (cf. Tables 1 and 2)

In general, the analysis of the functions gy (s, t) allows us to conclude con-
sistently with the results in [1], that the expressiveness of languages grows
when the number of stores increases and this growth is much faster in those
languages where the primitive get is present than it is in languages where it is
not present. Moreover, among the latter, the languages which have neverthe-
less some synchronisation primitives, such as ask, grow in expressiveness faster
than the language where only communication but no form of synchronisation
can occur, namely L(tell).

By assuming as mentioned in Section 4.2, that the asymptotic growth of
the two variables s and ¢ is the same, we can reduce gx(s,t) to a function in

28

Brogai, D1 PIERRO, WIKLICKY

s| t n || dim(L!(tell)) | dim(L!(ask, tell)) | dim(L%(get, tell))
111 2 3 6 7
2| 2 6 7 18 43
31 3 20 21 72 421
41 4 70 71 338 4971
5| D 252 253 1716 63757
6| 6 924 925 9054 854701
T 7 3432 3433 48768 11782057
81 8| 12870 12871 265986 165649771
91 9| 48620 48621 1463076 2363953021
10 | 10 | 184756 184757 8098478 34134964293
Table 2

Diagonal growth of dim(L%(X))

one variable ¢ = s, thus simplifying the analysis.

We observe that some languages which are separated by the linear embed-
ding (as well as by the modular embedding) have nevertheless the same growth
rate associated, e.g. L£(get, tell) and L(ask, get, tell). This is due to the fact
that these languages generate the same algebra. In fact, by Proposition 4.3
the algebra generated by a language is “much bigger” than the actual set of
operators corresponding to the programs in the language. This makes it im-
possible to obtain a separation as fine as the one given by the linear/modular
embedding.

4.2.5 Some Numerical Results
In Table 1 we report some results showing the dimension of the algebra of
L5(tell),L:(tell, ask) and Li(tell, get) for some values of s and t. We also
report the corresponding number n(s,t) of all possible stores which gives the
matrix dimension.

The growth-rate “in the diagonal” i.e. for the truncated languages with
s = t, clearly illustrates how for the three different classes of languages the
dimension of their associated algebras increases as n increases, see Table 2.

5 Concluding Remarks

The major contributions of this work are the following:
The notion of modular embedding, originally formulated for languages
with set-based observables, has been reformulated for languages with a linear

29

Brogai, D1 PIERRO, WIKLICKY

semantics in the style of [3]. The correspondence between the classical notion
of modular embedding and the newly introduced notion of linear embedding
has been established (Proposition 3.3), which guarantees that the qualitative
notion can be recovered from the quantitative one.

We introduced a measure which describes the expressiveness of languages
in terms of the dimensions of their corresponding algebras. This allows for
a quantitative comparison of the “richness” of languages. The dimension
of the algebra associated with a language can be used as a kind of “index”
(in the sense of algebraic topology) for a (partial) classification of languages.
Indeed, if dim(£1) > dim(Ls) then it is impossible to embed (neither linearly
nor modularly) £; in £,. Hence dimensions provide an alternative way to
establish non-embeddability results.

We applied this dimension-based analysis of expressiveness to a class of
Linda-like languages. As a result we obtained a quantitative comparison of
those languages reflecting the hierarchy in [1].

The results presented are intended to be a first step towards a more am-
bitious program which will address a number of further issues, including:

* The development of a better intuitive understanding of the growth rate of
the dimensions of the (approximated) languages.

» The investigation of how to associate algebraic objects which are more re-
fined than dimensions to describe the expressiveness of languages, such as
dimension groups [8].

The ultimate goal would be a complete classification of languages with
respect to their expressiveness based on such generalised indices.

Finally, we would like to apply our method to other classes of languages
such as concurrent constraint languages and, in particular to probabilistic
languages, where the use of a linear semantics seems to be particularly appro-
priate.

References

[1] Brogi, A. and J. Jacquet, On the expressiveness of Linda-like concurrent
languages, Electronic Notes in Theoretical Computer Science 16 (1998), p. 22.

[2] de Boer, F. S. and C. Palamidessi, Embedding as a tool for language comparison,
Information and Computation 108 (1994), pp. 128-157.

[3] Di Pierro, A. and H. Wiklicky, Linear structures for concurrency in probabilistic
programming languages, in: Proceedings of MFCSIT00- First Irish Conference on
the Mathematical Foundations of Computer Science and Information Technology,
Cork, Ireland, Electronic Notes in Theoretical Computer Science 40 (2001).

[4] Graham, R., D. Knuth and O. Patashnik, “Concrete Mathematics: A Foundation
for Computer Science,” Addison—Wesley, Reading, Massachusetts, 1989.

30

Brogai, D1 PIERRO, WIKLICKY
[5] Greub, W. H., “Linear Algebra,” Grundlehren der mathematischen
Wissenschaften 97, Springer Verlag, New York, 1967, third edition.

[6] Grimaldi, R. P., “Discrete and Combinatorial Mathematics — An Applied
Introduction,” Addison-Wesley, Reading, Massachusetts, 1999, forth edition.

[7] Ito, K., editor, “Encyclopedic Dictonary of Mathematics,” MIT Press,
Cambridge, Massachusetts — London, England, 1987, second english edition.

[8] Lind, D. and B. Marcus, “An Introduction to Symbolic Dynamics and Coding,”
Cambridge University Press, Cambridge — New York — Melbourne, 1995.

[9] Shapiro, E., Embeddings among concurrent programming languages, in: W. R.
Cleaveland, editor, Proceedings CONCUR 92, Stony Brook, NY, USA, Lecture
Notes in Computer Science 630 (1992), pp. 486-503.

31

