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A B S T R A C T

A ruthenium/iridium/iridium oxide nanohybrid supported on graphene oxide (RuIrOx_GO) was prepared via a
new protocol. The activity of the nanohybrid towards the simultaneous detection of hydrazine (HY) and hy-
droxylamine (HA) was evaluated in phosphate-buffered saline solution (pH 7.0). Differential pulse voltammetry
was used for the measurements, with a pulse amplitude of 50mV and a scan rate of 0.04 V s−1. Using the
modified electrode, the oxidation peak potentials for HY and HA can be easily distinguished, with a large peak
separation of 0.36 V. Very low LOD values of 2.1 μM and 1.6 μM were found for HY and HA, respectively. The
selectivity of the electrode and its stability were also studied The tolerance limits in the presence of different
interfering compounds were evaluated. After five weeks, a deviation from the expected results of ~2% was
observed for both HA and HY determinations.

1. Introduction

Detection of the class of natural organic pollutants containing ni-
trogen is a topic of significant importance in the context of environ-
mental control. Among these, hydrazine (HY) and hydroxylamine (HA)
are often present at the same time. In particular, hydrazine (HY) is
widely used as a reducing agent in fuel cells, an intermediate in pesti-
cide production, a scavenger, as a regulator of plant growth, a catalyst,
an anti-corrosion agent, and an anti-oxidant [1]. It is toxic [2] and an
object of pharmacological attention. Hydroxylamine (HA), which is also
an intermediate in the nitrogen cycle, is widely used in industry as a
reducing agent [3] and is also used in anti-cancer treatments [4]. This
compound is toxic for flora, fauna, and humans, even at low doses [5].

A range of different methods (potentiometry, spectrophotometry,
mass spectrometry, etc.) can be used for determination of HY and HA.
Because of the polarity of these molecules, their easy oxidation, absence
of chromophores and molecular weight, all these methods have ad-
vantages and limitations [6,7]. Although chromatographic methods are
a good analytical alternative, they involve complex and time-con-
suming procedures, and are subject to interference due to reactions
occurring within the system being analysed [8].

Electrochemical approaches provide a valid alternative, due to their

sensitivity, reliability, and ease of use. In terms of electrochemical de-
termination of HA and HY, a number of papers have been published on
hydrazine [9–13] and hydroxylamine [14–19] detection. In general,
high overpotentials are required for hydrazine and hydroxylamine
oxidation at bare surfaces, while overlapping responses can occur
during simultaneous detection, making determination impossible
[20–23]. Therefore, there is a need to fabricate simple, fast, selective,
stable, and sensitive systems based on modified surfaces capable of the
simultaneous determination of these two species.

A lot of investigative effort has recently been devoted to the intri-
guing electrochemical properties of nanoparticles (NPs) [24–26]. Metal
and metal oxide NPs have received attention due to their particular
characteristics, such as their conductivity and their excellent electro-
catalytic and electroanalytical properties, mainly due to their nano size
[24,27]. In particular, electron transfer at the electrode/analyte inter-
face is favored in the presence of NPs [27]. A considerable number of
NPs, including metallic NPs [24,28] and oxide NPs [29–31], have been
tested for detection of different species. Among those studied, ruthe-
nium and its derivatives have shown considerable ability as electrode
modifiers [9,32].

The simultaneous detection of HY and HA could be achieved
through the development of a precisely controlled (e.g., size, chemistry
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and shape) metal/metal oxide electrocatalyst. In other contexts, suc-
cessful preparation of catalytically active Au/Au2O3 [33], Ru/RuO2
[34], Pd/PdO [35] and Pt/PtO2 [26] has been reported, demonstrating
that a metal/metal oxide interface can improve the electrocatalytic
activity of the active metal catalyst.

The combination of iridium and ruthenium-based oxidation cata-
lysts represents one possible solution. Indeed, apart from Ru oxide
electrode sensors [9,32], Ir and Ru oxides have been found to be very
active anode materials [36–39] with a low overpotential for the oxygen
evolution reaction (OER) [39] and iridium oxide also demonstrating
long-term stability [40]. Moreover, the combination of Ir and Al2O3
constitutes a well-known commercial hydrazine activator, even at
293 K [41]. This robust catalyst, stable under the overpressure of re-
peated ignitions and characterized by great hardness, is used in the
ignition of rocket motors using HA fuel.

Here, for the first time, based on previous experience and studies,
we introduce an innovative protocol, designed to be ‘green’ and operate
under mild conditions, for the preparation of a ruthenium/iridium‑ir-
idium oxide supported nanocomposite which can be used as an elec-
trocatalyst, for HA and HY oxidation and their simultaneous detection.
In particular, during the synthesis, which is performed at low tem-
perature in water and in the absence of surfactants, the functional
groups, i.e., the –OH groups of graphene oxide, themselves act as re-
ducing agents and anchoring points for the formation of stable nano-
particles dispersed over a robust electrode. This study demonstrates
that the modified electrode is capable of distinguishing these two
analytes with two well-separated voltage peaks. The modified electrode
exhibits a low limit of detection (LOD) over repeated cycles of usage.

2. Materials and methods

2.1. Preparation of the nanohybrid

The procedure for fabrication of the nanosensor is shown in Fig. 1.
RuCl3·xH2O (0.1mmol) and IrCl3 (0.125mmol) were dissolved in dis-
tilled water (200mL) at 20 °C, and NH3·H2O (4.0M) was then added
dropwise to reach pH=10. Graphene oxide (GO) (100mg) was then
gradually added to the solution with magnetic stirring. The resulting
mixture was heated to 60 °C and stirred for 1 h. The pH was maintained
at 10 throughout this procedure. Subsequently, the final product was
obtained after centrifugation, drying at 80 °C overnight and calcination
at 150 °C for 2 h.

2.2. Characterization techniques

A number of methods were used to characterize the materials. An
FEI Tecnai electron microscope, equipped with an EDX probe, was used
to obtain transmission electron microscopy (TEM) images. A Phenom
electron microscope was used for scanning electron microscopy (SEM)
characterization. X-ray diffraction patterns were acquired by means of a

Bruker D8 X-ray diffractometer. A micro- Raman spectrometer
(Renishaw inVia, UK, 514 nm excitation wavelength) was used to ob-
tain Raman spectra. N2 adsorption–desorption (Kelvin 1042 V3.12,
COSTECH Instruments) at 77 K makes it possible to determine the
surface area, after 250 °C for 3 h pretreatment in He. A PHI-550
Multitechnique spectrometer was used for XPS measurements.

2.3. Electrochemical measurements

A potentiostat/galvanostat (PGSTAT302N Autolab Instruments
Metrohm) was employed for the electrochemical measurements, using
screen-printed platinum-based electrodes (SPEs). The electrochemical

Fig. 1. Synthesis of IrRuOx_GO nanohybrid.

Fig. 2. XPS analysis of RuIrOx_GO nanohybrid.
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performance of the sensor was evaluated in PBS (phosphate buffer so-
lution) at pH 7.0. A modulation amplitude of 50mV was used for DPV
(differential pulse voltammetry).

2.4. Electrochemical sensor preparation

A homogeneous ink was prepared by mixing 4mg of the catalyst
with 5 wt% Nafion solution (80 μL). The slurry/dispersions were
dropped onto the SPEs to produce modified electrodes [42].

3. Results and discussion

3.1. Characterization of RuIrOx_GO

Surface analysis of RuIrOx_GO was performed using XPS, see Fig. 2.
The Ir 4f XPS spectrum can be fitted by two pairs of curves, indicating
the simultaneous presence of metallic and oxidized phases. Metallic Ir
(0) is responsible for the 61.56 and 64.61 eV peaks. On the other hand,
the peaks at 62.54 and 65.60 eV are due to the Ir(IV) oxidized phase.
The electronic state of Ru is partially overlapped with the C1s peak. The
binding energy of Ru 3d5/2 is at 280.69 eV, slightly shifted (less than
0.5 eV) with respect to metallic Ru, because of the electron transfer
between Ru and O2 in graphene oxide. Four peaks can be used to de-
convolute the C1s spectrum of graphene oxide: at 284.54, 285.80,
287.54 and 289.69 eV, likely due to carbon–carbon, carbon–OH,
epoxy/alkoxy carbon and carbonyl groups, respectively.

The TEM images in Fig. 3a–b reveal the formation of NPs dispersed
on GO, preventing aggregation. The NPs appear to be anchored to the
substrate even after the ultrasonication used for TEM preparation. The
SEM images are shown in Fig. 3c. The EDX maps provide both topo-
graphical and quantitative information about the nanoparticles. The Ir
and Ru maps are superimposable, indicating a homogeneous distribu-
tion. The distribution of NP sizes is shown in Fig. 3d. The average
diameter was 2.8 nm with a standard deviation of 1.8 nm.

The Raman spectrum of the nanohybrid is shown in Fig. 4. This
displays the two characteristic Raman bands of nanocarbons, centred at
1351 and 1595 cm−1, which can be assigned to the D and G bands,
respectively [43]. No peaks from Ir oxides were detected, indicating the

Fig. 3. (a, b) TEM images of RuIrOx_GO
nanohybrid at different magnifications; (c)
FESEM image of RuIrOx_GO nanohybrid
and EDX maps of ruthenium (orange) and
iridium (red); (d) size distribution histo-
gram. (For interpretation of the references
to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Raman spectrum of RuIrOx_GO nanohybrid in the range
850–1800 cm−1.
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small size of Ir oxide inclusions.
Fig. 5 shows the XRD spectrum of the prepared nanosensor. The

peak at 42.7° is due to a Ru– Ir alloy hcp structure [44,45], in line with
the phase equilibrium of Ru and Ir in alloy form [46]. It is worth noting
that this peak is shifted to a lower angle than the corresponding peak of
Ru(101), which is typically at 43.6° [44], indicating the formation of a
Ru-Ir alloy. The broad peak at about 2θ= 26.10° corresponds to the
typical 002 planes of graphite and indicates that reduction of GO oc-
curred during sample preparation.

The BET surface area for RuIrOx_GO obtained from N2 ad-
sorption–desorption analysis is equal to 93.14m2/g. The distribution is
a multimodal, BJH (Barrett−Joyner−Halenda) pore distribution,
centered at 2.8, 5.9, 9.4 and 32.5 nm, indicating a network of larger and

smaller pores enabling electrode wettability and exposing surface na-
noparticles.

3.2. Electrochemical RuIrOx_GO sensor

The profiles shown in cyan and blue in Fig. 6 illustrate the behavior
of RuIrOx_GO during scans in the absence of HY and HA, and in the
presence of HY (0.3mM) and HA (0.5 mM) in PBS at pH 7.0, respec-
tively. The measurements were carried out by DPV (scan rate
0.04 V s−1). Two clear oxidation peaks with a large peak separation

Fig. 5. XRD pattern of RuIrOx_GO nanohybrid.

Fig. 6. DPV of RuIrOx_GO nanohybrid in PBS, without (cyan) and with (blue)
hydrazine (0.3 mM) and hydroxylamine (0.5 mM), recorded at a scan rate of
0.04 V s−1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. (a) DPV of RuIrOx_GO nanohybrid in PBS at various scan rates,
0.01–0.1 V s−1; (b) I vs. v1/2; (c) E vs. Log v.
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(0.36 V) can be observed. The curves exhibit high current densities and
low oxidation voltages of 0.18 and 0.54 V (vs. Ag/AgCl) for HY and HA,
respectively. Thus we can conclude that when RuIrOx_GO is used as a
working electrode, good separation of the HY and HA anodic peaks is
achieved.

DPVs of RuIrOx_GO were obtained at different scan rates from 0.01
to 0.1 V s−1 (Fig. 7a).

The anodic peak currents show a linear correlation with the scan
rate ѵ1/2 (Fig. 7b), indicating that the process is controlled by diffusion
phenomena [47]. Moreover, as the scan rate increases, the oxidation
voltages for hydrazine and hydroxylamine shift to more positive values,
suggesting that the reactions of HY and HA on the RuIrOx_GO electrode
are irreversible [48–50]. The behavior of the HY and HA oxidation peak
potentials with increasing scan rate (v) is shown in Fig. 7c. The Tafel
slope b is equal to (2.303RT/αnF) [49], where α is the transfer coeffi-
cient and n the number of electrons transferred. The calculated values

of αn are 0.694 and 0.650 for HY and HA, respectively. Assuming that
one electron transfer is the rate-determining step (n=1), the transfer
coefficient α assumes the values of 0.69 and 0.65 for HY and HA, re-
spectively, in agreement with the typical range 0.3–0.7 [51,52].

Fig. 8a and b show the amperometric responses of RuIrOx_GO
during a series of separate additions of HY at 0.18 V and HA at 0.54 V,
respectively, in stirred PBS at pH 7.0.

The amperometric response is a more effective method for the de-
termination of low concentrations of analytes. The sensor displays a
rapid amperometric response, reaching a new steady-state condition
within ~4 s. The current response calibration plots for hydrazine and
hydroxylamine are shown in Fig. 8c and d. The current response has a
linear correlation with concentrations from the very low value of
0.01mM to 0.4 mM and from 0.4mM to 6.5mM, for HY. Over the wide
ranges [1,23,53,54] of 0.02mM to 0.2 mM and 0.2mM to 7.0mM,
linear relationships were also obtained for hydrazine. Very low LOD
values of 2.1 μM and 1.6 μM (S/N=3) are achieved for hydrazine and
hydroxylamine, respectively, with R2 close to 1 in both cases.

Apart from the novelty of the surface modifier and the preparation
method used, our LODs have been obtained over larger ranges than in
refs. 1, 23, 53, 54, and with a higher voltage difference between the two
peaks of detection than in refs 1 and 53.

3.3. Interference and stability analyses

When trying to determine the concentration of HY and HA, a further
key issue is the effect of the presence of potential interfering ions and
electro-active species containing nitrogen, which are typically present

Fig. 8. Amperometric responses of the RuIrOx_GO nanohybrid after successive addition of (a) hydrazine at 0.18 V and (b) hydroxylamine at 0.54 V in a stirred PBS, at
pH 7.0. Calibration plots of RuIrOx_GO at different concentrations of (c) hydrazine (from 0.01mM to 6.5mM) and (d) hydroxylamine (from 0.02mM to 7.0mM).

Table 1
Interference analysis for the determination of hydrazine and hydroxylamine in
PBS, at pH 7.0.

Species Tolerance limit

(M)

NO3−, Na+, K+, F−, Br−, S2−, CO32−, Ni2+, PO43−, NO2−,
Ca2+, I−, Mg2+, CH3COO−, NH4+, Cl−, Ba2+, Zn2+,
Fe2+, Fe3+

0.8 ∗ 10^−1

Ethanol, glucose, hydrogen peroxide, urea, tartaric acid 4.6 ∗ 10^−3
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in natural water and industrial waste-waters, as well as being produced
by the nitrogen cycle.

The effects of different potential interfering compounds were eval-
uated using 0.4mM of HY and HA in PBS at pH 7.0. The tolerance limits
are shown in Table 1. These were assessed at the maximum con-
centration, which caused about± 5% of determination error.

The stability of the RuIrOx_GO-modified SPEs was also evaluated.
The electrodes were stored in PBS solution at room temperature for
5 weeks and washed before each use. A deviation from the expected
results of ~2% was observed for both HA and HY. To evaluate the re-
producibility of the RuIrOx_GO-based sensor, three electrodes made
under the same experimental conditions were tested by DPV. A relative
standard deviation of 1.8% was obtained, demonstrating appropriate
sensor reproducibility.

Fig. 9 shows the long-term current–time stability of RuIrOx_GO at
0.18 and 0.54 V (vs. Ag/AgCl) for HY and HA, respectively. The ex-
periments were performed for 2000 s in a PBS buffer solution con-
taining HY (0.3mM) and HA (0.5mM). A ~94% retention of the initial
response was observed for both HY and HA.

4. Conclusions

A ruthenium/iridium‑iridium oxide supported nanocomposite was
generated through an easy, scalable new protocol under mild condi-
tions. TEM analysis confirmed the formation of nanoparticles, with an
average diameter of 2.8 nm, dispersed on GO preventing aggregation. Ir
and Ru EDX maps were superimposable, indicating a homogeneous
distribution of metals in the nanoparticles. The XPS and XRD analyses
show the formation of a Ru-Ir alloy, the presence of IrOx and the re-
duction of GO during the sample preparation. RuIrOx_GO showed ex-
cellent behavior as a HA and HY sensor: high-value oxidation peak
separation (0.36 V), high current intensities, very wide linear ranges of
detection and low detection limits (2.1 and 1.6 μM for HY and HA,
respectively). These results are likely due to: the favorable porous
structure of the electrode; its large surface area; the high conductivity of
the GO network; and the promoter role of the oxides, which favor ac-
cumulation of metal charges and thus electron exchange between the
analytes and the electrode. Moreover, the selectivity of the electrode
was evaluated in the presence of several potentially interfering com-
pounds, finding no significant interference.
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