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ABSTRACT
The complexity of modern cloud facilities requires attentive
management policies that should encompass all aspects of
the system. Security is a critical issue, as intrusions, mis-
use or denial of service attacks may damage both the users
and the cloud provider including its reputation on the mar-
ket. Disruptive attacks happen fast, cause evident and short
term damages and are usually the result of operations that
are hard to disguise. On the other hand, Energy oriented
Denial of Service (eDoS) attacks aim at producing continu-
ous minor damages, eventually with long term consequences.
These long lasting attacks are difficult to detect. In this pa-
per we model and analyse the behaviour of a system under
eDoS attack. We study the impact in terms of cloud energy
consumption of an attack strategy previously proposed in
the literature and compare it with other strategies that we
propose. Our findings show that the strategy previously pro-
posed in the literature, based on keeping the cloud close to
saturation, is not optimal (from the point of view of the at-
tacker) in presence of non-constant workload and that there
is a trade-off between the aggressiveness of the attacker and
the duration of the attack in order to maximise the damage.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Performance,Security

Keywords
Security, Energy Denial Of Service, Markovian models

1. INTRODUCTION
Data centres are complex and dynamic environments which
can adapt their behaviours according to some external condi-
tions such as the current workload in order to offer services

which respect the Service Level Agreement (SLA) signed
with the customers. Although most of the complexity of
a cloud system arises in order to offer computing power or
other services to the subscribers, the management and sup-
port infrastructures are equally critical for the sustainability
and the efficiency of cloud infrastructures. Clearly, from the
end-user point of view, a cloud offers high quality services
whenever the functional and non-functional aspects of the
desired computation satisfy the agreements and the SLA.
Nevertheless, from the point of view of the administration
of the cloud, other aspects play a vital role. Among these we
mention the energy consumption, which is one of the impor-
tant costs that a cloud service supplier has to support. This
is witnessed by the many efforts that the research commu-
nity has devoted to the definition of administration policies
which tend to reduce the energy consumption while main-
taining reasonable levels for the Quality of Service (QoS),
see, e.g., [8, 13, 9] just to mention a non exhaustive list of
recent works. Informally, the idea behind these works is that
the computational power of the cloud infrastructure is re-
duced when the workload is light so that the overall power
consumption is reduced. When the workload intensity in-
creases the “sleeping” components are waken up so that the
QoS perceived by the users is still acceptable, at the cost
of an increased power consumption. A similar duality be-
tween users’ and cloud administration’s need does generally
characterise the common perception of security problems.
The end-users’ concerns are devoted to preventing attacks
to exposed system services which are generally disruptive
and evident, but the cloud management has to consider also
other equally dangerous and important menaces that target
the resource management architecture. Clearly, the scale
of cloud systems is an additional complexity factor which
makes the design of suitable countermeasures a challenging
task. Indeed the vulnerability of cloud systems depends on
two fundamental characteristics: first, they apply, to some
extent, autonomic and user driven resource allocation poli-
cies and a number of self-managed mechanisms providing
elasticity, based on reconfiguration; secondly, they are open
to Internet access, serving a large number of users that de-
mand services which can be designed, offered and managed
by the cloud users who signed an agreement about the QoS
requirements.

The importance and exposure on the Internet of cloud com-
puting facilities make them a very attractive target for ma-
licious users. In this paper we present a stochastic model
to study the impact on a cloud computing facility of an En-

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262650



ergy oriented Denial of Service (eDoS) attack. This is a
specially subtle, non disruptive attack that aims at increas-
ing the energy consumption of a system by injecting legiti-
mate workload with malicious purposes. The success of an
eDoS attack depends on two factors: the gap between the
ideal power consumption (i.e., without malicious users) and
the effective power consumption, and the length of the at-
tack. An aggressive attacker may inject a fictitious workload
with high intensity with the aim of maximizing the power
dissipation but as a consequence the risk of passing from
a eDoS attack to a DoS attack is high. In these cases the
cloud administration may take countermeasures to defend
the system from DoS attacks, or the system may be over-
loaded. On the other hand, a less aggressive attacker may
decide to reduce the power dissipation with the objective
of extending the attack duration, since the eDoS will less
likely become a DoS attack. In this paper we investigate
this trade-off and compare different strategies that can be
employed by the attackers. Our findings show that some of
the strategies proposed in the literature [6] produce on av-
erage more damages than others, and show how the balance
between the attacker aggressiveness and the attack duration
could be handled. We believe that these results can be use-
ful for the cloud infrastructures to define statistical methods
for recognizing eDoS attacks.

The paper is organised as follows: the next section presents
eDoS attacks and related works, Section 3 describes the
model and Section 4 gives the algorithms for the compu-
tation of the performance indices. Section 5 presents the
different attacker strategies that we consider and compare
their effects on the energy consumption of the system. Fi-
nally, Section 6 gives some final remarks.

2. EDOS ATTACKS TO CLOUD SYSTEMS
The most common security attacks to networked systems
aim at taking over or taking down the target. In the first
case, the goal is to gain administrative privileges in the sys-
tem, to take its control and use all or part of its resources
for own purposes. This kind of attack requires a very good
knowledge of the target and a strong expertise, and is gen-
erally detected by the administrator after a while because
of irregular behaviours of the system or different usage pat-
terns. In the second case, it is possible to flood the system
with connection requests by means of a high number of irreg-
ular handshaking messages from a (group of) computer(s),
and saturate the target possibility of processing regular re-
quests obtaining a (Distributed) Denial of Services attack -
(D)DoS. This kind of attack simply requires what is needed
to saturate the incoming request bandwidth or computa-
tional power of the target, and it is immediately detected
by the administrator because of its strong impact on the op-
erations and the network connection. However, more subtle
attacking techniques may be used such that those aiming
at damaging the system in a hardly detectable way for in-
stance by targeting the operating cost. This can be achieved
by forcing the system to consume more energy and hence to
need a higher cooling power, to shorten the lifetime of its
hardware components because of the overload [11]: it is the
case of eDoS attacks that allow malicious users to abuse the
system and to force it to spend more energy than needed for
the normal workload by injecting fictitious jobs with mini-
mal impact on normal usage patterns. Although the instan-

taneous overload may be minimal, the effects on the long
term cause additional costs, that may significantly affect the
ability of a provider to stay on the market or to pay back the
investments. As first, adding a low but continuous overhead
implies additional costs for the energy needed for providing
computing power, but also raises the energy expenditure for
the cooling subsystem. This is obtained in small scale by
preventing single components from entering low consump-
tion states, and in big scale by forcing the infrastructure to
use more computing nodes than actually needed [4]; more-
over, the storage subsystem could also be involved, with
more additional energy requirements, and potentially addi-
tional network related costs, as in many architectures com-
puting and storage nodes are separated and more network
traffic implies more routing activities. As second, all com-
ponents are overused: consequently, maintenance operations
will be more frequent and parts will need to be replaced ear-
lier than expected [12].
During a eDoS, the attacker bases its strategy on the request
of services, that cannot be distinguished from other requests,
with the double aim of monitoring the response of the sys-
tem and slightly increasing the resources that are needed to
serve them. According to the results of the monitoring, the
attacker decides the request rate so to raise the workload
without making it evident, and continues raising at given
time intervals until the malicious workload reaches a top
level, beyond which the risk of being detected becomes too
high. Such an attack spans over a significantly long time, so
that the additional workload produces significant effects on
the long distance and becomes less and less distinguishable
from normal workload patterns. Eventually, a well designed
eDoS attack can exploit the elasticity mechanisms of the
cloud infrastructure, causing additional damage. The first
examples of similar attacks are presented in [7] and [18],
while a good survey on the topic is [12] and [6] presents a
proof of concept and an experimental performance evalua-
tion.
Detecting an eDoS is generally difficult, as there is need for
knowledge about temporal behaviour of energy usage and
for good hypotheses about the regularity of the workload:
while for batch systems or scientific oriented computation
facilities a fairly good knowledge of the workload is concep-
tually achievable, the characterization of the workload of a
typical cloud infrastructure is less easy to be available. The
low rate nature of eDoS contributes to lowering the effective-
ness of usual traffic monitoring based detection techniques
[5].

In order to model the behaviour of a cloud system during a
eDoS attack, we chose a Markov chains based approach.

3. A MODEL FOR THE EVALUATION OF
EDOS ATTACKS

In this section we introduce a Markovian model for the anal-
ysis of eDOS attacks. It consists of two cooperating compo-
nents: one modelling the behaviour of the cloud system and
the other the attacker policy. Both the models are abstrac-
tions of much more complicated systems but they catch the
salient aspects which are important to allow us to compare
the impact of different policies adopted by the attackers. As
for the notation, we use the Iverson’s brackets, i.e., [C] is 1 if
the Boolean proposition C is true, 0 otherwise and the stan-
dard Kronecker’s algebra symbols to specify the cooperation



between the models.

3.1 A model for the cloud infrastructure
We model the cloud infrastructure with a finite set of states

SC = {0, 1, 2, . . .K}

with K > 1. Each state corresponds to a different power
intensity used by the cloud infrastructure to serve the re-
quests. Let p(k) ∈ R+ be the power spent in state k ∈ SC .
We assume p(k) to be non-decreasing bounded function of
k for k ∈ [0,K − 1] and p(K) = 0. We partition the states
into three disjoint classes:

• States from 0 to T > 0 denote the situation in which
the cloud infrastructure works properly, i.e., by scaling
its computational power (and hence reducing or aug-
menting its power consumption) the system can fulfill
the desired service level agreement (SLA).

• States from T + 1 to K − 1 denote the situation in
which the quality of service deteriorates since the cloud
system is at its full computational power and is not
able to improve the quality of service.

• State K denotes the situation in which the system
crashes due to an excess of workload (e.g., the eDOS
attack has degenerated into a DOS attack). Alterna-
tively, we can see state K as the situation in which
the countermeasures to defend the system from DOS
attacks are taken and hence the effectiveness of the
eDOS attack is over.

We abstract out the details of a real-world cloud behaviour
and model its behaviour as a continuous-time random walk
on the line with an absorbing barrier (i.e., state K). This
implies that only transitions between adjacent states are al-
lowed and that the residence time in a state is exponentially
distributed. These assumptions can be relaxed at the cost of
a higher computational complexity for the model analysis.
Using the Iverson’s bracket notation, we can describe the
transition rate matrix of the cloud as follows:

C0(i, j) = λ(i)[j = i+ 1] + µ(j)[j = i− 1][j 6= K] , (1)

where i, j ∈ [0,K]. Notice that both λ(i) and µ(j) are state
dependent. The former value represents the standard work-
load of the cloud while the latter the service rate. In our
scenario we have µ(j) = µ(T ) for j ∈ [T + 1,K], i.e., the
service rate does not increase with the system load when we
are in the phase in which we observe the QoS degradation.
For each state of the cloud model, the attacker can observe
a certain QoS. However, all the states in [0, T ] satisfy the
SLA and hence are indistinguishable from the point of view
of the attacker. We represent this fact with a K+ 1×K+ 1
matrix where the diagonal elements have value 1 if the SLA
are satisfied:

COK(i, j) = [i = j][i ≤ T ] , 0 ≤ i, j ≤ K . (2)

Let Lk be the QoS observed by the attacker when the cloud
model is in state k with k ∈ [T + 1, K − 1] and let

CLk (i, j) = [i = j][i = k] , T + 1 ≤ k ≤ K , (3)

and i, j ∈ [0,K]. Finally, we introduce a matrix that de-
scribes the reaction of the cloud to the workload generated

by the attacker. Essentially this is indistinguishable, from
the point of view of the cloud, from the standard requests.
The matrix consists of 0s and 1s, where 1 denotes the transi-
tion corresponding to an injection of work from the attacker.
The rate of this transition is specified by the attacker.

Cλ(i, j) = [j = i+ 1] . (4)

3.2 A model for the attacker
In this section we model the behaviour of the attacker de-
scribed in Section 2. We recall that the attacker can only
observe the QoS offered by cloud in order to decide the inten-
sity of the workload that will be required in order to achieve
a eDOS attack. The attacker consists of G states

SA = {0, . . . , G− 1} ,

each of which generates a workload for the cloud λA(g),
g ∈ [0, G−1]. Without loss of generality we assume λA(g1) ≥
λA(g2) if g1 ≥ g2. Let Aλ be a G×G matrix defined as:

Aλ(i, j) = [i = j]λA(i) . (5)

The attacker observes the QoS offered by the cloud which
can be OK,LT+1, . . . , LK−1 and decides the transition to a
new state. Intuitively, given that the attacker is in state g1,
if a QoS denoted by OK is observed then a transition to a
state g2 ≥ g1 is performed, whereas if a QoS Lk is observed
then a transition to state g2 ≤ g1 is performed. Let γ(g)
be the rate at which the attacker decides the intensity of
the workload given that it is in state g, and let AOK , ALk ,
k ∈ [T + 1,K−1] be the matrices that describe the reaction
of the attacker to an observed QoS. For instance reasonable
settings for these matrices could be:

AOK(i, j) = γ(i)[j = i+ 1] , (6)

ALk (i, j) = γ(i)[j = i− 1] , T + 1 ≤ k ≤ K − 1 ,

and 0 ≤ i, j ≤ G − 1. In this case the attacker moves only
between adjacent states trying to find an equilibrium that
maximises the cloud power consumption while maintaining
the QoS acceptable. A different strategy consists in drasti-
cally reduce the workload as soon as the attacker perceives
a deterioration of the QoS. This model aims at reducing the
probability of failing the attack (i.e., the cloud model goes
to state K). This behaviour can be modelled as follows:

AOK(i, j) = γ(i)[j = i+ 1] , (7)

ALk (i, j) = γ(i)[j = 0] , T + 1 ≤ k ≤ K − 1 ,

3.3 The cooperation between attacker and cloud
models

Now we define the joint model between attacker and cloud
by means of the Kronecker’s algebra. Its transition rate
matrix M is:

M = C0 ⊗ IG + COK ⊗AOK +

K−1∑
k=T+1

CLk ⊗ALk

+ Cλ ⊗Aλ , (8)

where IG is the identity matrix with size G. The correspond-
ing infinitesimal generated is defined as:

Q = M− diag(M1) , (9)



where 1 is a column vector of all 1 and diag transforms a
column vector v into a diagonal matrix whose elements in
position (i, i) are the elements v(i).

3.4 Quantitative indices
We observe that the states of M does not describe an ergodic
CTMC. Indeed, once the cloud model is in state K it cannot
leave. Therefore, in the joint model described by transition
matrix M all the sates (K, g) with g = 0, . . . G−1 are associ-
ated with a failure of the attack and represent an absorbing
subset of the states. Let X(t) be the CTMC whose infinites-
imal generator is Q as defined by Equation (9). A state of
X(t) is a pair (k, g) with 0 ≤ k ≤ K and 0 ≤ g ≤ G − 1.
We write |X(t)|1 (|X(t)|2) to denote the first (second) com-
ponent of the pair. Let τ be the r.v. representing the time
required by the chain to reach a state of the class (K, g)
where g ∈ [0, G− 1]:

τ = inf{t ≥ 0|X(t) = (K, g) , g ∈ [0, G− 1]} .

By definition of M (and hence of Q) when the transition
rates are strictly positive τ is finite with probability 1. Hence
τ = E[τ ] is the finite expected time to absorption. The
energy consumed up to absorption is the r.v. defined as:

R =

∫ ∞
0

p(|X(t)|1)dt , (10)

since p(K) = 0 by definition. Since p(k) is bounded then
P{R < ∞} = 1 and we define R = E[R] as the expected
energy consumed by the cloud before the absorption.

4. PERFORMANCE INDICES
In this section we give effective methods for the computation
of the performance indices. We observe that the standard
approach based on the computation of the expected time and
reward to absorption is not feasible for studying attacks with
long duration since the matrix inversion which is required
becomes a numerically unstable operation. For this reason
we resort to an approximation technique which is based on
the notion of quasi-stationary distribution. In Section 5 we
show the quality of this approximation by comparing it with
the exact results in regions in which the numerical stability
problem of the exact problem does not arise yet.

4.1 Exact numerical computation
The computation of R and t can be performed in a standard
way (see, e.g., [14, Ch. 10]). Let M′ = [M]KG be the
transition rate matrix formed with the first K ·G rows and
columns of M, and let P be defined as:

P =
(
[diag(M1)]KG

)−1
M′ ,

i.e., P is the transition matrix of the discrete time Markov
chain (DTMC) embedded in X(t) reduced to the transient
subset of states and hence P is sub-stochastic and can be
inverted [14]. Let Rs = E[R|X(0) = s] with s ∈ [0,K− 1]×
[0, G− 1], and let r be the column vector whose component
s is Rs. We have:

r = (I−P)−1v , (11)

where v is a column vector whose s-th component is

v(s) =
p(|s|1)∑

j∈[0,K]×[0,G−1]
j 6=s

qsj
.

Let π(s) be the column vector with the initial distribution,
then R is:

R = πT r . (12)

The numerical computation of τ is analogous, the difference
relies on the definition of vector v which has to be replaced
by w in Equation (11) where:

w(s) =
1∑

j∈[0,K]×[0,G−1]
j 6=s

qsj
,

and hence r′ = (I−P)−1w and

τ = πT r′ . (13)

4.2 Approximation of the performance indices
for long absorption times

In practice, when the duration of an attack is very long the
evaluation of the performance indices by means of Equa-
tion (11) is unfeasible because matrix I−P is almost singu-
lar. Therefore, we propose an approximation method that
relies on the theory of quasi stationarity [3]. Intuitively,
when the expected time to absorption is much greater than
the CTMC’s transition times and the finite transient subset
of states is irreducible, it may be the case that the transient
part, conditioned to the fact that the absorbing states are
not visited, reaches a stationary behaviour. Based on this
intuition, the theory of quasi-stationary CTMCs has been
developed to study the extinction times in population mod-
els (see, e.g., [3, 2, 1]).

Let us consider the CTMC X(t) above defined and let

U = {(k, g) : k ∈ [0,K − 1] ∧ g ∈ [0, G− 1]} ,

be the set of transient states and QU = [Q]KG be the in-
finitesimal generator matrix reduced to the states in U . Vec-
tor a defined as

a = −QU1 ,

has non-negative entries that represent the sum of the tran-
sition rates from any transient state in U to one of the ab-
sorbing states. Note that since we are not interested in the
behaviour of the chain once it reaches a state s = (K, g) for
arbitrary g we can simplify our exposition by assuming a
unique absorbing state s = (K, ·). With this simplification
the generator of X(t) can be written as:[

QU a
0 0

]
.

Definition 1. Let τ be the time to absorption of X(t),
i.e., then a distribution u is said to be quasi-stationary for
X(t) if

Prq{X(t) = s|τ > t} = q(s) ,

where Prq denotes that the distribution of X(0) is q.



Henceforth, we assume that the states in U form a single
communicating class. Matrix QU has a unique eigenvalue
−α with maximal real part and α ∈ R+ with geometric
multiplicity 1 [15, 10, 17]. Therefore, there exists a unique
pointwise positive vector q such that

qTQU = −αqT ,

with 1Tq = 1 and q is the unique distribution that satisfies
Definition 1. The following proposition plays a pivotal role
in our approximation because it gives an exact numerical
method to derive the distribution of the time to absorption
from a quasi-stationary distribution.

Proposition 1 (Time to absorption [10, 17]). Let q
be the quasi-stationary distribution of X(t) for the subset of
states U , then we have:

Prq{τ > t+ ∆t|τ > t} = e−α∆t t,∆t ≥ 0 . (14)

i.e., the absorption time from a quasi-stationary distribu-
tion is exponentially distributed with parameter given by the
highest (negative) real (left) eigenvalue of QU .

As a consequence we simply have τ = α−1 when the chain
at time 0 is distributed according to a quasi-stationary dis-
tribution.

In our case, the initial state of X(t) is not necessary a quasi-
stationary distribution since this would require the attacker
to choose its initial behaviour from a random state chosen
according to a distribution whose computation requires a
deep knowledge of the cloud architecture that is not avail-
able. However, for large values of τ we assume that by the
time of absorption the chain has spent enough time in its
quasi-stationary distribution in such a way that the warm
up period duration is negligible. Indeed, the following result
holds [17].

Proposition 2. Let w be any probability distribution over
U , then

• limt→∞ Prw{τ > t+ ∆t|τ > t} = e−α∆t ;

• limt→∞ Prw{X(t) = s|τ > t} = q(s) .

Therefore, for large absorption times we approximate τ as:

τ ' α−1 , (15)

regardless to the initial distribution of X(t). Finally, we
have:

R ' α−1
∑
s∈U

p(|s|1)q(s) . (16)

In practice the precision of the approximation depends on
the spectral gap η between α and α2, where α2 is the eigen-
value with the next largest real part after α:

η = Re(α2)− α .

The convergence of the initial distribution of X(t) to the
quasi-stationary distribution is fast if η >> α.

It remains to address the problem of determining the high-
est left eigenvalue of QU . We note that since QU is a square
matrix with components in R the set of right and left eigen-
values are the same. Moreover, finding the eigenvalue with
the highest real part of QU corresponds to finding the eigen-
value with the smallest real part of −QU . Indeed, −QU

is a M-matrix [17]. Moreover QU is also diagonal domi-
nant, therefore the computation of the eigenvalue with the
smallest real part can be performed with one the algorithms
described in [16] whose numerical accuracy is higher than
the standard QR decomposition for tiny values of α (val-
ues of 10−12 are handled with precision of 10−16) even for
ill-conditioned cases.

5. EXPERIMENTS
The goal of this section is to use the model defined in Sec-
tion 3 and the analysis techniques introduced in Section 4 to
evaluate the effects of the eDoS attacks and compare differ-
ent strategies for the attacker. We propose three strategies
following the lines of [6]:

Strategy 1 The attacker moves from state g to state g +
1, i.e., it increases the arrival intensity at the cloud
system whenever it observes a QoS of type OK and
it has not already reached the maximum intensity it
could generate. Conversely, the attacker moves from
state g to state g − 1 whenever it observes a QoS of
type Lk and it is not already at state 0. This is the
same behaviour that is described by Equation (6).

Strategy 2 As in the previous strategy, the attacker moves
from state g to state g+1 whenever it observes a QoS of
type OK and it has not already reached the maximum
intensity it could generate. However, when it observes
a QoS of type Lk, the attacker goes back to the state
0. This is the behaviour described by Equation (7).

Strategy 3 The attacker, like in the previous strategy, moves
from state g to state g+1 whenever it observes a QoS of
type OK and it has not already reached the maximum
intensity. When a QoS of type Lk is observed, the at-
tacker moves from state g to state max(g − k + T, 0).
This approach is less aggressive than the one of Strat-
egy 1, but more than the one of Strategy 2.

In Section 5.1 we validate the accuracy of the approximation
method based on quasi-stationary distributions and in Sec-
tion 5.2 we study the performance indices (expected energy
consumption and expected time to absorption) for the three
strategies. Specifically, we evaluate the damage of an attack
as the ratio between the expected energy consumption by
considering the effects of the attacker and the expected en-
ergy consumption (in the same time interval) of the cloud
without the attacker in the same time interval. The lat-
ter index is computed by computing the quasi stationary
distribution of the CTMC underlying the cloud model by
conditioning on the fact that the absorbing states are not
visited. Finally we consider the impact of an attack as the
ratio between the expected time to absorption in presence
of the attacker and the expected time to absorption without
the attacker.

The parameters of the experiments shown in Sections 5.1
and 5.2 are given by the respective columns of Table 1. In-



terval values, such as those of λ for Section 5.1 and of F for
Section 5.2, indicate that the experiment is carried on over
sampled points in that range. All the computations were
carried out using MATLAB.

5.1 Validation of the approximation
In Section 3 we observed that, for long absorption times τ , R
and τ can be approximated using Equations (16) and (15),
respectively. Now we evaluate the accuracy of those ap-
proximations for several sets of parameters. We show some
significant plots that summarise our validation procedure.
We chose an arbitrary set of parameters, given by Table 1,
whose names are coherent with those given in Section 3. The
denominator of parameter γ(g), i.e., the frequency at which
the attacker decides to change its state according to the ob-
served behaviour of the cloud, is chosen in order to allow the
attacker to gain a statistically significant number of obser-
vations. In this section the parameters of the attacker are
fixed, while the independent arrival rate to the cloud λ, thus
its initial load, varies within the given interval. The power
consumption of the cloud is proportional to the number of
active servers, thus p(k) = min(k, T ).

In Figures 1 and 2 we plot the exact and approximate val-
ues of R and τ , respectively, using Strategy 1. In Figures 3,
4 and 5 we show the relative error between the exact and
the approximate value of R and τ , for the set of parameters
given by Table 1 and the strategies 1,2 and 3 described be-
low, respectively. In those and all the following examples,
the initial distribution π(s) in Equations (12) and (13) is
assumed to be

π(s) =

{
π(s)[C]K

(⌊
s
G

⌋)
if s mod G = 0

0 otherwise

where π(s)[C]K is the stationary distribution of the cloud
C, conditioned on the fact that the absorbing states have
not been visited, considered in isolation.

We have studied our model in a region in which the expected
time to absorption can still be studied in the exact way
but is long enough to make the approximating approach
accurate. For longer expected absorption times the exact
method based on the matrix inversion would not be feasible
any more, due to the numerical instability of the matrix
inversion required by Equation (12) and (13). The figures
clearly show that, as the inter-arrival time increases, making
the mean absorption time longer, the relative error of the
approximation rapidly decreases. This is coherent with the
claims of Section 3.

5.2 Comparison of different attack strategies
In this section we compare the aforementioned three strate-
gies of the attacker with respect to the effects on the average
absorption time τ and the average energy consumption R for
the cloud system model. As shown in Table 1, the parame-
ters for those experiments are partially different from those
for the experiments of Section 5.1. In particular, we chose a
reference λ for the independent arrivals to the cloud, and we
varied the scale of the attack intensity, here represented by
a factor F . We parametrise the attack intensity λA(g) for
a state g of the attacker such that, after an initial phase in
which the attacker does not perform requests, the attacker

Parameter Sec. 5.1 Sec. 5.2
K 20 20
T 14 14
G 6 6
λ [1.3, 7.0] 1
µ 1.2 0.5
γ(g) µ/30 min (max (λA(g), λ) , Tµ) /30
λA(g) Fg Fgµ
F 0.8 [2.0, 8.0]
p(k) min(k, T ) min(k, T )

Table 1: Parameter values for the experiments of Section 5

at first chooses a request rate slightly lower (here by a factor
of 0.8) than the service rate of a single Cloud server, which is
µ. The choice for the transition rate γ(g) between a state of
the attacker g and its adjacent states g−1 and g+1 (if they
exists) is determined by min (max (λA(g), λ) , Tµ) /30. Here,
as stated before, the denominator represents the fact that,
in a real system, we want to collect enough samples (here
30) on the QoS data to have statistical significance. The nu-
merator, here, represents the rate at which we could expect
to collect those data, i.e., how many service completions the
attacker could observe for its own requests. This quantity is
capped by the maximum throughput of the cloud Tµ, and is
given either by the throughput λ of the cloud in isolation or
by the rate at which the attacker performs requests λA(g).

In Figure 7 we show how the mean absorption time for the
same set of parameters varies according to the chosen strat-
egy, while in Figure 6 the same comparison is made for the
expected energy consumption. In Figure 8, Figure 9 and
Figure 10, the expected energy consumption of the cloud
system without an attacker is compared to the one having
an attacker using strategies 1, 2 and 3 respectively. In those
last examples, the energy consumption of the cloud in iso-
lation is computed over the mean absorption time τ for the
model with the attackers (which explains why apparently
the model in isolation shows a different behaviour for differ-
ent attacker strategies). Figures 11 and 12 show the ratio,
for the previously described strategies, between the mean
energy consumption of the model including an attacker and
the energy consumption, over the same time frame, of the
cloud in isolation. For the first of these Figures the range
chosen for F is (0, 2], in order to show that the ratios are
not monotonic and that they may have a different maximum
for different strategies. Finally, Figures 13 and 14 show, for
each of the aforementioned strategies, the ratios between the
average absorption time of the model with and without the
attacker, in the range F ∈ (0, 2) and F ∈ [2, 10], respectively.
The figures show that, for this set of parameters, Strategy 2,
i.e., the one with the least aggressive behaviour, is the most
effective in inducing the cloud system to consume more en-
ergy, followed by Strategy 3. Strategy 1, i.e., the approach
suggested in the literature, is the most aggressive but the
least effective of these strategies, especially for a low load
factor. Although the comparison between Figures 6 and 7
seems to suggest that those performance differences exist
due to the differences in absorption time, Figures 11 and 12
show that, even for ratios between consumptions normalised
over the same time, Strategy 2 is indeed better.
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Figure 1: Exact and approximate
computation of R
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Figure 2: Exact and approximate
computation of τ
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Figure 3: Relative approximation er-
ror for R and τ , Strategy 1
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Figure 4: Relative approximation er-
ror for R and τ , Strategy 2
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Figure 5: Relative approximation er-
ror for R and τ , Strategy 3
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Figure 6: Computation of R for dif-
ferent strategies
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Figure 7: Computation of τ for differ-
ent strategies
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Figure 8: Comparison of R with or
without attacker. Strategy 1
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Figure 9: Comparison of R with or
without attacker. Strategy 2
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Figure 10: Comparison of R with or
without attacker. Strategy 3

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

F

A
v
e
ra

g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 r

a
ti
o

 

 

Strategy 1
Strategy 2
Strategy 3

Figure 11: Ratio between values of R
with and without attacker, F ∈ (0, 2]
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Figure 12: Ratio between values of R
with and without attacker, F ∈ [2, 10]
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Figure 13: Ratio between values of τ
with and without attacker, F ∈ (0, 2]
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Figure 14: Ratio between values of τ
with and without attacker, F ∈ [2, 10]

6. CONCLUSION
In this paper we have proposed a Markovian model to study
the impact of eDoS attacks to cloud infrastructures. These
kind of security attacks target the management infrastruc-
ture of the cloud by injecting fictitious workload that in-
creases the system energy consumption. The proposed anal-
ysis is based on the evaluation of the mean time to absorp-
tion and on the expected cumulated rewards in a CTMC de-
scribing the attacker strategy and the cloud state. We gave
numerically stable methods to compute (or approximate for
long-lasting attacks) the performance indices that allow us
to evaluate the impact of an attack. Our findings show that
low-aggressive strategies of the attackers are more danger-
ous for the cloud since they do not change significantly the
life-time of the systems while they maintain a higher energy
consumption. Future works include a formulation of a more
detailed model of the cloud infrastructure and a validation
of the analysis. Based on these works we plan do design
a statistic approach to estimate the probability of being in
presence of an eDoS attack in a cloud infrastructure.
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