
Electronic Notes in Theoretical Computer Science 59 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 31 pages

Linear Embedding for a Quantitative
Comparison of Language Expressiveness

Antonio Brogi, Alessandra Di Pierro

Department of Computer Science, University of Pisa, Italy

Herbert Wiklicky

Department of Computing, Imperial College London, UK

Abstract

We introduce the notion of linear embedding which re�nes Shapiro's notion of em-

bedding by recasting it in a linear-space based semantics setting. We use this notion

to compare the expressiveness of a class of languages that employ asynchronous com-

munication primitives �a la Linda. The adoption of a linear semantics in which the

observables of a language are linear operators (matrices) representing the programs

transition graphs allows us to give quantitative estimates of the di�erent expressive

power of languages, thus improving previous results in the �eld.

1 Introduction

The evolution of Computer Science has been accompanied by the creation of

a huge number of di�erent programming languages. Quoting [9]:

All reasonable programming languages are equivalent, since they are Turing-

complete. However, if the di�erences between them were not material, we

would not have invented so many of them.

On the other hand, in the practice of programming, certain languages are

considered to be more \powerful" than others for their capability to express

control and data structures.

Comparing the expressiveness of languages gets more complicated when

considering concurrent languages. Nondeterminism and non-successful com-

putations play a crucial role there, and there is no correspondent for the

notion of Turing-completeness to measure the absolute expressive power of a

language.

The question of formally comparing the expressiveness of languages has

been the object of a quite large body of research (see [2] for an introduction).

A natural way to compare the expressive power of two languages is to verify

c
2002 Published by Elsevier Science B. V.

Brogi, Di Pierro, Wiklicky

L1

Obs1 - O1

L2

C

?

Obs2

- O2

D

6

Fig. 1. Embedding

whether all programs written in one language can be \easily" and \equiva-

lently" translated into the other one. This idea is formalised by the notion of

embedding introduced in [9]:

Let L1, L2 be two languages. Assume given the observation criteria Obs1 :

L1 7! O1 and Obs2 : L2 7! O2 where O1 and O2 are some suitable domains.

Then L2 embeds L1 if there exists a mapping C (compiler) from L1 to L2 and

a mapping D (decoder) from O2 to O1 such that the diagram in Figure 1

commutes, that is, for every program P 2 L1:

Obs1(P) = D(Obs2(C(P))):

The notion of embedding, and the re�ned notion of modular embedding [2],

have been employed to compare the relative expressive power of a number of

di�erent languages by establishing qualitative separation results (L1 � L2 and

L2 6� L1) as well as equivalence results (L1 � L2 and L2 � L1).

Our aim is to introduce quantitative aspects in the comparison of the ex-

pressiveness of languages. We will present a methodology to assign quantita-

tive estimates to separation results, so as to estimate \how much" a language

is more expressive than another one.

Our approach can be summarised as follows:

� We introduce a notion of linear embedding as a base to quantitatively com-

pare the expressive power of languages. We start from the standard notion

of embedding as introduced by Shapiro [9] and recast it in a linear setting

by taking linear spaces as semantic domains. Additionally, we require the

\compositionality" of C and D (as in [2]), that is we require C to be de�ned

compositionally on the program structure, and D to be a linear map.

� The observation criteria are de�ned in terms of a linear semantics which

associates to each program a linear operator in a suitably de�ned linear

algebra.

� The notion of linear embedding induces a partial order over the languages

and allows us to establish separation (L1 � L2) and equivalence (L1 = L2)

results between languages. We then annotate each separation result with a

quantity representing the di�erence in expressive power. This quantity de-

pends on the dimensions of the algebras associated with the two languages.

2

Brogi, Di Pierro, Wiklicky

Intuitively, the dimension of an algebra gives an estimate of the number of

di�erent possible behaviours expressible with that language.

� We apply our notion of linear embedding and quantitative comparisons to

a family of Linda-like languages and we compare the results with the ones

established in [1].

In the next section we introduce a family of simple Linda-like languages

which we will use to exemplify the linear semantics, the notion of linear em-

bedding and the quantitative comparison based on the latter. The general

de�nition of linear embedding is then introduced in Section 3, while quanti-

tative estimates are discussed in Section 4.

2 The Family of Linda-like Languages

2.1 The Syntax of L(X)

Following [1], we consider a family of languages L(X) which di�er from one

another for the set X of communication primitives used. These primitives

correspond to the basic Linda primitives for adding a token to a shared data-

space, getting it from the data-space, and checking for its presence or absence

in the data-space. The languages L(X) also include standard pre�x and choice

operators.

The syntax of L(X) is formally de�ned by the following grammar:

P ::= stop j C:P j P + P

C ::= ask(t) j nask(t) j tell(t) j get(t)
where t is a generic element called token in a denumerable set T , P is a

process and C a communication action (or pre�x). The parameter X de�ning

our Linda-like languages is a subset of the primitives de�ned by C.

A program in L(X) is therefore either an inactive, trivial program stop, or

a sequential composition C:P or a choice P + P . As usual we omit a trailing

stop if it is pre�xed by a non-empty sequence of basic actions C. Note also

that for the current treatment we do not consider a parallel construct.

2.2 A Linear Semantics for L(X)

A computation in L(X) consists of a set of processes which share a common

store represented as a multi-set of tokens, and perform communication actions

on it. We model such a computation as a transformation of a state (initial

store) into another state (�nal store). We represent states as vectors in the

free vector space V(S) on the set S of all possible stores (viz multi-sets of

tokens). The free vector space V(S) on S is de�ned as the set of all formal

linear combinations of elements of S:

V(S) =

(X
s2S

xs~s

����� xs 2 IR

)
:

3

Brogi, Di Pierro, Wiklicky

The idea is to encode the e�ect of executing the program P in a state x

which is represented by a vector ~x in terms of a linear operator on V(S). That

is, if M(P) represents a program P and ~x the state where it is executed in,

then the resulting state is represented by ~x �M = ~y, i.e. the vector obtained

by multiplying ~x with the matrix M.

If S is a �nite set of cardinality n, then these linear operators are �nite-

dimensional or, more precisely they are n� n matrices. For denumerable sets

of stores, we have instead to consider in�nite-dimensional linear operators.

Although we assume our languages L(X) to be de�ned in general on a count-

able set of stores, we will always refer to �nite sets in our reasoning and in

the examples shown throughout the paper.

In particular, we will denote by Ls
t (X) the �nite approximations of the

language L(X) de�ned on t tokens and on stores of size at most s. The

number of all possible stores of size s which can be constructed with t tokens

is given by the following basic combinatorial formula (e.g. [6, Sect. 1.4]):

n(s; t) =

sX
i=0

�
i+ t� 1

i

�
=

�
s+ t

s

�
:

For every number i between 0 and the maximal store size s we count the

number of possible multisets (i.e. combinations with repetitions) containing t

di�erent types of tokens, and sum them up.

Example 2.1 Consider a language L2
3(X). The set S of stores for L2

3(X) can

be enumerated:

fjjg; fjt1jg; fjt2jg; fjt3jg; fjt1; t1jg; fjt1; t2jg; fjt1; t3jg; fjt2; t2jg; fjt2; t3jg; fjt3; t3jg:

The free vector space V(S) is then 10-dimensional and therefore isomorphic

to IR10. In this vector space, the set of stores

ffjjg; fjt2jg; fjt1; t2jg; fjt1; t3jgg

is represented by the vector

(1; 0; 1; 0; 0; 1; 1; 0; 0; 0):

In order to correctly model the behaviour of a program when considering

�nite approximations on n stores, we have to introduce an additional over
ow

state !. This allows us to deal with the case in which the addition of a

further token to the store make its size bigger than n. Such a state has the

property that once it is reached no further transitions which leave that state

are possible.

The linear operators associated to the basic communication actions are

de�ned as follows (we denote by Mij the element at row i and column j of the

linear operator M). We denote the operators representing a program P by

[[P]] or M(P). For all stores s1 6= ! the entries in the operators representing

4

Brogi, Di Pierro, Wiklicky

the basic actions or commands are de�ned as:

([[tell(t)]])s1;s2 =

8>>><
>>>:
1 if s2 = s1 [fjtjg and ks2k � n

1 if s2 = ! and ks1 [fjtjgk > n

0 otherwise

([[ask(t)]])s1;s2 =

8<
: 1 if t 2 s1 and s2 = s1

0 otherwise

([[get(t)]])s1;s2 =

8<
: 1 if t 2 s1 and s2 = s1 n fjtjg

0 otherwise

([[nask(t)]])s1;s2 =

8<
: 1 if t 62 s1 and s2 = s1

0 otherwise

where [and n denote multi-set union and di�erence, respectively. For s1 = !,

the entries for all of the four basic commands tell(t), ask(t), get(t), and

nask(t) are de�ned in the same way:

([[C(t)]])s1;s2 =

8<
: 1 if s2 = !

0 otherwise.

Pre�x and nondeterministic choice are modelled by multiplication and sum

over the algebra of linear operators:

[[C:P]] = [[C]] � [[P]] and [[P +Q]] = [[P]] + [[Q]]:

Finally, stop is represented by the identity operator on C(S), i.e.

([[stop]])s1;s2 =

8<
: 1 if s1 = s2

0 otherwise.

This linear semantics for Linda-like languages L(X) can be seen as a vector

space encoding of the standard operational semantics for L(X) as presented

for example in [1].

The linear operator M = M(P) in e�ect encodes the transition relation

hP js0i �! hQijsii on con�gurations, i.e. pairs hP jsi consisting of a program

P and stores s: If hP js0i can make transitions to a number of hQijsii, for

i = 1; : : : ; k, then one can show that M � ~s0 =
Pn

i=0 ~si.

In other words, each row in M(P) encodes the observables of P when

executed in the store corresponding to this row. If a program P is deadlocked

in a certain store, then the corresponding row is \empty", i.e. contains only

zeros.

In this sense we can distinguish between successful termination of hP js0i|

if row s0 inM(P) contains a non-zero entry | and failure or deadlock| if row

s0 in M(P) contains only zeros. In the following we will call two programs

P and Q equivalent if they have the same semantics, that is if [[P]] = [[Q]].

5

Brogi, Di Pierro, Wiklicky

This means, of course, that for all initial stores the observables (for successful

computations) are the same.

Example 2.2 Consider the language L2
2(X), where X is the set of all com-

munication actions and the number of possible stores is n = 6. Therefore, we

can represent programs in L2
2(X) by means of 7� 7 matrices | allowing also

for the over
ow store !.

As examples, we present in the following the linear operators for tell(t2),

get(t1), ask(t1) and ask(t1):tell(t2). We assume the following enumeration

of stores:

fjjg; fjt1jg; fjt2jg; fjt1; t1jg; fjt1; t2jg; fjt2; t2jg; !

Then the operators representing some of the basic actions are given as:

[[tell(t2)]] [[get(t1)]] [[ask(t1)]]

= = =0
BBBBBBBBBBBBBBB@

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

The semantics of, for example, ask(t1):tell(t2) is the product:

[[ask(t1)]] [[tell(t2)]] [[ask(t1):tell(t2)]]

= = =0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCA

3 Linear Embedding

Given two languages L1 and L2, we consider their linear semantics, namely

the mappings S1 : L1 7! A1 and S2 : L2 7! A2, where A1 and A2 are two

6

Brogi, Di Pierro, Wiklicky

L1

S1 - A1

L2

C

?

S2

- A2

D

6

Fig. 2. Linear Embedding

linear algebras. To simplify the presentation, we assume that both languages

are de�ned over the same set of stores S. The A1 and A2 are linear algebras

over V(S), i.e. algebras of linear operators on the free vector space over the

states S.

We then de�ne the notion of linear embedding in terms of the commuta-

tivity of the diagram depicted in Figure 2. This is essentially the notion of

embedding introduced by Shapiro [9] translated into a linear (i.e. vector space

based) setting. Similarly to [2,1], we put additional requirements on the com-

piler C and the decoder D, requesting a modular translation between L1 and

L2. We recall �rst the three conditions for modular embedding (cf. Figure 1),

e.g. [2] or [1]:

De�nition 3.1 We say that language L2 modularly embeds L1 (L1 � L2) if

there exists a map C : L1 7! L2, a compiler, and a map D : O2 7! O1, a

decoder, such that for all statements A 2 L1 we have:

Obs1(A) = D(Obs2(C(A)))

where:

(i) C is compositional, i.e. for all P1, P2 in L1:

C(P1:P2) = C(P1) � C(P2) and C(P1 + P2) = C(P1) + C(P2);

(ii) D is de�ned element-wise on O2, i.e. there exists a Del such that:

8X 2 O2 : D(X) = fDel(x) j x 2 Xg ;

(iii) D preserves the termination mode.

As in [1], the termination mode expresses whether a program computation

starting in a given initial store s reaches the �nal con�guration (stop; u) for

some store u (successful termination) or not (deadlock). In the linear seman-

tics the �rst case is expressed by a 1 in the entryMsu of the matrix associated

to the program, while the second case corresponds to the row indexed by s in

the matrix being the zero vector.

De�nition 3.2 We say that language L2 linearly embeds L1 (L1 � L2) if

there exists a map C : L1 7! L2, a compiler, and a map D : A2 7! A1, a

decoder, such that for all statements A 2 L1 we have:

S1(A) = D(S2(C(A)))

7

Brogi, Di Pierro, Wiklicky

L1

C

��

Obs1
��

S1

��O1 lift
��A1

L2
Obs2 ��

S2

��O2

D

��

lift ��A2

D`

��

Fig. 3. Lifting

where:

(i) C is de�ned compositionally, and

(ii) D is a linear map.

The last two conditions in De�nition 3.1 are re
ected in the linearity of

the decoder in the notion of linear embedding, as will be made clear in the

proof of Proposition 3.3.

The previously introduced notion of a modular embedding de�nes a partial

order on languages and can be used to establish separation results (L0 � L

and L 6� L0, denoted by L0 < L) and equivalence results (L0 � L and L � L0,

denoted by L0 = L). A similar order � on languages is introduced by linear

embedding. The following proposition shows that this ordering is qualitatively

the same as the one induced by the modular embedding.

Proposition 3.3 Let L1 and L2 be two languages. Then L2 modularly embeds

L1 i� L2 linearly embeds L1.

Proof.

()) Suppose that (C;D) is a modular embedding of L1 in L2, that is the

diagram in Figure 1 commutes for the languages L1 and L2 and that the

conditions in De�nition 3.1 hold. We show how to lift the semantics Obs1
and Obs2 to linear semantics S1 and S2 (see Figure 3).

To this purpose, consider the following \input dependent" formulation of

the observation criteria Obs1 and Obs2:

Obs1(P1) : X1 7! P(X1) and Obs2(P2) : X2 7! P(X2)

where X1 (or X2) represents the input domain for the programs in L1 (or

L2), and P(X1) (or P(X2)) is a suitable domain contained in the power-

set of X1 (or X2), whose elements represent the possible outcomes of a

computation of a program in L1 (or L2). Thus, the map Obs1 (or Obs2) can

be seen as a map associating to each program in L1 (or L2) and each input

the corresponding results.

We can then de�ne the linear semantics S1 and S2 by lifting the observa-

tion criteria Obs1 and Obs2 as follows. For each program P 2 L1 we de�ne

8

Brogi, Di Pierro, Wiklicky

L1

C

��

S1
��

Obs1

��A1 supp
��O1

L2
S2 ��

Obs2

��A2

D

��

supp ��O2

Dm

��

Fig. 4. Support

the operator

(S1(P))xy =

8<
: 1 if y 2 Obs1(P)(x)

0 otherwise.

The semantics S2 for the language L2 is de�ned similarly. The domain

A1 (A2) is the minimal algebra containing the operators S1(P) (S2(P)) for

all P 2 L1 (P 2 L2).

Starting from the modular embedding (C;D) we can de�ne a linear em-

bedding (C`;D`) with C` = C, and D` de�ned as the linear extension on A2

of the map D0
` de�ned on all elements S2(C(P1)) by:

(D0

`(S2(C(P1)))xy =

8<
: 1 if y 2 Del(z) and z 2 Obs2(C(P1))(C(x))

0 otherwise

where Del is the element-wise de�nition of D, x; y 2 X1, z 2 X2, and C(x)

denotes the compiled input for C(P1). If we assume that the stores space

for both L1 and L2 we can take C(x) = x.

As D0
` is de�ned viaDel it is linear. We know that S2(C(P1))+S2(C(P2)) =

S2(C(P1) + C(P1)) from the de�nition of the linear semantics. Therefore:

(D0

`(S2(C(P1)) + S2(C(P2))))xy = (D0

`(S2(C(P1) + C(P1)))xy = 1

i� y 2 Del(z) for z in Obs2(C(P1) + C(P2))(C(x)). But as Obs2(C(P1) +

C(P2))(C(x)) = Obs2(C(P1)) + Obs2(C(P2) z must be in Obs2(C(P1)) or in

Obs2(C(P2). This means that (D0
`(S2(C(P1)))xy = 1 or (D0

`(S2(C(P2)))xy =

1. In other words for all x and y we have:

(D0

`(S2(C(P1)) + S2(C(P2))))xy = (D0

`(S2(C(P1)))xy +D
0

`(S2(C(P2)))xy

(() Suppose that (C;D) is a linear embedding of L1 in L2 according to Def-

inition 3.2. Starting from the linear semantics S1 and S2 we construct two

observation criteria Obs1 and Obs2 for L1 and L2 respectively, as the support

of S1 and S2 (see Figure 4).

For the language L1, this is de�ned as follows: For all P1 2 L1 and x 2 X1,

Obs1(P1)(x) = fy 2 X1 j y 2 supp(S1(P1)(x))g;

where for a vector ~z = (z1; : : : ; zn), supp(~z) = fzi j zi 6= 0g. We then de�ne

9

Brogi, Di Pierro, Wiklicky

the domain O1 as

O1 = supp(A1) =
[

T2A1

supp(T);

where supp(T) = fO j O = supp(T (x)); x 2 X1g. Clearly, O1 is contained

in the power-set of X1 and contains Obs1(P1)(x) for all P1 2 L1 and x 2 X1.

Analogously we de�ne Obs2 and O2.

We now construct the embedding (Cm;Dm), by taking Cm = C and Dm :

O2 7! O1 the map de�ned by

Dm(O) = D(T);

for all O 2 O2, with O = supp(T) for some T 2 A2.

The �rst condition for a modular embedding is satis�ed trivially: C is

compositional. Furthermore, it is easy to see that Dm is de�ned element-

wise by

Dm(O) = fDel(x) j x 2 Og;

where Del(x) = supp(D(T)(x). The linearity of D also ensures that the

third condition of De�nition 3.1 holds: empty rows are mapped to empty

rows, it preserves deadlock, and by de�nition it also preserves successful

termination.

It remains to show that (Cm;Dm) is an embedding, that is the correspond-

ing diagram commutes. Since by de�nition Obs(C(P1)) = supp(S2(C(P1))),

we have that Dm(Obs2(C(P1))) = supp(D(S2(C(P1)))). Moreover, by de�-

nition Obs1(P1) = supp(S1(P1)) holds too. Thus, we have

Dm(Obs2(C(P1))) = Obs1(P1);

for all P1 2 L1.

2

4 Measuring the Expressive Power

Our ultimate aim is to quantify the di�erence between the expressive power of

Linda-like languages. To this end, we annotate the separation results devised

by modular/linear embedding with a quantity which measures \how much" a

language is more or less expressive than another. This quantity is de�ned in

terms of the \dimension" of the operator algebras de�ning the linear semantics

of the languages we are comparing.

4.1 Algebras and Dimensions

A standard way of constructing an algebra is to generate all possible linear

combinations starting from a set of basic operators (generators). We adopt

this method to associate to each language its algebra of operators.

De�nition 4.1 [5] Given a set M = fMigi2I � Lin(V) of linear operators

10

Brogi, Di Pierro, Wiklicky

on a vector space V. A word over M is a linear operator on V of the form:

W =
Y
j2J

Mj

with J a multi-set of indices in I. We denote the set of all words W over M

by W =W(M).

The algebra A(M) generated by M is given by the set of all linear combi-

nations of words Wk over M, i.e. operators of the form (with xk 2 IR):

A =
X
k

xk �Wk:

The algebra A(M) generated by a set of linear operators M is thus the

linear span hW(M)i of words Wk over M.

De�nition 4.2 We de�ne the algebra A(X) associated to a language L(X)

as the algebra generated by the basic actions B = f[[C]] j C 2 Xg.

It is easy to show that for the class of Linda-like languages we consider, the

algebra generated by the basic actions is the smallest algebra which contains

the semantics of all programs in the language.

Proposition 4.3 Let L(X) be a Linda-like language with basic actions B.

Then

hS(L(X))i = A(X)

where S(L(X)) � Lin(V) denotes the semantical image of L(X), i.e.

S(L(X)) = f[[P]] j P 2 L(X)g

Proof.

hS(L(X))i � A(X):

By structural induction:
� The stop agent is represented by the identity operator I. It is in B by

de�nition, and therefore in A(X).
� Each of the basic operations ask(t), nask(t), tell(t), and get(t) is repre-

sented by an operator in A(X) (cf. Section 2), and therefore belongs to

A(X).
� Suppose we have program of the form C:P where [[P]] 2 A(X) and [[C]] 2

B. Then [[P]] is some linear combination of words in Wk 2 W(B):

[[P]] =
X
k

xk �Wk:

The semantics of C:P is therefore:

[[C:P]] = [[C]] � [[P]] = [[C]]
X
k

xk �Wk =
X
k

xk � [[C]] �Wk

As the product of an operator representing a basic action [[C]] and any

word Wk gives another word we can conclude that [[C:P]] is also a linear

combination of words, i.e.

[[C:P]] 2 hW(B)i = A(X):

11

Brogi, Di Pierro, Wiklicky

� Suppose we have program of the form P + Q where [[P]] 2 A(X) and

[[Q]] 2 A(X). Then [[P]] and [[Q]] are some linear combinations of words

Wk 2 W(B) and Vl 2 W(B):

[[P]] =
X
k

xk �Wk and [[Q]] =
X
l

xl �Vl

The semantics of P +Q is therefore:

[[P +Q]] = [[P]] + [[Q]] =
X
k

xk �Wk +
X
l

xl �Vl

i.e. a linear combination of words over B, and so we have:

[[P +Q]] 2 hW(B)i = A(X):

A(X) � hS(L(X))i:

� We show that for all W 2 W(B) there exists P 2 L(X) such that [[P]] =

W.

Given a wordW =M1 �M2 : : :Mn of length n, then each of theMi 2 B

corresponds to a basic action Bi. Therefore, there exists at least one

program 1 P such that [[P]] =W. In fact,

[[P]] = [[B1:B2: : : : :Bn]] =M1 �M2 : : :Mn =W

� The set of words formed by basic actions is thus a subset of the semantics

of programs in L(X), i.e.

W(B) � S(L(X)):

The same relation holds thus also for the linear span hWi | the algebra

A(X) | and the linear span hS(L(X))i, i.e.

A(X) = hWi � hS(L(X))i :

2

We now recall the de�nition of the dimension of a linear space, i.e. a vector

space or a linear algebra like A(X).

De�nition 4.4 [7] Let Z be a linear space over a �eld IK. A sequence of

elements a1; : : : an in Z is called linearly dependent if there exists a sequence

x1; : : : ; xn in IK such that not all the xi are equal to 0 and x1a1+: : :+xnan = 0.

A sequence in Z is called linearly independent if it is not linearly dependent.

The maximal number of linearly independent objects in a vector space or

an algebra de�nes its dimension.

De�nition 4.5 [7] Let S be a linear space over a �eld IK. The dimension

of Z, dim(Z), is the number n such that there exists a linearly independent

sequence of n elements in Z, and no sequence of n+1 elements in Z is linearly

independent.

1 Note that the sameW might be the product of di�erent combinations of basic actions.

12

Brogi, Di Pierro, Wiklicky

For a language de�ned on a �nite number of stores we will denote by

dim(L) the dimension of the algebra associated to the language L. In practical

terms, we only need to determine the number of linearly independent words

generated by the basic actions in order to calculate the dimension of the

algebra associated to L.

Proposition 4.6 Given a set of generators M, the dimension of the A(M)

is the maximal number of linearly independent words W over M.

Proof. Let w be the maximal number of linearly independent words overM.

dim(A(M)) � w: Obviously there are already w linearly independent objects

in A(M), namely the linearly independent words W 2 W. The dimension

of A(M) must thus be at least as large as w.

dim(A(M)) � w: Suppose there is an element A in A(M) which is linearly

independent of the words over M, i.e.

A 6=
X
Wi2W

xiWi

for any xi 6= 0. But this contradicts the assumption that A is in the algebra

generated by M, i.e. that A is a linear combination of words over M.

2

We will use the notion of dimension to quantify the expressive power of a

language. Since for any non-trivial language on an in�nite set of stores the

corresponding algebra is an in�nite-dimensional vector space, we will consider

for a given language L(X) its �nite approximationsLs
t (X), that is the language

restricted to sets of n(s; t) < 1 stores. For these approximations we can

calculate the dimension of the associated algebras. This dimension is clearly

a function of the number of stores n(s; t), and we can use its growth rate as a

measure for the expressiveness of L(X).

Example 4.7 Consider the language L2
1(tell). For this language we have two

generators. Using the enumeration of stores

fjjg; fjtjg; fjt; tjg; !;

the program stop is represented by the identity matrix (indicating zero entries

simply by :):

I = [[stop]] =

0
BBBBBB@

1 : : :

: 1 : :

: : 1 :

: : : 1

1
CCCCCCA

13

Brogi, Di Pierro, Wiklicky

and the basic action tell(t) is represented by:

M = [[tell(t)]] =

0
BBBBBB@

: 1 : :

: : 1 :

: : : 1

: : : 1

1
CCCCCCA

We can use M to generate two additional linearly independent operators,

namely

M
2 =M �M = [[tell(t):tell(t)]] =

0
BBBBBB@

: : 1 :

: : : 1

: : : 1

: : : 1

1
CCCCCCA

and

M
3 =M �M �M = [[tell(t):tell(t):tell(t)]] =

0
BBBBBB@

: : : 1

: : : 1

: : : 1

: : : 1

1
CCCCCCA

For all i > 3 we have M
i = M

i�1. Hence the dimension of the algebra

A(tell(t)) is 4. More precisely the algebra generated by tell(t) is of the form:

A(tell(t)) =

8>>>>>><
>>>>>>:

0
BBBBBB@

a b c d

: a b c + d

: : a b + c+ d

: : : a + b+ b + c

1
CCCCCCA

������������
a; b; c; d 2 IR

9>>>>>>=
>>>>>>;
:

In order to determine the dimension of Linda-like languages it will be

suÆcient to consider | as in the example above | only the words generated

by the basic actions (cf. Proposition 4.6).

It is clear that every program in L(tell), L(ask; tell), etc, is a choice

between sequential compositions of ask, nask, get and tell. Using the dis-

tributivity in the algebra of matrices representing the semantics of programs

we assume that there are only \top level" choices, e.g.:

[[P1:(P2 + P3)]] = [[P1]] � ([[P2]] + [[P3]]) = [[P1]] � [[P2]] + [[P1]] � [[P3]]

As the sum, i.e. linear combination, does not contribute to the dimension

of algebra generated we can restrict ourself to determine how many (purely) se-

quential programs there are in a particular language L(X) which have linearly

independent matrices associated by the semantics. These sequential programs

14

Brogi, Di Pierro, Wiklicky

L(tell)

L(nask, tell)

L(ask, nask, tell)

L(ask, nask, get, tell)

L(ask, tell)

L(get, tell) L(ask, get, tell)

L(nask, get, tell)

�������

HHHHHHj

? ?

�������������9

? ?

-�

-�

Fig. 5. The hierarchy of languages.

are obviously each represented by a word generated by the basic actions, i.e.

generators inM.

4.2 Measuring the Expressiveness of Linda-like Languages

By Proposition 3.3, the same hierarchy on the Linda-like languages established

in [1] with respect to the modular embedding also holds with respect to the

linear embedding.

The whole set of separation and equivalence results are summarised in

Figure 5, where an arrow from a language L1 to a language L2 means that

L2 embeds L1, that is L1 � L2. Note that, thanks to the transitivity of

embedding, the �gure contains only a minimal amount of arrows. However,

apart from these induced relations, no other relation holds. In particular,

when there is one arrow from L1 to L2 but there is no arrow from L2 to L1,

then L1 is strictly less expressive than L2, that is L1 < L2.

We now apply the technique described in Section 4.2 to annotate this

hierarchy with quantities describing the di�erence in expressiveness of two

languages which are qualitatively separated in the hierarchy. As explained

in Section 4.2 such quantities are given in terms of the rate of growth of the

dimensions of the algebras associated to the languages when increasing the

number of stores n(s; t).

We will show that this quantitative notion of expressiveness induces an

equivalence relation on the set of languages L(X) which is coarser than the

one represented in Figure 5: it identi�es languages which are separated by

modular embedding. In particular, we will show that the set of languages

L(X) can be partitioned in three classes by the equivalence relation � de�ned

in the following. This relation identi�es two languages whose dimensions have

the same rate of growth. By using the notation in [4, (9.8)], this can be de�ned

for two generic functions f(n) and g(n) as follows:

f(n) � g(n) i� jf(n)j � kjg(n)j and jg(n)j � kjf(n)j;

15

Brogi, Di Pierro, Wiklicky

for some constant k and for all suÆciently large n.

De�nition 4.8 Let L1 and L2 be two Linda-like languages, and let (L1)n and

(L2)n be their approximations on n <1 stores. Then

L1 � L2 i� dim((L1)n) � dim((L2)n):

Strictly speaking, the dimension of the truncated languages we consider

L(X)n = L(X)n(s;t) = L(X)st depends on two parameters, namely the store

size s and the number of distinct tuples t. In order to simplify our treatment

of the languages comparison we will concentrate on the \diagonal growth", i.e.

the case s = t. This corresponds to assuming that when n tends to in�nity, s

and t tend to in�nity with the same speed, that is the ratio s=t is 1.

Proposition 4.9 The quotient set L(X)=� consists of the following three

classes:

[L(tell)]=�= fL(tell)g;

[L(ask; tell)]=�= fL(ask; tell);L(nask; tell);L(ask;nask; tell)g;

[L(get; tell)]=�= fL(get; tell);L(ask; get; tell);L(nask; get; tell);

L(ask;nask; get; tell)g:

The proof of this proposition will be given by calculating the dimension

of each language in L(X). In general, it is easy to see that there is an upper

limit for the dimension for all (L(X))n given by (n+1)2, i.e. the dimension of

the algebra of all n+ 1� n+ 1-matrices modelling the programs in (L(X))n.

The particular nature of the over
ow ! allows us to tighten this upper limit:

Proposition 4.10 For all languages (L(X))n we have:

dim(L(X))n � n(n + 1) + 1:

Proof. The general form of a matrix representing a program in (L(X))n for

n = n(s; t) is:

M =

0
BBBBBBBBB@

m11 m12 : : : m1n m1;n+1

m21 m22 : : : m2n m2;n+1

: : : : : : : : : : : : : : :

mn1 mn2 : : : mnn mn;n+1

0 0 : : : 0 1

1
CCCCCCCCCA

The values of entries mij depend on the program represented by M. However

the last row, corresponding to the over
ow state !, is the same for all matrices

representing any program in (L(X))n, and expresses the fact that once it is

reached it is not possible to make a transition to any other state. 2

4.2.1 The Language L(tell)

In this section we calculate the dimension of the languages Ls
t(tell) approxi-

mating L(tell).

16

Brogi, Di Pierro, Wiklicky

For the product [[P]] � [[Q]] of two operators [[P]] and [[Q]] representing two

programs in Ls
t (tell) the following observation is often helpful.

Lemma 4.11 Let [[P]] = (P)ij and [[Q]] = (Q)ij be two operators representing

two programs P and Q in Ls
t(tell), and let S be the set of stores. Then the

entry (PQ)lk in their product matrix PQ is given by:

(PQ)lk =

8>>><
>>>:
1 if there exist R 2 L(X) and sm 2 S :

hP; sli �! hR; smi ^ hR; smi �! hP; ski

0 otherwise,

where �! is a transition relation de�ning a small step operational semantics

for Ls
t (tell).

Proof. The multiplication of linear operators is de�ned by:

(PQ)lk =
X
m

Plm �Qmk

As [[P]] = (P)ij and [[Q]] = (Q)ij have 0=1 entries the entry (PQ)lk is non-zero

if and only if there exists at least one summand Plm �Qmk 6= 0. This means

that there must be a store sm 2 S such that Plm 6= 0 and Qmk 6= 0, that is

the transitions hP; sli �! hR; smi and hR; smi �! hP; ski must take place. 2

In Ls
t(tell) we refer to a program of the form P � tell(t1):tell(t2) : : : tell(ti)

as a pre�x of length i. For each pair of values (s; t), the language Ls
t(tell) sat-

is�es the following properties

Proposition 4.12 For the language Ls
t(tell) we have that

(i) All pre�xes P of length i > s are equivalent.

(ii) All permutations of a pre�x P of length i, with 1 � i � s are equivalent

to P .

Proof.

(i) Consider a pre�x P of length s. Because of the limited size of the store

any number of tell(t0), t0 2 T following P can only produce an over
ow.

Therefore, by Lemma 4.11 all matrices for P:Q with Q a pre�x of length

� 1 will be of the form:

M = [[P:Q]] =

0
BBBBBBBBB@

0 0 : : : 0 1

0 0 : : : 0 1

: : : : : : : : : : : : : : :

0 0 : : : 0 1

0 0 : : : 0 1

1
CCCCCCCCCA
:

(ii) Let P � tell(t1):tell(t2) : : : tell(ti), let � be any permutation of f1; : : : ; ig,

and let Q � tell(t�(1)):tell(t�(2)) : : : tell(t�(i)).

17

Brogi, Di Pierro, Wiklicky

Independently of the order in which the tell(tj), j 2 f1; : : : ; ig, are ex-

ecuted we always end up with the same �nal store fjt1; t2; : : : ; tijg. There-

fore, the matrices associated to the programs P and Q are the same (by

Lemma 4.11).

2

Proposition 4.13 For the languages Ls
t(tell) we have:

dim(Ls
t(tell)) = n(s; t) + 1:

Proof.

dim(Ls
t (tell)) � n + 1: By Proposition 4.12 (ii) we note that for each length

0 � i � s of the store there are exactly
�
i+t�1

i

�
non-equivalent pre�xes.

Moreover, by Proposition 4.12 (i) there is a single class for all programs

generating an over
ow.

The number of all non-equivalent pre�xes of Ls
t(tell) is therefore exactlyPs

i=0

�
i+t�1

i

�
+ 1 = n(s; t) + 1.

Since all other matrices representing programs in Ls
t(tell) are linear com-

binations of the matrices associated to the pre�xes we can conclude that

dim(Ls
t(tell)) � n+ 1.

dim(Ls
t (tell)) � n + 1: For Mj = [[tell(tj1):tell(tj2) : : : tell(tji]] associated to

the pre�x Pj � tell(tj1):tell(tj2) : : : tell(tji) we have a single non-zero entry

in the �rst row, in position k corresponding to the store fjj1; j2; : : : ; jijg:

(Mj1;j2;:::;ji)1;k

8<
: 0 for k corresponding to fjj1; j2; : : : ; jijg

1 otherwise:

The matrices associate to the following n(s; t)+1 non-equivalent pre�xes

stop; tell(t1); tell(t2) : : : ; tell(tt); tell(t1):tell(t1); : : : ; tell
s+1(t1) are there-

fore linearly independent. This shows that dim(Ls
t(tell)) � n+ 1.

2

4.2.2 The Languages in [L(get; tell)]=�
We compute explicitely the dimension of Ls

t(get; tell) and we show that this is

exactly the same as the dimension of Ls
t (ask; get; tell) and L

s
t (nask; get; tell).

We will need the following lemma which guarantees the existence of an

appropriate enumeration of stores.

Lemma 4.14 There exists an enumeration �1 = fjjg; �2; : : : ; �n; �n+1 = ! of

stores for L(X)n which is compatible with the inclusion order, i.e.

�i � �j) i � j:

Proof. Consider an ordering where �0 = fjjg, then (in any order) all singleton

stores, i.e. stores with j�j = 1, then all stores (in any order) with j�j = 2,

etc. 2

18

Brogi, Di Pierro, Wiklicky

We now show that the dimension of Ls
t (get; tell) is equal to the maximal

dimension for any language Ls
t as established in Proposition 4.10.

Proposition 4.15 For the the languages Ls
t(tell; get) we have:

dim(Ls
t(tell; get)) = n(n+ 1) + 1:

Proof. The proof is based on the fact that for an enumeration of stores such

that

�i � �j) i � j;

(cf Lemma 4.14) one can construct for each pair of stores �i; �j a program

P�i;�j 2 L
s
t(tell; get)

such that its semantics [[P�i;�j]] =Mij is given by a matrix of the form:

Mij =

0
BBBBBBBBBBBBBBBBBB@

0 : : : 0 0 0 : : : 0 0

: :

0 : : : 0 0 0 : : : 0 0

0 : : : 0 1 ? : : : ? ?

? : : : ? ? ? : : : ? ?

: :

? : : : ? ? ? : : : ? ?

0 : : : 0 0 0 : : : 0 1

1
CCCCCCCCCCCCCCCCCCA

where ? denotes any matrix entry. The de�nition of Mij is therefore:

(Mij)kl =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0 if k < i

0 if k = i and l < j

1 if k = i and l = j

0 if k = n+ 1 and l < n + 1

1 if k = l = n+ 1

? otherwise:

For example, the program P�i;�j for �i = fjti1; ti2 ; : : : ; tisi jg and �j =

fjtj1; tj2; : : : ; tisj jg is given by P�i;�j = get(�i):tell(�j), or more precisely by

P�i;�j = get(ti1):get(ti2) : : :get(tisi):tell(ti1):tell(ti2) : : : tell(tisi):

For i = j = 1, P�i;�j = stop.

For a store �k with k 6� i we have �k 6� �i. Therefore there is at least

one (multiple occurrence of) t 2 fjti1; ti2 ; : : : ; tisi jg for which the corresponding

get(t) in P�i;�j fails. That means that there is no transition for P�i;�j if

executed in �k and thus the corresponding row in Mij contains only zeros.

19

Brogi, Di Pierro, Wiklicky

As P�i;�j is deterministic we know that the row corresponding to any store

| in particular for store �i | contains at most one non-zero entry. Clearly

this non-zero entry in row �i is in the column corresponding to �j as P�i;�j

�rst removes all tuples in �i to obtain the empty store fjjg and then puts all

tuples of �j back into the store.

The remaining entries in Mij can take any value except for the last row

which corresponds to the over
ow state !.

Clearly the matricesMij are linearly independent as for each pair of stores

we get a di�erent leading 1.

There are exactly n(n+ 1) + 1 such matrices. Since the maximal number

of linearly independent matrices for any language Ls
t(X) is also n(n+ 1) + 1,

this is exactly the dimension of Ls
t (tell; get). 2

Example 4.16 Consider the language L1
1(tell; get). The number of possible

stores, including the over-full state, is
�
1+1

1

�
+ 1 =

�
2

1

�
+ 1 = 3, namely:

fjjg; fjtjg; !:

The dimension of L1
1(tell; get) is therfore:

dim(L1
1(tell; get)) = 2(2 + 1) + 1 = 7:

The seven linearly independent matrices and their corresponding programs

are given as follows:0
BBB@
1 ? ?

? ? ?

0 0 1

1
CCCA = [[stop]]

0
BBB@
0 1 ?

? ? ?

0 0 1

1
CCCA = [[tell(t)]]

0
BBB@
0 0 1

? ? ?

0 0 1

1
CCCA = [[tell(t):tell(t)]]

0
BBB@
0 0 0

1 ? ?

0 0 1

1
CCCA = [[get(t)]]

0
BBB@
0 0 0

0 1 ?

0 0 1

1
CCCA = [[get(t):tell(t)]]

0
BBB@
0 0 0

0 0 1

0 0 1

1
CCCA = [[get(t):tell(t):tell(t)]]

0
BBB@
0 0 0

0 0 0

0 0 1

1
CCCA = [[get(t):get(t)]]

It is now easy to see that the languages L(nask; get; tell), L(ask; get; tell),

and L(ask;nask; get; tell) are all equivalent to L(get; tell).

20

Brogi, Di Pierro, Wiklicky

Corollary 4.17 For the languages L(nask; get; tell), L(ask;nask; get; tell),

and L(ask; get; tell) we have:

dim(Ls
t (ask; get; tell)) = n(n+ 1) + 1

dim(Ls
t (nask; get; tell)) = n(n + 1) + 1

dim(Ls
t(ask;nask; get; tell)) = n(n+ 1) + 1

and therefore we get:

L(get; tell) � L(nask; get; tell)

� L(ask;nask; get; tell)

� L(ask; get; tell):

Proof. For any subset of communication actionsX which contains fget; tellg

the algebras associated to the languages Ls
t(X) containA(fget; tellg), so their

dimension cannot be smaller than the dimension of Ls
t(get; tell). Therefore,

by Proposition 4.10 and Proposition 4.15 we have:

n(n+ 1) + 1 = dim(Ls
t(get; tell)) � dim(Ls

t(X)) � n(n+ 1) + 1:

This shows that for any set X1 and X2 of communication primitives which

contain fget; tellg we have: Ls
t(X1) � Ls

t (X2). 2

4.2.3 The Languages in [L(ask; tell)]=�
Analogously to the case of L(tell), we construct standard representations

of sequential programs containing all the primitives of the languages we are

considering, namely tells and the \passive" guards ask and nask.

Lemma 4.18 Every program P which is a sequential composition of ask,

nask and tell respectively in L(ask; tell), L(nask; tell) and L(ask;nask; tell)

is equivalent to a program of the form:

ask(ta1) : : :ask(tak):nask(tb1) : : :nask(tbl):tell(tc1) : : : tell(tcm)

with ta1 ; : : : ; tak ; tb1 ; : : : ; tbl all di�erent, or a blocked program represented by

the zero matrix O.

Proof. The proof is based on a number of obvious structural equivalences,

which allow either to remove a ask or nask which is not at the beginning of

P , to move them to the beginning of P , or to identify P as being equivalent

to the zero matrix O.

ask(ti):ask(ti) � ask(ti)

ask(ti):ask(tj) � ask(tj):ask(ti)

nask(ti):nask(ti) � nask(ti)

nask(ti):nask(tj) � nask(tj):nask(ti)

tell(ti):tell(tj) � tell(tj):tell(ti)

21

Brogi, Di Pierro, Wiklicky

ask(tj):nask(ti) � nask(tj):ask(ti)

ask(ti):nask(ti) � O

nask(ti):ask(ti) � O

tell(ti):ask(ti) � tell(ti)

tell(ti):ask(tj) � ask(tj):tell(ti)

tell(ti):nask(ti) � O

tell(ti):nask(tj) � nask(tj):tell(ti)
2

This canonical representation of sequential programs allows us to enumer-

ate all basic programs.

Lemma 4.19 The number of standard or canonical programs in L(ask; tell)

and L(nask; tell) of the forms:

ask(ta1) : : :ask(tak):tell(tc1) : : : tell(tcm)

nask(tb1) : : :nask(tbl):tell(tc1) : : : tell(tcm)

is given by
tX

i=0

�
t

i

�! sX
j=0

�
j + t� 1

i

�!
=

tX

i=0

�
t

i

�!�
s+ t

s

�
:

The number of standard programs in L(ask;nask; tell) of the form:

ask(ta1) : : :ask(tak):nask(tb1) : : :nask(tbl):tell(tc1) : : : tell(tcm)

is

tX
i=0

�
t

i

� iX
k=0

�
i

k

� sX
j=0

�
j + t� 1

i

�!
=

tX

i=0

2i �

�
t

i

�!�
s+ t

s

�
:

Proof.

(i) Guards: We observe that the order of asks and nasks at the beginning of

a normalised programs is irrelevant. Furthermore it makes only sense to

consider one ask/nask per di�erent token, multiple asks/nask for the

same token can be replaced by a single ask/nask.

We can therefore conclude that the number of di�erent ask/nask-

pre�xes for programs in L(ask; tell) and L(nask; tell) is:
tX

i=0

�
t

i

�
:

For programs in L(ask;nask; tell) we have to partition the tokens in

two disjoint sets corresponding to the ask and nask guards respectively:
tX

i=0

�
t

i

� iX
k=0

�
i

k

�
=

tX
i=0

2i �

�
t

i

�

22

Brogi, Di Pierro, Wiklicky

(ii) Tells: As in the case of the L(tell) language any number up to s tells

with repetition can be part of a normalised program:
sX

j=0

�
j + t� 1

i

�
=

�
s+ t

s

�
:

2

However not all of these basic programs are linearly independent. Basically,

whenever we ask or nask for a particular token t a number of initial stores

will result in a blocked program | those which contain or do not contain t.

This means that certain rows in the matrix representing tell(tc1) : : : tell(tcm)

are \deleted", i.e. set to be zero.

The result of this is that all those tell-sequences for which the matrices are

di�erent on only those \deleted" rows result in linearly independent matrices

when combined with certain asks or nasks.

Example 4.20 Consider the language L2
2(tell; ask). The number of possible

stores, including the over-full state, is
�
2+2

2

�
+1 =

�
4

2

�
+1 = 6+1 = 7 namely:

fjjg; fjt1jg; fjt2jg; fjt1; t1jg; fjt1; t2jg; fjt2; t2jg; !

Take as an example the guard sequence ask(t1):ask(t2), its matrix is given

by:

[[ask(t1):ask(t2)]] =

0
BBBBBBBBBBBBBBB@

: : : : : : :

: 1 : : : : :

: : : : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : 1 : : : :

: : : : : : :

: : : : 1 : :

: : : : : 1 :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

:

If we combine the guard sequence ask(t1):ask(t2) with, for example, tell(t1)

and tell(t1) with

[[tell(t1)]] =

0
BBBBBBBBBBBBBBB@

: 1 : : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

[[tell(t2)]] =

0
BBBBBBBBBBBBBBB@

: : 1 : : : :

: : : : 1 : :

: : : : : 1 :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

23

Brogi, Di Pierro, Wiklicky

we get the same matrix:0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

: 1 : : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : 1

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBB@

: : 1 : : : :

: : : 1 : : :

: : : : : 1 :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : 1

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

representing two di�erent canonical programs, namely ask(t1):ask(t2):tell(t1)

and ask(t1):ask(t2):tell(t2).

Indeed we get the same result for all tell-sequences: Combining the guard

sequence ask(t1):ask(t2) and any tell-sequence results either in a deadlock

(for all those stores which do not contain t1 and t2) or in an over
ow (for the

stores fjt1; t2jg and !). All these canonical programs are is represented by the

same matrix.

As a result, the dimension of the algebra generated by the canonical pro-

grams | i.e. the dimension of the algebra associated to the truncated lan-

guages Ls
t (ask; tell), L

s
t (nask; tell) and L

s
t (ask;nask; tell) | is smaller than

the number of canonical programs.

Proposition 4.21 For the �nite languages Ls
t (ask; tell), L

s
t (nask; tell) and

Ls
t(ask;nask; tell) we have:

dim(Ls
t (tell; ask))

dim(Ls
t (tell;nask))

dim(Ls
t (tell; ask;nask))

9>>>=
>>>;

=

tX

i=0

�
t

i

� s�iX
j=0

�
j + t� 1

j

�
+ 1

!
+ 1:

Proof. The number of linearly independent matrices we get by considering

the canonical programs in Ls
t(ask; tell), L

s
t(nask; tell) and L

s
t (ask;nask; tell)

24

Brogi, Di Pierro, Wiklicky

| and thus their dimensions | is given for all three languages by:

#fask=naskg �#f\valid" tellg+ 1 =

tX
i=1

�
t

i

�
�#f\valid" tellg+ 1

where \valid" tell-sequences are those tell-sequences which result in linearly

independent matrices. Additionally we also have to consider again the \iden-

tity program", i.e. stop. The number of \valid" tell-sequences is the same

for all three languages. However the reason for this is di�erent for asks and

nasks.

(i) Ls
t(tell; ask): If we have i di�erent asks in the pre�x we know that they

will block any program which is executed in a store with less than i

tokens. This program might also be blocked in stores with more tokens,

but we are sure that if there are less tokens in the store at least one

ask will fail. On the other hand for every set of i di�erent asks in the

pre�x there is one store where the program continues past the ask-pre�x

(namely the store containing exactly the tokens we ask for).

This implies that after i asks only at most s� i tells will not result in

an over
ow ! of the store. This therefore limits the number of di�erent

tell sequences which lead to non-equivalent, i.e. linearly independent,

programs. We get for i asks:

#f\valid" tellg =

s�iX
j=0

�
j + t� 1

j

�
+ 1

!
:

That is: After i asks we can (i) tell up to s�1 tokens and obtain a store

with up to s tokens in it, or (ii) or we end up with and over
ow store !.

(ii) Ls
t(tell;nask): If we have i di�erent nasks in the pre�x, then we know

that the matrices representing the tell-sequences which follow will get

those rows \deleted" which correspond to the stores containing these i

tokens.

In other words, the tell-sequences which di�er only on stores containing

these i tokens will result in the same matrix. This means, for every i we

have to subtract the number of \possible" tell-sequences by the number

of those stores which contain the i tokens in order to obtain the number

of \valid" tell-sequences. Therefore we get again after i nasks:

#f\valid" tellg =

s�iX
j=0

�
j + t� 1

j

�
+ 1

!
:

(iii) Ls
t(tell; ask;nask): For this we only have to combine the arguments for

the asks and nasks in order to obtain the same expression.

2

Example 4.22 Consider the languages L2
2(X; tell) for X � fask;naskg.

The possible stores are:

fjjg; fjt1jg; fjt2jg; fjt1; t1jg; fjt1; t2jg; fjt2; t2jg; !

25

Brogi, Di Pierro, Wiklicky

Programs are therefore represented by 7� 7 matrices.

The possible guard combinations are:

[[stop]] [[ask(t1)]] [[ask(t2)]]
= = =0

BBBBBBBBBBBBBBB@

1 : : : : : :

: 1 : : : : :

: : 1 : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : 1 :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: 1 : : : : :

: : : : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : 1 : : : :

: : : : : : :

: : : : 1 : :

: : : : : 1 :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

[[nask(t1)]] [[nask(t1)]] [[ask(t1):ask(t2)]]
= = =0

BBBBBBBBBBBBBBB@

1 : : : : : :

: : : : : : :

: : 1 : : : :

: : : : : : :

: : : : : : :

: : : : : 1 :

: : : : : : :

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 : : : : : :

: 1 : : : : :

: : : : : : :

: : : 1 : : :

: : : : : : :

: : : : : : :

: : : : : : :

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : 1 : :

: : : : : : :

: : : : : : 1

1
CCCCCCCCCCCCCCCA

[[nask(t1):nask(t2)]] [[ask(t1):nask(t2)]] [[nask(t1):ask(t2)]]
= = =0

BBBBBBBBBBBBBBB@

1 : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

: : : : : : :

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: 1 : : : : :

: : : : : : :

: : : 1 : : :

: : : : : : :

: : : : : : :

: : : : : : :

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : :

: : : : : : :

: : 1 : : : :

: : : : : : :

: : : : : : :

: : : : : 1 :

: : : : : : :

1
CCCCCCCCCCCCCCCA

26

Brogi, Di Pierro, Wiklicky

The possible tell combinations are:

[[tell(t1)]] [[tell(t2)]] tell(t1):tell(t1)
= = =0

BBBBBBBBBBBBBBB@

: 1 : : : : :

: : : 1 : : :

: : : : 1 : :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : 1 : : : :

: : : : 1 : :

: : : : : 1 :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : 1 : : :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

[[tell(t1):tell(t2)]] [[tell(t2):tell(t2)]] [[tell(t1):tell(t1):tell(t1)]]
= = =0

BBBBBBBBBBBBBBB@

: : : : 1 : :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : 1 :

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

: : : : : : 1

1
CCCCCCCCCCCCCCCA

If we now look at combinations of guards and tells. First, we observe that

all six matrices for the tell sequences are linearly independent. If we therefore

combine stop, i.e. the identity, with either of them we get six independent

matrices. The same happens, perhaps surprisingly, if we combine the tell

sequences with nask(t1):nask(t2), as they all di�er in the �rst row, the only

one which \survives" the multiplication with [[nask(t1):nask(t2)]].

If we continue this way, constructing all linearly independent combina-

tions of ask=nask-guards and tell-sequences we get as the dimension of these

languages:

dim(L2
2(X; tell)) = 18:

4.2.4 Comparison

We have now a method to associate to each language L(X) a measure of its

expressiveness given in terms of the dimension

gX(s; t) = dim(Ls
t(X));

of its �nite approximation Ls
t(X) on stores of �nite length s containing a �nite

number t of tokens. We can therefore compare two languages by comparing

27

Brogi, Di Pierro, Wiklicky

s t n dim(Lt
s(tell)) dim(Lt

s(ask; tell)) dim(Lt
s(get; tell))

1 1 2 3 6 7

1 2 3 4 10 13

1 3 4 5 16 21

1 4 5 6 26 31

2 1 3 4 8 13

2 2 6 7 18 43

2 3 10 11 34 111

2 4 15 16 58 241

3 1 4 5 10 21

3 2 10 11 30 111

3 3 20 21 72 421

3 4 35 36 146 1261

4 1 5 6 12 31

4 2 15 16 46 241

4 3 35 36 138 1261

4 4 70 71 338 4971

Table 1

Growth rate of dim(Lts(X))

the growth rate of the dimension of the algebras associated to their �nite

approximations.

The dimensions we calculated for the languages L(X) are functions in

the two variables s and t and allow us to quantitatively compare the various

languages for any �xed choice of s and t (cf. Tables 1 and 2)

In general, the analysis of the functions gX(s; t) allows us to conclude con-

sistently with the results in [1], that the expressiveness of languages grows

when the number of stores increases and this growth is much faster in those

languages where the primitive get is present than it is in languages where it is

not present. Moreover, among the latter, the languages which have neverthe-

less some synchronisation primitives, such as ask, grow in expressiveness faster

than the language where only communication but no form of synchronisation

can occur, namely L(tell).

By assuming as mentioned in Section 4.2, that the asymptotic growth of

the two variables s and t is the same, we can reduce gX(s; t) to a function in

28

Brogi, Di Pierro, Wiklicky

s t n dim(Lt
s(tell)) dim(Lt

s(ask; tell)) dim(Lt
s(get; tell))

1 1 2 3 6 7

2 2 6 7 18 43

3 3 20 21 72 421

4 4 70 71 338 4971

5 5 252 253 1716 63757

6 6 924 925 9054 854701

7 7 3432 3433 48768 11782057

8 8 12870 12871 265986 165649771

9 9 48620 48621 1463076 2363953021

10 10 184756 184757 8098478 34134964293

Table 2

Diagonal growth of dim(Lts(X))

one variable t = s, thus simplifying the analysis.

We observe that some languages which are separated by the linear embed-

ding (as well as by the modular embedding) have nevertheless the same growth

rate associated, e.g. L(get; tell) and L(ask; get; tell). This is due to the fact

that these languages generate the same algebra. In fact, by Proposition 4.3

the algebra generated by a language is \much bigger" than the actual set of

operators corresponding to the programs in the language. This makes it im-

possible to obtain a separation as �ne as the one given by the linear/modular

embedding.

4.2.5 Some Numerical Results

In Table 1 we report some results showing the dimension of the algebra of

Ls
t(tell),L

s
t (tell; ask) and L

s
t(tell; get) for some values of s and t. We also

report the corresponding number n(s; t) of all possible stores which gives the

matrix dimension.

The growth-rate \in the diagonal" i.e. for the truncated languages with

s = t, clearly illustrates how for the three di�erent classes of languages the

dimension of their associated algebras increases as n increases, see Table 2.

5 Concluding Remarks

The major contributions of this work are the following:

The notion of modular embedding, originally formulated for languages

with set-based observables, has been reformulated for languages with a linear

29

Brogi, Di Pierro, Wiklicky

semantics in the style of [3]. The correspondence between the classical notion

of modular embedding and the newly introduced notion of linear embedding

has been established (Proposition 3.3), which guarantees that the qualitative

notion can be recovered from the quantitative one.

We introduced a measure which describes the expressiveness of languages

in terms of the dimensions of their corresponding algebras. This allows for

a quantitative comparison of the \richness" of languages. The dimension

of the algebra associated with a language can be used as a kind of \index"

(in the sense of algebraic topology) for a (partial) classi�cation of languages.

Indeed, if dim(L1) > dim(L2) then it is impossible to embed (neither linearly

nor modularly) L1 in L2. Hence dimensions provide an alternative way to

establish non-embeddability results.

We applied this dimension-based analysis of expressiveness to a class of

Linda-like languages. As a result we obtained a quantitative comparison of

those languages re
ecting the hierarchy in [1].

The results presented are intended to be a �rst step towards a more am-

bitious program which will address a number of further issues, including:

� The development of a better intuitive understanding of the growth rate of

the dimensions of the (approximated) languages.

� The investigation of how to associate algebraic objects which are more re-

�ned than dimensions to describe the expressiveness of languages, such as

dimension groups [8].

The ultimate goal would be a complete classi�cation of languages with

respect to their expressiveness based on such generalised indices.

Finally, we would like to apply our method to other classes of languages

such as concurrent constraint languages and, in particular to probabilistic

languages, where the use of a linear semantics seems to be particularly appro-

priate.

References

[1] Brogi, A. and J. Jacquet, On the expressiveness of Linda-like concurrent

languages, Electronic Notes in Theoretical Computer Science 16 (1998), p. 22.

[2] de Boer, F. S. and C. Palamidessi, Embedding as a tool for language comparison,

Information and Computation 108 (1994), pp. 128{157.

[3] Di Pierro, A. and H. Wiklicky, Linear structures for concurrency in probabilistic

programming languages, in: Proceedings of MFCSIT00{ First Irish Conference on

the Mathematical Foundations of Computer Science and Information Technology,

Cork, Ireland, Electronic Notes in Theoretical Computer Science 40 (2001).

[4] Graham, R., D. Knuth and O. Patashnik, \Concrete Mathematics: A Foundation

for Computer Science," Addison{Wesley, Reading, Massachusetts, 1989.

30

Brogi, Di Pierro, Wiklicky

[5] Greub, W. H., \Linear Algebra," Grundlehren der mathematischen

Wissenschaften 97, Springer Verlag, New York, 1967, third edition.

[6] Grimaldi, R. P., \Discrete and Combinatorial Mathematics | An Applied

Introduction," Addison-Wesley, Reading, Massachusetts, 1999, forth edition.

[7] Ito, K., editor, \Encyclopedic Dictonary of Mathematics," MIT Press,

Cambridge, Massachusetts { London, England, 1987, second english edition.

[8] Lind, D. and B. Marcus, \An Introduction to Symbolic Dynamics and Coding,"

Cambridge University Press, Cambridge { New York { Melbourne, 1995.

[9] Shapiro, E., Embeddings among concurrent programming languages, in: W. R.

Cleaveland, editor, Proceedings CONCUR 92, Stony Brook, NY, USA, Lecture

Notes in Computer Science 630 (1992), pp. 486{503.

31

