
ORIGINAL RESEARCH
published: 13 August 2019

doi: 10.3389/fbloc.2019.00007

Frontiers in Blockchain | www.frontiersin.org 1 August 2019 | Volume 2 | Article 7

Edited by:

Massimo Bartoletti,

University of Cagliari, Italy

Reviewed by:

Roman Matzutt,

RWTH Aachen Universität, Germany

Chen Feng,

University of British Columbia

Okanagan, Canada

*Correspondence:

Stefano Bistarelli

stefano.bistarelli@unipg.it

Ivan Mercanti

ivan.mercanti@imtlucca.it

Francesco Santini

francesco.santini@unipg.it

Specialty section:

This article was submitted to

Non-Financial Blockchain,

a section of the journal

Frontiers in Blockchain

Received: 15 March 2019

Accepted: 26 July 2019

Published: 13 August 2019

Citation:

Bistarelli S, Mercanti I and Santini F

(2019) An Analysis of Non-standard

Transactions. Front. Blockchain 2:7.

doi: 10.3389/fbloc.2019.00007

An Analysis of Non-standard
Transactions
Stefano Bistarelli 1*, Ivan Mercanti 2* and Francesco Santini 1*

1Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy, 2 IMT School for Advanced

Studies, Lucca, Italy

In Bitcoin, the most common kind of transactions is in the form “Bob pays Alice,”

and it is based on the Pay to-Public Key Hash (P2PKH) script, which are resolved by

sending the public key and a digital signature created by the corresponding private

key. P2PKH transactions are just one among many standard classes: a transaction is

standard if it passes Bitcoin Core IsStandard() and IsStandardTx() tests. However, the

creation of ad-hoc scripts to lock (and unlock) transactions allows for also generating

non-standard transactions, which can be nevertheless broadcast and mined as well.

In this work, we explore the Bitcoin block-chain with the purpose to analyze and

classify standard and non-standard transactions, understanding how much the standard

behavior is respected.

Keywords: Bitcoin, standard transaction, non-standard transaction, Bitcoin script, P2SH, OP_RETURN

1. INTRODUCTION

The white-paper on Bitcoin appeared in November 2008 (Nakamoto, 2008), written by a computer
programmer(s) using the pseudonym “Satoshi Nakamoto.” His invention is an open-source,
peer-to-peer digital currency. Money transactions do not require a third-party intermediary, with
no traditional financial-institution involved in transactions. Therefore, the Bitcoin network is
completely decentralized, with all the transaction components performed by the users of the system.

In this paper we investigate standard and non-standard transactions in the block-chain
of Bitcoin. Transactions are standard if they pass the controls implemented in the reference
Bitcoin-node software, i.e., Bitcoin Core1. Our interest is mainly focused on non-standard ones,
of which we provide a classification in nine different types, extending some previous analysis
for bitcoin2 (Bistarelli et al., 2018a) and in a manner similar to what done for ethreum
(Bistarelli et al., 2019a).

The main motivation behind the paper is to provide an updated and comprehensive screen-shot
of standard and non-standard transactions from Bitcoin origins until today. In particular, the
goal consists in understanding what and how partial adherence to the Bitcoin protocol or flaws
have been exploited so far, accidentally or not. Hence, we can evaluate the errors and misuses
accepted by some of the miners in the network. The main result is that only the 0,02% of
transactions is non-standard (2009–November 2018). In addition, this study addresses further
general questions. For example, there is no particular miner pool that validates only some specific
classes of non-standard transactions: all pools that deviate from the standard behavior accept these
classes. We also saw that only 2,615 bitcoins (out of more then 17 million in circulation) were
definitely “burned” (i.e., made no longer spendable) due to non-standard transactions.

1https://bitcoin.org/
2http://www.quantabytes.com/articles/a-survey-of-bitcoin-transaction-types

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2019.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2019.00007&domain=pdf&date_stamp=2019-08-13
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stefano.bistarelli@unipg.it
mailto:ivan.mercanti@imtlucca.it
mailto:francesco.santini@unipg.it
https://doi.org/10.3389/fbloc.2019.00007
https://www.frontiersin.org/articles/10.3389/fbloc.2019.00007/full
http://loop.frontiersin.org/people/356138/overview
http://loop.frontiersin.org/people/624135/overview
http://loop.frontiersin.org/people/580334/overview
https://bitcoin.org/
http://www.quantabytes.com/articles/a-survey-of-bitcoin-transaction-types


Bistarelli et al. An Analysis of Non-standard Transactions

The paper, which extends Bistarelli et al. (2018a), is organized
as follows: section 2 describes how Bitcoin transactions work, the
Bitcoin scripting language, and what the standard transactions
are; section 3 shows the non-standard transactions that we
found in the block-chain, and related statistics; section 4 shows
the statistics of standard and non-classical Bitcoin transactions
nested in P2SH transactions, focusing on non-standard ones
reported in the literature; section 5 classifies OP_RETURN
transactions by their byte size, and it also presents related
statistics; section 6 shows related works. Finally, section 7 draws
the final conclusions and proposes ideas about future work.

2. BACKGROUND

2.1. Transactions
A Bitcoin wallet stores a collection of public/private key-pairs
of a user, and not directly bitcoins. A Bitcoin address is an
identifier of 26–35 alphanumeric characters, and it strictly
derives from the hash of a generated public key (pubkey in
the following; Antonopoulos, 2017). A private key is a random
256 bit number, and the corresponding pubkey is generated
through an Elliptic Curve Digital Signature Algorithm (ECDSA).
A transaction input must store the proof it belongs to who
wants to reuse the money received in a previous transaction.
The output of a transaction instead describes the destination of
bitcoins by providing a challenge to users. Hence, the ownership
of the coins is expressed and verified through links to previous
transactions. For example, in order to send 3 bitcoins (BTC)
to Bob, Alice needs to refer to other transactions she has
previously received, whose amount is 3 BTC at least. To lock
the coin, a script called scriptPubKey is used, while to prove
the ownership of a coin, a script called scriptSig is used instead.
In the following, we will refer to them as “locking script” and
“unlocking script.”

2.2. UTXO and Memory Pool
A UTXO is an Unspent Transaction Output that can be spent
as an input in a new transaction. To assemble the candidate
block, a Bitcoin miner selects transactions from the memory
pool (mempool for short): as its name suggests, it is a pool
of memorized transactions collected by a miner. The data that
is stored in the mempool consists of unconfirmed transactions
which still needs to be processed by the Bitcoin Network, by
applying a priority metric to each transaction and by adding the
highest priority transactions in the next block first than lower
priority ones. Today’s miners choose which transactions to mine
only based on fee-rate, thus prioritizing the transactions with
highest fees per kilobyte of transaction size. Any transaction
left in the mempool, after the block is filled, will remain
in the pool for inclusion in the next block. As transactions
remain in the mempool, their inputs “age,” as the UTXO they
spend get deeper into the block-chain with new blocks added
on top. Eventually, a transaction without fees might reach a
high enough priority to be included in the block for free
(Antonopoulos, 2017).

2.3. Scripting Language
The Bitcoin transactions language Script is a Forth-like (Rather
et al., 1993) stack-based execution language. Script requires
minimal processing and it is intentionally not Turing-complete
(no loops) to lighten and secure the verification process of
transactions. An interpreter executes a script by processing each
item from left to right in the script. Script is a stack-based
language: data is pushed onto the stack, instead the operations
can push or pop one ormore parameters onto/from the execution
stack, operate on them, and possibly push their result back in
the stack.

For example, the operator OP_ADD pops two items from the
stack, add them, and finally push the resulting sum onto the
stack. There are also conditional operators such as OP_EQUAL:
it pops two items from the stack and pushes TRUE (represented
by number 1) if the operands are equal, or FALSE (represented
by 0) if they are not equal. In Bitcoin, transaction scripts usually
contain a final conditional operator, so that they can produce the
result TRUE, which points to a valid transaction.

Most locking scripts refer to a public key address: they require
the proof of ownership of the address in order to spend money.
However, this is not mandatory (Andrychowicz et al., 2014):
any combination of locking and unlocking scripts that result in
a final TRUE value is valid. Figure 1 we show the step-by-step
validation procedure of this locking plus unlocking script. We
have this locking script: “2 OP_ADD 8 OP_EQUAL,” which can
be satisfied by the unlocking script: “6’.” The validation software
combines the locking and unlocking scripts and produces the
following script: “6 2 OP_ADD 8 OP_EQUAL.” This script is
interpreted left-to-right as: first 8 is pushed onto an empty
stack, then 2, and then the operation OP_ADD is performed
between the two last operands in the stack, which are also
popped from it. The result, i.e., 8, is pushed onto the stack, and
then the 8 in the script is pushed as well. Finally, OP_EQUAL

is performed, thus removing the two 8 and pushing TRUE

as result.

2.4. Opcodes
Opcodes are the operators of the scripting language. Now
we describe some operators that we will refer to in the
next sections:

1. The OP_HASH160 operator hashes twice the top stack element:
first with SHA-256 and then with RIPEMD-160.

2. The OP_CHECKSIG: the entire transaction outputs, inputs, and
script are hashed. The signature used by OP_CHECKSIG must
be a valid signature for this hash and public key. If it is, 1 is
returned, 0 otherwise.

3. The OP_MIN operator returns the smaller of the two top
elements into the stack.

4. The OP_DROP operator removes the top stack element.
5. The OP_DEPTH operator puts the number of stack elements

onto the stack.
6. The OP_2DUP operator duplicates the two elements on top of

the stack.
7. The OP_IF operator executes the statements only if the top

stack value is not False. The top stack value is removed.

Frontiers in Blockchain | www.frontiersin.org 2 August 2019 | Volume 2 | Article 7

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 1 | Bitcoin script validation.

8. The OP_ELSE operator executes its statements if the preceding
OP_IF or OP_ELSE was not executed.

9. The OP_ENDIF operator ends an if/else block. All blocks must
end, or the transaction is invalid. An OP_ENDIF without an
OP_IF before is also invalid3.

2.5. Standard Transactions in Block-Chain
In the first few years of Bitcoin history, the developers introduced
some limitations in the scripts that could be processed by the
reference client. In fact, transactions can be accepted by the
network if their locking and unlocking scripts match a small
set of believed-to-be-safe templates. This is the isStandard()
and isStandardTx() test, and transactions passing it are
called standard transactions4. More accurately, the isStandard()
function gives TRUE if all the outputs (locking script) use
only standard transaction forms. On the other hand, the
isStandardTx() function gives TRUE if all the inputs (unlocking
script) use only standard transaction forms according to the
output that they are spending. The main reason behind defining
and checking standard transactions is to prevent someone

3https://en.bitcoin.it/wiki/Script
4To see which transactions are valid, it is possible to check the reference source

code of Bitcoin Core: https://github.com/bitcoin/bitcoin

from attacking Bitcoin by broadcasting harmful transactions.
Moreover, these checks also keep users from creating transactions
that would make adding new transaction features in the future
more difficult. There are seven standard types of transactions.
Pay to Public Key Hash (P2PKH): The transaction Pay to public
key hash is the most used in the network. This is because it is the
default transaction in a Bitcoin client. These transactions contain
a locking script that encumbers the output with a public key hash:
“OP_DUP OP_HASH160 <PUBLIC KEY A HASH> OP_EQUAL

OP_CHECKSIG.” Figure 2 shows an example of P2PKH script
validation. A P2PKH output can be unlocked (spent) by a public
key and a digital signature created with the corresponding private
key: “<SIGNATURE A> <PUBLIC KEY A>.”
Pay to Public Key (P2PK): The Pay to Public Key scheme is
simpler than P2PKH; it was used in coinbase transactions, i.e.,
the one with the miners are paid for their job, until July 2012,
then they started use the P2PKH (see Figure 3). P2PK, as the
name suggests, has in its locking script directly the pubkey,
instead of its hash: “<PUBLIC KEY A> OP_CHECKSIG.” Since
2017 the most used output in a coinbase transaction is the
OP_RETURN, which is a provably unspendable (see section 2.5).
This coinbase transactions have some P2PKH outputs in order to
pay the miners and more OP_RETURN outputs, which do not
carry bitcoin (the value of the outputs is 0 BTC). The number

Frontiers in Blockchain | www.frontiersin.org 3 August 2019 | Volume 2 | Article 7

https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bitcoin
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 2 | P2PKH script validation.

OP_RETURN outputs Is greater than the number of P2PKH
ones. These OP_RETURN outputs are related to Segregated
Witness5 (SegWit) implemented soft fork: They are linked to
the Merkle root of the witness tree. The SegWit needs an
extended blockheader, but the blockheader cannot be extended
without a hardfork, so segwit blocks commit to this witness
tree by including the root in an OP_RETURN in the coinbase
transaction6. Figure 4 shows the P2PK script validation process.
To unlock this transaction, only the corresponding signature of
pubkey in the locking script is needed: “<SIGNATURE A>.”
Multi-signature: Multi-signature scripts set a condition where
N public keys are recorded in the script, and at least M of
those signatures must be used to unlock a transaction. This
is also known as an M-of-N scheme, where N is the total
number of keys and M is the lower threshold of signatures
required for a validation. The maximum M for the current

5https://en.bitcoin.it/wiki/Segregated_Witness
6https://bitcoin.stackexchange.com/questions/74162/op-return-in-a-

coinbase-transaction

Bitcoin Core implementation is 15. The general form of a
locking script setting an M-of-N multi-signature condition is:
“M <PUBLIC KEY 1> <PUBLIC KEY 2> ... <PUBLIC KEY N>

N OP_CHECKMULTISIG.” In Figure 5 the validation steps of this
script is visually represented. The locking script can be satisfied
with an unlocking script containing: “OP_0 <SIGNATURE 1>
<SIGNATURE 2> ... <SIGNATURE M>.” Notice that the prefix
OP_0 is required because of a bug in the original implementation
of CHECKMULTISIG: due to this bug, one more argument on
the stack is required. CHECKMULTISIG simply considers it as
a placeholder.
Data output (OP_RETURN): The Data output transactions are
used to store data not related to Bitcoin payments. Their form
is “OP_RETURN <DATA>.” Since any output with OP_RETURN

is provably un-spendable. Thus, the output can be immediately
pruned from the UTXO7 set even if it has not been spent.
These transactions can be used to save different kinds of

7Unspent Transaction Output, i.e., the transactions that can be spent as an input

in a new transaction.

Frontiers in Blockchain | www.frontiersin.org 4 August 2019 | Volume 2 | Article 7

https://en.bitcoin.it/wiki/Segregated_Witness
https://bitcoin.stackexchange.com/questions/74162/op-return-in-a-coinbase-transaction
https://bitcoin.stackexchange.com/questions/74162/op-return-in-a-coinbase-transaction
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 3 | Evolution over time of the output type used in coinbase transactions.

FIGURE 4 | P2PK script validation.

Frontiers in Blockchain | www.frontiersin.org 5 August 2019 | Volume 2 | Article 7

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 5 | Multi-signature script validation.

information on the block-chain, which is in this way used
as an immutable distributed ledger by applications, as e-
voting ones (Bistarelli et al., 2017, 2019b), for example. Such
transactions are unlockable. Many members of the Bitcoin
community believe that use of OP_RETURN is irresponsible
in part because Bitcoin was intended to provide a record
for financial transactions, not a record for arbitrary data.
Additionally, it is trivially obvious that the demand for external,
massively-replicated data store is essentially infinite. Despite this,
OP_RETURN has the advantage of not creating bogus UTXO
entries, compared to some other ways of storing data in the block-
chain. This helps miners to be faster in calculating the priority
transactions function.
Pay to Script Hash (P2SH): A Pay to Script Hash transactions
contain the hash of a script of a different transaction (called
redeem script) in their locking script. For example, we can hash
a 2-of-5 multi-signature transaction. Instead of “pay to this 5-
key multi-signature script,” the P2SH equivalent transaction is

“pay to a script with this hash.” Hence, the script only stores a
20-byte hash instead of five pubkeys (around 180 byte using the
compressed form). Figure 6 shown an example of locking script:
“OP_HASH160 <2-OF-5 MULTI-SIGNATURE SCRIPT HASH>

OP_EQUAL,” with the unlocking script as: “<SIG1> <SIG2> <2-
OF-5 MULTI-SIGNATURE SCRIPT>.” See Figure 6 for an example
of P2SH script validation. More details about this transaction are
given in section 4.
Pay to Witness Public Key Hash (P2WPKH) and Pay to

Witness Script Hash (P2WSH): With the introduction of the
Segregated Witness8 (SegWit) in Bitcoin, the default transaction
P2PKH can be also obtained in a different way. The main
differences of the Segregated Witness are the locking script
shorter and the signature that are moved outside the unlocking
script (see Figure 7). In fact, in place of the longer script in
P2PKH, the script in P2WPKH is shortened to: “OP_0 <PUBLIC

8https://bitcoincore.org/en/2016/01/26/segwit-benefits/

Frontiers in Blockchain | www.frontiersin.org 6 August 2019 | Volume 2 | Article 7

https://bitcoincore.org/en/2016/01/26/segwit-benefits/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 6 | P2SH script validation.

FIGURE 7 | The position of new signatures in witness transactions.

KEY A HASH>” A P2WPKH output can be unlocked (spent), as
the P2PKH, by a public key and a digital signature created by
the corresponding private key: “<SIGNATURE S> <PUBLIC KEY

A>.” The difference is that these components are no longer in the
unlocking script, but in the witness field instead.

3. AN ANALYSIS OF BITCOIN
TRANSACTIONS

In this section we describe standard and non-standard
transactions in the Bitcoin block-chain, by reporting statistics
on their number and frequency with the purpose to have a
clear view on their “popularity” and acceptance. To accomplish
such an analysis we take advantage of a Bitcoin Core node,
which we used to fill a PostgreSQL Database9 in which we have
stored all the block-chain blocks up to number 550, 000: until

9PostGreSQL: https://www.postgresql.org

November the 14th 2018. Such a tool is part of the BlockchainVis
Suite (Bistarelli et al., 2018b). We consider Bitcoin Core10 as the
reference implementation.

3.1. Statistics for Standard Transactions
Considering the first 550 000 blocks in the block-chain, there
are 356 588 805 transactions that generate a total of 968 098 854
outputs, of which 910 274 680 have been spent (94,03%). These
include 967 874 499 standard transaction outputs (99,98% of
the total number of outputs). Hence, non-standard transaction
outputs are only the 0,02% of the total.

In Figure 8 we show the distribution of standard transactions.
As introduced before, the most common class is represented
by P2PKH transactions, since they are the default ones in the
Bitcoin client. The P2SH scheme is the second mostly frequently
used class of transactions, with almost 150 million outputs.
Interestingly, the number of P2SH and OP_RETURN transactions

10https://bitcoincore.org

Frontiers in Blockchain | www.frontiersin.org 7 August 2019 | Volume 2 | Article 7

https://www.postgresql.org
https://bitcoincore.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 8 | Distribution of standard transactions (left) and distribution of Multi-signature transactions (right).

has considerably increased if compared to the data from early
2018 (Bistarelli et al., 2018a). In Figure 8 we see that the most
used M-of-N multi-signature class corresponds to the scheme 1-
3, with 58% of all the multi-signature transactions. The second
most used scheme is 1-2, with 41%. We found also: 38 repetitions
of 3-3, 3 repetitions of 0-1, only one 1 transaction in the form 3-5,
1 in 1-9, and, finally, 1 in the 9-9 form.

3.2. Non-standard Transactions in
Block-Chain

Transactions are validated through isStandard() and
isStandardTx() functions in the Bitcoin Core reference
implementation. In case they do not pass such tests, they
are simply discarded. However, some transactions that deviate
from the standard enforced by Bitcoin Core can be mined as
well: these transactions can be issued in the block-chain thanks
to miners that relax these checks enforced by such control
functions, as for example Eligius11. Non-standard transactions
use more complex script forms, represent challenges, or just
result from bugs. Their singularity comes from non-standard
inputs or outputs.

Correctly validating non-standard transactions can make the
creation of future transactions harder for two separate reasons:
1. Some scripts might cause harm to the network.
2. Some scripts might make future upgrades harder.

Concerning the first reason, the non-standard transaction check
was first implemented by Nakamoto before P2SH existed, so it
could not be so easily circumvented. This gave developers time
to better analyze the script language and fix problems with the
remaining opcodes: e.g., in some cases12 it was possible to create
a transaction that took 5 h to be verify. However, even if the
scripting language is perfectly safe, each script has to be stored
by every full node until it is spent as part of the UTXO database.
Since a locking script is limited to 10,000 bytes, this means that
an attacker can add up to 10 KB to the UTXO set for every

11https://btc.com/stats/pool/Eligius
12https://bitslog.com/2017/01/08/a-bitcoin-transaction-that-takes-5-hours-to-

verify/

output he creates, potentially quickly adding enough data to
degrade performance enough that the rate of stale blocks (orphan
blocks) mined increases, which would reduce miner profits and
encourage them to centralize further to recover that lost revenue.

Concerning the second reason, there are some opcodes the
network does not want people to use. These are opcodes that
might be redefined in the future, e.g., the OP_NOPX opcodes
that have been used for soft forks in the past (OP_NOP1
became OP_CHECKLOCKTIMEVERIFY and OP_NOP2 became
OP_CHECKSEQUENCEVERIFY). Lately, Bitcoin Core 0.16.1 quit
the use of OP_CODESEPARATOR in non-segwit in preparation
for another potential soft fork that will reduce some lingering
problems with expensive verification. In those cases, standard
transactions forbid both the scriptPubKey and the redeemScript
(P2SH) versions (and, when applicable, the segwit P2WSH
version), thus the easy circumvention is not possible in
that case13.

One of the reasons to include non-standard transaction in the
block-chain could be that miners have a long-term investment in
the health of the Bitcoin network. If Bitcoin collapses, then their
expensive ASICs are worthless. Miners particularly need bitcoins
to remain valuable over the long term because their hardware
produces bitcoins over time. If nobody includes transactions in
blocks, then bitcoins would be useless and therefore worthless.
That would impact on miners long-term investment. If this ever
became a problem, transactions would just wind up with higher
fees to encourage miners to include them. Right now, enough
miners include a transaction with a very small fee and there is
no reason in paying more14.

We searched in the block-chain for these particular
transactions and we obtained nine patterns of non-standard
transactions. We now describe them by also highlighting the
interval of years in which they were confirmed in the block-chain.
Pay to Public Key Hash 0 [2011]: It corresponds to a distortion
of P2PKH, with the difference that instead of the hash of a

13https://bitcoin.stackexchange.com/questions/76541/whats-the-use-of-not-

relaying-non-standard-transactions-if-anyone-can-still-use
14https://bitcoin.stackexchange.com/questions/11557/what-is-the-motivation-

for-miners-to-include-all-recent-transactions-in-a-block

Frontiers in Blockchain | www.frontiersin.org 8 August 2019 | Volume 2 | Article 7

https://btc.com/stats/pool/Eligius
https://bitslog.com/2017/01/08/a-bitcoin-transaction-that-takes-5-hours-to-verify/
https://bitslog.com/2017/01/08/a-bitcoin-transaction-that-takes-5-hours-to-verify/
https://bitcoin.stackexchange.com/questions/76541/whats-the-use-of-not-relaying-non-standard-transactions-if-anyone-can-still-use
https://bitcoin.stackexchange.com/questions/76541/whats-the-use-of-not-relaying-non-standard-transactions-if-anyone-can-still-use
https://bitcoin.stackexchange.com/questions/11557/what-is-the-motivation-for-miners-to-include-all-recent-transactions-in-a-block
https://bitcoin.stackexchange.com/questions/11557/what-is-the-motivation-for-miners-to-include-all-recent-transactions-in-a-block
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

pubkey, there is a 0 value. The locking script is in the form
“OP_DUP OP_HASH160 0 OP_EQUALVERIFY OP_CHECKSIG.”
These transactions are unspendable because, as P2PKH ones, in
order to verify them a miner needs (i) the pubkey corresponding
to the hash in the locking script, and (ii) the private key to
generate the corresponding signature. However, we know that
HASH160 returns a 20 byte long hash: therefore, no key passed to
the hash function can return 0 15. A Bitcointalk thread16 indicates
that this deviation was mainly performed byMtGox. The outputs
represent a value of 2609.36304319 BTC, around 8, 000$ at that
time (around 20 million dollars nowadays).
P2PKH NOP [2011, 2014]: This transaction is identical to
P2PKH with the only difference that a NOP (an operation that
does nothing) is in the locking script: “OP_DUP OP_HASH160
<HASHPUBKEY> OP_EQUALVERIFY OP_CHECKSIG OP_NOP.”
This transaction was probably used to test the OP_NOP operator.
It can be unlocked by a script identical to that of P2PKH 17.
OnlyHash [2011-2014]: The OnlyHash transactions are the
most numerous non-standard class in the block-chain. These
transactions contain a hash in the locking script, which is usually
the hash of a file for using the block-chain as a ledger to
register documents. Therefore, the security and resilience of the
block-chain system can be used by applications such as digital-
note services, stock exchange certificates, and smart contracts.
The blocking script corresponds to “<HASH-OF-SOMETHING>.”
These transactions were used before the introduction of the
OP_RETURN, which can be used for the same purpose 18.
P2Pool Bug [2012]: These transactions are due to a bug 19 in
the P2Pool20 mining tool between February 2nd, 2012 and April
1st, 2012. Instead of a plain P2PKH locking script, the following
script was added: “OP_IFDUP OP_IF OP_2SWAP OP_VERIFY

OP_2OVER OP_DEPTH.” This script does not make any sense and
is not even valid as the OP_IF is not closed by a corresponding
OP_ENDIF, hence it is consequently unlockable 21.
OP_CHECKLOCKTIMEVEIRFY OP_DROP (CLTV)

[2012]: In this case the locking script is in the form:
“<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP.” The
OP_CHECKLOCKTIMEVEIRFY operator makes the transaction
invalid if the element at the top of the stack is greater than
the nLockTime22 field of a transaction. In practice, using
OP_CHECKLOCKTIMEVERIFY it is possible to make funds
provably un-spendable until a certain point in the future, i.e., it
is a way to freeze funds up to certain future day 23. Therefore, by
checking the <DATA> element against the rules above, we can

15An example is in the first output of the transaction in https://blockchain.info/it/

tx-index/1793329/1
16https://bitcointalk.org/index.php?topic=50206.0
17An example is in output 2 in https://blockchain.info/it/tx-index/629343/2. The

unlocking script is in the second input in https://blockchain.info/it/tx-index/

781227
18See for instance output 0 in https://blockchain.info/it/tx-index/2557393/0
19https://bitcointalk.org/index.php?topic=140097.5;imode
20http://p2pool.in/
21We can see an example in output 1 of https://blockchain.info/it/tx$-$index/

2915138/1
22https://en.bitcoin.it/wiki/NLockTime
23https://en.bitcoin.it/wiki/Script#Freezing_funds_until_a_time_in_the_future

verify the transaction by using an unlocking script that inserts
TRUE into the stack 24.
OP_MIN OP_EQUAL [2012]: These transactions are related
to a script as “OP_MIN 3 OP_EQUAL,” which simply needs two
numbers corresponding to the equation x ≤ y ∧ x = 3 to be
verified. Hence, to unlock it is possible to prepare an unlocking
script as “3 4.” We can see this transaction as a proof of how
an equation can be used to generate a bitcoin transaction. This
means that anyone can easily unlock such a transaction without
any private key 25.
Pay to Hash (P2H) [2012-2015]: These transactions are a
simplification of plain P2SH ones; we have a blocking script
identical to P2SH, with the difference that the internal hash
does not refer to a redeem script, but it is the hash of an
hexadecimal string: “OP_HASH160 <HASH160OFSOMETHING>

OP_EQUALVERIFY.” There are two variants, where only the type
of hashing operator changes: one corresponds to HASH256,
while the other one to SHA256. The two blocking scripts
are “OP_HASH256 <HASH256OFSOMETHING> OP_EQUAL” and
“OP_SHA256<SHA256OFSOMETHING> OP_EQUAL.” We can
consider these transactions as “contest” in the network to find
the correct value of the hash in the transactions.

A P2H cannot be considered a Hash Time-locked Contract
(HTLC). A HTLC is essentially a type of payment in which two
people agree to a financial arrangement where one party will pay
the other party a certain amount of cryptocurrency. However, the
receiving party only has a certain amount of time to accept the
payment, otherwise money is returned to the sender. Instead a
P2H transaction is different from a HTLC because it generates
a payment that can be accepted by the receiver without any
time-constraint.

These outputs can only be spent by providing data that once
hashed (called hashlock) by a cryptographic function is equal to a
given hash 26.

The verification step is simple: the hexadecimal string of the
hash in the blocking script is enough to spend the transaction 27.
UnLocked (UL) [2015]: This transaction has an empty locking
script: it can be unlocked by simply having TRUE as unlocking
script. Almost all of these transactions carry an amount of 0 BTC,
i.e., they are valueless transactions. Such transactions can be used
as a way to donate funds to miners in addition to transaction fees:
any miner who mines such a transaction can also include28 an
additional one after sending funds to an address they control 29.

24An example of this transaction involves output 1 in https://blockchain.info/it/tx-

index/3000496/1, and input 1 in https://blockchain.info/it/tx-index/3000536
25An example is in output 1 of the transaction in https://blockchain.info/it/tx-

index/3118220/1, and how it has been verified in input 1 in https://blockchain.

info/it/tx-index/3126754/0
26https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-

c97f65cccbb6
27An example is in the output 0 in https://blockchain.info/it/tx-index/12864193/0,

and how it is verified in the input 0 of the transaction in https://blockchain.info/it/

tx-index/12874719
28https://en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs
29 An example is in output 0 in https://blockchain.info/it/tx-index/56730867/0.

How it is spent is instead represented by input 0 in https://blockchain.info/it/tx-

index/60118930

Frontiers in Blockchain | www.frontiersin.org 9 August 2019 | Volume 2 | Article 7

https://blockchain.info/it/tx-index/1793329/1
https://blockchain.info/it/tx-index/1793329/1
https://bitcointalk.org/index.php?topic=50206.0
https://blockchain.info/it/tx-index/629343/2
https://blockchain.info/it/tx-index/781227
https://blockchain.info/it/tx-index/781227
https://blockchain.info/it/tx-index/2557393/0
https://bitcointalk.org/index.php?topic=140097.5;imode
http://p2pool.in/
https://blockchain.info/it/tx$-$index/2915138/1
https://blockchain.info/it/tx$-$index/2915138/1
https://en.bitcoin.it/wiki/NLockTime
https://en.bitcoin.it/wiki/Script#Freezing_funds_until_a_time_in_the_future
https://blockchain.info/it/tx-index/3000496/1
https://blockchain.info/it/tx-index/3000496/1
https://blockchain.info/it/tx-index/3000536
https://blockchain.info/it/tx-index/3118220/1
https://blockchain.info/it/tx-index/3118220/1
https://blockchain.info/it/tx-index/3126754/0
https://blockchain.info/it/tx-index/3126754/0
https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-c97f65cccbb6
https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-c97f65cccbb6
https://blockchain.info/it/tx-index/12864193/0
https://blockchain.info/it/tx-index/12874719
https://blockchain.info/it/tx-index/12874719
https://en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs
https://blockchain.info/it/tx-index/56730867/0
https://blockchain.info/it/tx-index/60118930
https://blockchain.info/it/tx-index/60118930
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

OP_RETURN ERROR [2016-2017]: These transactions are
identical to OP_RETURN, with the difference that there is an
error in the script code. The code asks to push onto the stack a
number of opcode higher than what is really in the code itself.
For example an OP RETURN script could ask to insert in the
stack the next 40 bytes in the code, but if there are only 28
bytes, the execution fails. This transaction is apparently due to a
programming error. The locking script is: “OP_RETURN ERROR”
(an error is returned)30.
OP_2OP_3 ERROR [2017-2018]: These transactions are similar
to OP_RETURN ERROR, but they have no OP_RETURN in the
script code. As the OP_RETURNERROR, their code asks to push
onto the stack a number of bytes higher than what is really in
the code itself. Probably these transactions, like the OP_RETURN

ERROR, are related to an implementation error This is the locking
script: “OP_2 OP_3 ERROR” (an error is returned)31.
Statistics for non-standard transactions: Non-standard
transactions are 224 355 (0,02%), even if the majority of them,
i.e., 219 174, are unlocked transactions with a 0 BTC value (all
of them in year 2015). This means that they are transactions
without blocking scripts, and they do not carry any money: in
practice they are “fake” transactions. Thus, if we do not consider
such transactions, “real” non-standard ones are only 5 181:
0,000 5% of the total number in the block-chain.

In Figure 9 we show the distribution of non-standard
transactions. Without considering unlocked ones, 2 3 ERROR
is the most common class, with more than three thousand
transactions. The second class is the OnlyHash, with almost one
thousand outputs, while the remaining ones have few outputs. In
Figure 9 we show the percentage of non-standard transactions
associated with each miner. In order to identify the miner of
a transaction we looked for the block of this transaction. Then
we took the coinbase transaction of the block, in this particular
transaction there is a field called just coinbase where the miners
put their id. We classified the miners according to these tags 32.

In Figure 10 we associate the percentage of non-standard
transactions: we found that year 2018 has more than 3,200
occurrences of this kind of transactions, all of type OP_2 OP_3
ERROR. Overall, these non-standard transactions contain almost
2,615 bitcoins that are no longer spendable.

4. PAY TO SCRIPT HASH

As we introduced before, the P2SH transactions contain the hash
of a script (called redeem script) in their locking script. In the
block-chain there are 149 410 668 P2SH transactions of which
140 620 401 are spent (94,12%). Hence, we decided to analyse the
content of the redeem script inside the unlocking script of the
spent P2SH transactions. In the following of this section we show
the results we obtained.

30An example of it is in output 1 in https://blockchain.info/it/tx-index/

134023577/1
31 An example is represented in output 2 in https://www.blockchain.com/btc/tx/

c2cf3a1c3752304803661121edd044bbce7d70e2a43d73a46302ea5c5a868f16
32https://github.com/blockchain/Blockchain-Known-Pools/blob/master/

pools.json

4.1. Standard Transactions in P2SH
Like in the block-chain analysis, also inside P2SH transactions
the majority of the transactions is standard. In fact there are
140 509 279 standard transactions, which are 99,92% of the total.
In Figure 11 we show the distribution of standard transactions
inside P2SH ones. The most frequent class of transactions
is not the P2PKH (only 447), as in section 3, but it is the
multi-signature one, with more than 90 million occurrences
(65,7%). The second one is the P2WKH with almost 35 million
transactions (24,6%).

4.2. Non-standard Transactions in P2SH
Inside P2SH we found 111 122 non standard transactions (0,08%
of the total); this amount is four times more than what we
obtained when we “simply” analyzed the block-chain (0,02%).
We found several new classes of non-standard transactions,
which are different from previous ones.

4.2.1. OP_CHECKLOCKTIMEVERIFY OP_DROP

(CLVT)
We found five different types of transactions that take advantage
of the CLVT operator, that, as we have already seen in
section 2.5, makes transaction provably unspendable until a
certain date. Essentially, it allows users to create a Bitcoin
transaction of which the outputs are spendable only at some
point in the future. CLTV is necessary for properly functional
payment channels (e.g., lightning network). These channels are
effectively a series of “off-chain” transactions, that benefit from
all the security of typical on-chain transactions, and with some
added benefits 33.

One of them is equal to a group of transactions already present
in the block-chain: “<DATA>OP_CHECKLOCKTIMEVEIRFY

OP_DROP.” The second is a P2PK locked with
the CLVT operator, and this is the locking script:
“<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP <PUBLIC

KEY A> OP_CHECKSIG.” This script means it is not
possible to use the signature (related to the public key)
to spend this transaction before the date in the script.
The third one is a P2PKH locked with a CLVT operator,
this is the script: “<DATA>OP_CHECKLOCKTIMEVEIRFY

OP_DROP OP_DUP OP_HASH160 <PUBLIC KEY A HASH>

OP_EQUAL OP_CHECKSIG.” Then we have the class
“<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP 1 OP_ADD

2 OP_EQUAL,” which simply needs the number corresponding
to the equation x + 1 = 2 ∧ x = 1: it consequently waits
until the date has expired. The last one is a P2PKH variant
that also needs a further hash to be unlocked; the locking
script is “<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

OP_SHA256 <SHA256OFSOMETHING> OP_DUP OP_HASH160
<PUBLIC KEY A HASH> OP_EQUAL OP_CHECKSIG.”
As we can see in Figure 11, the most frequently type
adopted in transaction is the P2PK one, with almost
1 500 outputs.

33https://bitcoinmagazine.com/articles/checklocktimeverify-or-how-a-time-

lock-patch-will-boost-bitcoin-s-potential-1446658530

Frontiers in Blockchain | www.frontiersin.org 10 August 2019 | Volume 2 | Article 7

https://blockchain.info/it/tx-index/134023577/1
https://blockchain.info/it/tx-index/134023577/1
https://www.blockchain.com/btc/tx/c2cf3a1c3752304803661121edd044bbce7d70e2a43d73a46302ea5c5a868f16
https://www.blockchain.com/btc/tx/c2cf3a1c3752304803661121edd044bbce7d70e2a43d73a46302ea5c5a868f16
https://github.com/blockchain/Blockchain-Known-Pools/blob/master/pools.json
https://github.com/blockchain/Blockchain-Known-Pools/blob/master/pools.json
https://bitcoinmagazine.com/articles/checklocktimeverify-or-how-a-time-lock-patch-will-boost-bitcoin-s-potential-1446658530
https://bitcoinmagazine.com/articles/checklocktimeverify-or-how-a-time-lock-patch-will-boost-bitcoin-s-potential-1446658530
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 9 | Distribution of non-standard transactions (left) and distribution of their miners (right).

FIGURE 10 | Distribution of non-standard transactions over time (left) and distribution of non-standard transactions type over time (right).

FIGURE 11 | Distribution of standard (left) and CLVT transactions inside P2SH (right).

4.2.2. OP_DROP
This transaction allows for storing some data in block-
chain without making the transaction unspendable. In fact,
all these transaction start with <DATA> OP_DROP where

<DATA> is what we want to put in block-chain and
OP_DROP is the operator that removes the data from
the stack in order to make the execution same as of a
standard transaction.

Frontiers in Blockchain | www.frontiersin.org 11 August 2019 | Volume 2 | Article 7

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

We found four different types of transactions that use
OP_DROP. The first type does not need anything to be unlocked,
that is the script is: “<DATA> OP_DROP 1.” Then there is the
2− 2 multi-signature type “<DATA> OP_DROP 2 <PUBLIC KEY

A> <PUBLIC KEY B> 2 OP_CHECKMULTISIG,” which needs the
two signatures to be unlocked, like the normal 2 − 2 multi-
signature. The third one is a P2PKH with OP_DROP, identified
by the “<DATA> OP_DROP OP_DUP OP_HASH160 <PUBLIC

KEY A HASH> OP_EQUAL OP_CHECKSIG.” Also this one needs
only the signature, as for P2PKH transactions. The last one
is an OP_DROP with a P2PK: “<DATA>OP_DROP <PUBLIC

KEY A> OP_CHECKSIG.” It can be unlocked as a classical
P2PK transaction.

In Figure 12 we can see that the most used type is the 2 − 2
multi-signature one, with almost 25 000 occurrences. We can
say that these transactions are just standard outputs in disguise,
using the OP_DROP operator to add data that is discarded
during verification 34.

4.2.3. OP_Hash160 OP_Equalverify
We found four different types of transactions that
start with OP_HASH160 OP_EQUALVERIFY. The
first one has this locking script: “OP_HASH160
<HASH160OFSOMETHING>OP_EQUAL 1” or “OP_HASH160
<HASH160OFSOMETHING> OP_EQUAL 0 1.” They could be
transactions made to have a P2SH that can be unlocked by
revealing only the redeem script, in fact these scripts do not need
anything to be unlocked because at the end they push 1 in the
stack; hence, the transaction is always verified.

Then there is the P2PK that start with a
series of OP_HASH160 OP_EQUALVERIFY,
with the locking script: “(OP_HASH160
<HASH160OFSOMETHING>OP_EQUALVERIFY)*N <PUBLIC

KEY A> OP_CHECKSIG”35. To unlock the script, it is needed
to know all the strings of the hashes and the private key
corresponding to the public key in the script. We can consider
this transaction like a challenge to a specific person (the owner
of the private key corresponding to the public key in the script):
when he found all the strings of the hashes in the script, he can
take the money.

There is also a variant with this script: “(OP_HASH160
<HASH160OFSOMETHING>OP_EQUALVERIFY)*N <PUBLIC

KEY A> OP_CHECKSIGVERIFY <DATA> OP_DROP OP_DEPTH

0 OP_EQUAL,” that can be unlocked like the previous one because
the new part checks that there is no element in the stack and it is
possible only if all the given strings and the signature are correct.
Similar to the previous one, this transaction is a challenge to a
specific person, which can take the money only if he knows all
the strings of the hashes in the script, but in addition there is
the <DATA> OP_DROP sequence, as we saw in section 4.2.2,
allows for storing some data in block-chain without making the
transaction unspendable.

34https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-

c97f65cccbb6
35In this script, N is a integer number greater than 0 and it represents the number

of times that a particular part of code is repeated.

The last one is only with OP_HASH160
OP_EQUALVERIFY, whose identifying script is “(OP_HASH160
<HASH160OFSOMETHING>OP_EQUALVERIFY)*N
OP_HASH160 <HASH160OFSOMETHING>OP_EQUAL.” To
unlock it we need to know all the hashing strings. Also this
transaction could be a challenge: the first user who finds all the
strings of the hashes, can take the money.

In Figure 12 we show the distribution of OP_HASH160
OP_EQUALVERIFY transactions. The one with OP_DEPTH
is the most common class, with more than 6 500 transactions
extracted from the block-chain.

4.2.4. OP_IF
These transactions are characterized by the presence of the
OP_IF. In fact this operator, as in C or JAVA, generates different
execution branches, and the receiver can chose the one he prefers.

We found seven different classes of transactions that start with
OP_IF, each of them characterized by the following scripts:

1. “OP_IF
OP_SIZE 32 OP_EQUALVERIFY OP_SHA256
<SHA256OFSOMETHING>OP_EQUALVERIFY OP_DUP

OP_HASH160 <PUBLIC KEY A HASH>

OP_ELSE
<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

OP_DUP OP_HASH160 <PUBLIC KEY B HASH>

OP_ENDIF

OP_EQUAL OP_CHECKSIG”.
This transaction can be unlocked in two ways: the first with
a 32-byte string obtained from the SHA256 hash and the
signature of A; the second one, after the date in the script,
only with the signature of B. We can see this transaction like
a challenge between A and B (the owner of the private keys
corresponding to the public keys A and B in the script): if A
finds the 32-byte string before the date in the script can take
the money, otherwise B will take the bitcoins.

2. There is also another type equal to the last one but without the
size check:
“OP_IF

OP_SHA256 <SHA256OFSOMETHING>OP_EQUALVERIFY

OP_DUP

OP_HASH160 <PUBLIC KEY A HASH>

OP_ELSE
<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

OP_DUP OP_HASH160 <PUBLIC KEY B HASH>

OP_ENDIF

OP_EQUAL OP_CHECKSIG”.
This transaction presents the same challenge as in the previous
one, but the string’s length is not fixed, so A has to find the
string before the date in the script or B will take the money.

3. We found also a version with the branch reversed and using
Hash160 instead of SHA256:
“OP_IF

<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

<PUBLIC KEY A> OP_CHECKSIG

OP_ELSE
OP_HASH160<HASH160OFSOMETHING>OP_EQUALVERIFY

Frontiers in Blockchain | www.frontiersin.org 12 August 2019 | Volume 2 | Article 7

https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-c97f65cccbb6
https://medium.com/@alcio/a-look-at-bitcoin-non-standard-outputs-c97f65cccbb6
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 12 | Distribution of OP_DROP (left) and OP_HASH160 OP_EQUALVERIFY transactions inside P2SH (right).

<PUBLIC KEY B> OP_CHECKSIG

OP_ENDIF”.
This is identical to the second one but with the branch
inverted, i.e., now B has to find the strings or A will take the
money.

4. One more variant, which needs 15 original strings, is this:
“OP_IF

(OP_RIPEMD160 <RIPEMD160OFSOMETHING>

OP_EQUALVERIFY)*15 <PUBLIC KEY A> OP_CHECKSIG

OP_ELSE
<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

<PUBLIC KEY B> OP_CHECKSIG

OP_ENDIF”.
Also this transaction can be considered like a challenge very
similar to the second one, but A has to find 15 strings of the
hashes before the date in the script, otherwise B will take the
money.

5. A class that can be spent immediately with two
signatures or, after the date inside the script, with one
signature only:
“OP_IF

<PUBLIC KEY A> OP_CHECKSIGVERIFY

OP_ELSE
<DATA>OP_CHECKLOCKTIMEVERIFY OP_DROP

OP_ENDIF

<PUBLIC KEY B> OP_CHECKSIG”.
This could be consider a transaction between two people (A
and B) who do not trust each other, in fact if everything is well
and good and A does not disappear, they can take the bitcoins,
otherwise after the date in the script B can take the bitcoins.

6. A class with 2-2 multi-signatures and CLVT:
“OP_IF

2 <PUBLIC KEY A> <PUBLIC KEY B> 2
OP_CHECKMULTISIG

OP_ELSE
<DATA>OP_CHECKLOCKTIMEVEIRFY OP_DROP

<PUBLIC KEY A> OP_CHECKSIG

OP_ENDIF”.
This transaction can be considered exactly like the previous
one, in fact the sequence 2 <PUBLIC KEY A> <PUBLIC KEY

B> 2 OP_CHECKMULTISIG is identical to <PUBLIC KEY A>

OP_CHECKSIGVERIFY <PUBLIC KEY B> OP_CHECKSIG.
7. The last class is represented by transactions that do not need

anything to be unlocked: at the end the script pushes 1 in the
stack. For example, the script is
“OP_IF

<DATA> 15 <PUBLIC KEY A> OP_CHECKMULTISIG

OP_ENDIF

1”.
They could be transactions prepared to have a P2SH that can
be unlocked by revealing only the redeem script, in order to
make easier the unlock.

As we can see in Figure 13, the most used transaction is the
OP_IF 1, with more than 70 000 results.

4.2.5. OP_RIGHT
This type of transaction has a script that contains only
“OP_RIGHT.” This operator36 takes a string and a position and
it pushes only the characters on the right w.r.t. that position in
the string. To unlock this script, it is enough to assemble an
unlocking script with a number and a string in a way that the
result of the OP_RIGHT is different from 0. Like the OP_HASH 1
or the OP_IF 1 in the previous sections this transaction could be
used to make a P2SH that can be unlocked by revealing only the
redeem script.

4.2.6. OP_2DUP Multi-signature
These transactions are similar to the multi-signature
transactions, but with some noticeable differences: “OP_2DUP

OP_EQUAL OP_NOT OP_VERIFY 2 <PUBLIC KEY A> OP_DUP

2 OP_CHECKMULTISIG.” To unlock this script, two signatures
from the same private key are needed. The reason is that
the first operator OP_2DUP duplicates the two signatures,
and then OP_EQUAL checks if they are the same; however,
they are different, and then it pushes 0 in the stack. Now,
OP_NOT changes 0 in 1 and OP_VERIFY removes 1 from the
stack. At the end, the presented scheme corresponds to a plain
multi-signature.

36https://en.bitcoin.it/wiki/Script

Frontiers in Blockchain | www.frontiersin.org 13 August 2019 | Volume 2 | Article 7

https://en.bitcoin.it/wiki/Script
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 13 | Distribution of OP_IF(left) and non-standard transactions inside P2SH (right).

This transaction is very dangerous for the receiver, in fact it
requires two signature from the same private key. This exposes
the private key to the risk of being recovered from the public key,
i.e., the risk that anyone can have this private key37.

4.2.7. P2PK OP_DROP OP_DEPTH
This transaction looks like a P2PK but at the end of the
script it checks whether the stack is empty, this is the script:
“<PUBLIC KEY A> OP_CHECKSIGVERIFY <DATA> OP_DROP

OP OP_DEPTH 0 OP_EQUAL.” So to unlock this script, only
the signature generated by the private key of A is needed.
Like the OP_DROP (see section 4.2.2), this transaction allows
for storing some data in block-chain without making the
transaction unspendable.

In Figure 13 we show the distribution of non-standard
transactions inside P2SH transactions. The most used is the
OP_IF class, with almost 80 000 outputs. The second one, with
almost 25 000 occurrences, is the OP_DROP transaction.

5. OP_RETURN

We analyze the nulldata transaction outputs, also called
OP_RETURN, and in this way we update with new data the
work by Bartoletti et al. (2019). As introduced before, this is a
particular kind of transaction, since it cannot be spent and it
is used only to store data in the block-chain, using it like an
immutable distributed ledger. In this case, our goal is to study
the use of OP_RETURN over the year.

5.1. Data Dimension
The data dimension inside the OP_RETURN transaction is
different also because the standard dimension changed during
years. In fact, in the Bitcoin Core 0.9.038 the limit was only
40 bytes. Then from the 0.10.039 release on February 16th
2015, Bitcoin nodes could choose whether to accept or not
OP_RETURN transactions, and to set a maximum dimension.

37https://allprivatekeys.com/random-vulnerability.php
38https://bitcoin.org/en/release/v0.9.0
39https://bitcoin.org/en/release/v0.10.0

The 0.11.040 release on July 12th 2015 extended the data limit
to 80 bytes. Finally, the 0.12.041 release on February 23th 2015 set
the maximum to 83 bytes (80 byte default, plus 3 bytes overhead).

In Figure 14 we show the distribution of OP_RETURN data
size. The most used size is 20 bytes with more than 4 million
occurrences, the second one is 80 bytes with almost 1 million
outputs, and the third is the 40 bytes with more than 500
thousands occurrences. There are also other transactions with
only one occurrence, which we do not show in Figure 14, exactly
with size 95, 114, 134, 190, 449, and 983 bytes. There are also
296 518 output with data size 0, i.e., empty, of which 222 348 were
made in September 2015 by compromised addresses42. These
transactions were definitely used as stress tests for the Bitcoin
network (Baqer et al., 2016).

In Figure 15 we show the distribution of OP_RETURN
transactions over time. It seems clear that every year the
OP_RETURN occurrences double, and this proves that their use
is increasing at a high rate.

5.1.1. “Non-standard” OP_RETURN
We analyzed transactions according to the aforementioned
Bitcoin Core update, with the purpose to find those that did not
respect size rules, thus we can call that “non-standard.”We found
797 results, of which 784 were registered before the release of
Bitcoin Core 0.9.0 (on average they have a size of 38 bytes) and 13
registered during the 0.9.0 release, but with more than 40 bytes
(on average they have a size of 61 bytes). In Figure 15 we show
the distribution of miners that accepted transactions with “non-
standard” OP_RETURN transactions. P2Pool is the miner pool
that mined the largest number of them.

The last analysis that we did is the amount of Bitcoin “lost”
in these transactions. We see that only 57 038 (0,68% of all
OP_RETURN transactions) spent bitcoins with a total amount
of 3,715 725 52 BTC. The maximum spent for a transaction is
0,018 454 BTC, the minimum is 1 Satoshi (10−8 BTC).

40https://bitcoin.org/en/release/v0.11.0
41https://bitcoin.org/en/release/v0.12.0
42https://allprivatekeys.com/random-vulnerability.php

Frontiers in Blockchain | www.frontiersin.org 14 August 2019 | Volume 2 | Article 7

https://allprivatekeys.com/random-vulnerability.php
https://bitcoin.org/en/release/v0.9.0
https://bitcoin.org/en/release/v0.10.0
https://bitcoin.org/en/release/v0.11.0
https://bitcoin.org/en/release/v0.12.0
https://allprivatekeys.com/random-vulnerability.php
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

FIGURE 14 | Distribution of OP_RETURN transactions divided by size.

FIGURE 15 | Distribution of OP_RETURN transactions over time (left) and Distribution of miners in “non-standard” OP_RETURN transactions (right).

6. RELATED WORK

Analyzing and understanding the Bitcoin block-chain is as
complicated (due to the amount of data) as interesting. Several
analysis can be found in the literature.

In 2014 Ken Shirriff ’s blog43 studied some methods for
inserting arbitrary data into Bitcoin block-chain and also what
kind of data can be (or is already) stored.

A few months later QuantaBytes44 surveyed Bitcoin
transactions in block-chain and found three classes of
non-standard transaction.

In 2018 Sward et al. (2018) improved the study on inserting
arbitrary data into Bitcoin’s block-chain.

Then Matzutt et al. (2018a) describes the problem of inserting
harmful content into a block-chain; in particular they propose
conceptual countermeasures to heuristically reject transactions
holding unintended content with high probability. They find
that mandatory minimum fees and mitigation of transaction

43http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
44https://www.quantabytes.com/articles/a-survey-of-bitcoin-transaction-types

manipulability significantly raise the bar for inserting malicious
content into a block-chain.

In the same period, Matzutt et al. (2018b) the authors provide
a systematic analysis of the benefits and threats of arbitrary
block-chain content. They show that certain illegal content can
render the mere possession of a block-chain illegal. Their analysis
reveals more than 1,600 files on the block-chain, e.g., links to
child pornography. This analysis highlights the importance for
future block-chain to be designed to address the possibility of
unintended data insertion and protect users.

In 2019 Bartoletti et al. (2019) empirical study the usage of
OP_RETURN over the years and they identify several protocols
based on OP_RETURN, which they classify by the application
domain and their space consumption.

7. DISCUSSION AND CONCLUSIONS

In this paper we have presented a report on the statistics
concerning standard (seven classes) and non-standard (nine
classes) transactions in the Bitcoin block-chain, by considering
up to block number 550 000, i.e., until November 14th 2018.

Frontiers in Blockchain | www.frontiersin.org 15 August 2019 | Volume 2 | Article 7

http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://www.quantabytes.com/articles/a-survey-of-bitcoin-transaction-types
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles


Bistarelli et al. An Analysis of Non-standard Transactions

The most populated class of transactions is P2PKH; the reason
is that they represent the default transaction in Bitcoin clients.
The second most used class is P2SH, which had a massive growth
of over 40% transactions from Bistarelli et al. (2018a).

The presented study can help to understand the adherence
of the Bitcoin protocol to the intended purposes, by quantifying
past and present deviations. As a result we have obtained that
only 0,02% (224 355 out of 968 098 854) of transactions outputs
corresponds to non-standard ones: this shows that most of
miners and users behave in a standard way. We noticed that
only the 0,015% (2 615 out of more than 17 million) of all the
circulating bitcoins was burned by non-standard transactions.
We saw that the most used transaction inside P2SH transactions
is the multi-signature one. We also show that the most used size
in bytes of an OP_RETURN transaction is 20 bytes.

In the future, we plan to study the distribution of non-
standard classes along time, and to relate them with amounts
of involved bitcoins (also for standard classes). We will also
analyze OnlyHash transactions, which we surveyed in section 2.5.
The aim is to see if they could be treated as “colored
coin” transactions. Finally, we also plan to use analysis and
visualization tools (Bistarelli and Santini, 2017; Bistarelli et al.,
2018c) to relate transaction types and topologies together.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by project Agrichain (funded by
Fondazione Cassa di Risparmio di Perugia 2018-2020), project
ASIA (funded by INDAM-GNCS) and RACRA18 (Knowledge
Representation and Automated Reasoning 2018) Fondi ricerca di
Base 2018 (Mathematics and Computer Science Department).

ACKNOWLEDGMENTS

The paper extends Bistarelli et al. (2018a) published in Crypto
Valley Conference on Blockchain Technology CVCBT 2018,
Zug, Switzerland.

REFERENCES

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. (2014).

“Secure multiparty computations on bitcoin,” in 2014 IEEE Symposium on

Security and Privacy (Berkeley, CA), 443–458.

Antonopoulos, A.M. (2017).Mastering Bitcoin: Programming the Open Blockchain,

2nd Edn. Champaign, IL: O’Reilly Media, Inc.

Baqer, K., Huang, D. Y., McCoy, D., andWeaver, N. (2016). “Stressing out: Bitcoin

“stress testing”,” in Financial Cryptography and Data Security, eds J. Clark,

S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff (Berlin;

Heidelberg: Springer), 3–18.

Bartoletti, M., Bellomy, B., and Pompianu, L. (2019). A journey into

bitcoin metadata. J. Grid Comput. 17, 3–22. doi: 10.1007/s10723-019-

09473-3

Bistarelli, S., Mantilacci, M., Santancini, P., and Santini, F. (2017). “An end-to-end

voting-system based on bitcoin,” in Proceedings of the Symposium on Applied

Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017, eds A. Seffah, B.

Penzenstadler, C. Alves, and X. Peng (Marrakesh: ACM), 1836–1841.

Bistarelli, S., Mazzante, G., Micheletti, M., Mostarda, L., and Tiezzi, F. (2019a).

“Analysis of ethereum smart contracts and opcodes,” in Advanced Information

Networking and Applications - Proceedings of the 33rd International Conference

on Advanced Information Networking and Applications, AINA 2019, Matsue,

Japan, March 27-29, 2019, Vol. 926 of Advances in Intelligent Systems and

Computing, eds L. Barolli, M. Takizawa, F. Xhafa, and T. Enokido (Matsue:

Springer), 546–558.

Bistarelli, S., Mercanti, I., Santancini, P., and Santini, F. (2019b). End-to-end voting

with non-permissioned and permissioned ledgers. J. Grid Comput. 17, 97–118.

doi: 10.1007/s10723-019-09478-y

Bistarelli, S., Mercanti, I., and Santini, F. (2018a). “An analysis of non-standard

bitcoin transactions,” in Crypto Valley Conference on Blockchain Technology,

CVCBT 2018, Zug, Switzerland, June 20-22, 2018 (Zug: IEEE), 93–96.

Bistarelli, S., Mercanti, I., and Santini, F. (2018b). “A suite of tools for the forensic

analysis of bitcoin transactions: preliminary report,” in Euro-Par 2018: Parallel

Processing Workshops - Euro-Par 2018 International Workshops, Turin, Italy,

August 27-28, 2018 (Turin: Springer), 329–341.

Bistarelli, S., Parroccini, M., and Santini, F. (2018c). “Visualizing bitcoin flows of

ransomware: Wannacry one week later,” in Proceedings of the Second Italian

Conference on Cyber Security (ItaSEC), volume 2058 of CEUR Workshop

Proceedings, 33. Available online at: CEUR-WS.org.

Bistarelli, S., and Santini, F. (2017). “Go with the -bitcoin- flow, with visual

analytics,” in Proceedings of the 12th International Conference on Availability,

Reliability and Security, Reggio Calabria, Italy, August 29 - September 01, 2017

(Reggio Calabria: ACM), 38:1–38:6.

Matzutt, R., Henze, M., Ziegeldorf, J. H., Hiller, J., and Wehrle, K. (2018a).

“Thwarting unwanted blockchain content insertion,” in 2018 IEEE

International Conference on Cloud Engineering, IC2E 2018, Orlando, FL,

USA, April 17-20 (Orlando, FL: IEEE Computer Society), 364–370.

Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J. H., Müllmann, D., Hohlfeld, O.,

et al. (2018b). “A quantitative analysis of the impact of arbitrary blockchain

content on bitcoin,” in Proceedings of the 22nd International Conference on

Financial Cryptography and Data Security (FC) (Nieuwpoort: Springer).

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

Rather, E. D., Colburn, D. R., and Moore, C. H. (1993). “The evolution of

forth,” in History of Pro-gramming Languages Conference (HOPL-II), Preprints,

Cambridge, Massachusetts, USA, April 20-23, 1993, eds J. A. N. Lee and J. E.

Sammet (Cambridge, MA: ACM), 177–199.

Sward, A., Vecna, I., and Stonedahl, F. (2018). Data insertion in bitcoin’s

blockchain. Ledger, 3.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Bistarelli, Mercanti and Santini. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Blockchain | www.frontiersin.org 16 August 2019 | Volume 2 | Article 7

https://doi.org/10.1007/s10723-019-09473-3
https://doi.org/10.1007/s10723-019-09478-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

	An Analysis of Non-standard Transactions
	1. Introduction
	2. Background
	2.1. Transactions
	2.2. UTXO and Memory Pool
	2.3. Scripting Language
	2.4. Opcodes
	2.5. Standard Transactions in Block-Chain

	3. An Analysis of Bitcoin Transactions
	3.1. Statistics for Standard Transactions
	3.2. Non-standard Transactions in Block-Chain

	4. Pay to Script Hash
	4.1. Standard Transactions in P2SH
	4.2. Non-standard Transactions in P2SH
	4.2.1. OP_CHECKLOCKTIMEVERIFY OP_DROP (CLVT)
	4.2.2. OP_DROP
	4.2.3. OP_Hash160 OP_Equalverify
	4.2.4. OP_IF
	4.2.5. OP_RIGHT
	4.2.6. OP_2DUP Multi-signature
	4.2.7. P2PK OP_DROP OP_DEPTH


	5. OP_RETURN
	5.1. Data Dimension
	5.1.1. ``Non-standard'' OP_RETURN


	6. Related Work
	7. Discussion and Conclusions
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	References


