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In the industry of the future, so as in healthcare and at home, robots will be a familiar

presence. Since they will be working closely with human operators not always properly

trained for human-machine interaction tasks, robots will need the ability of automatically

adapting to changes in the task to be performed or to cope with variations in how the

human partner completes the task. The goal of this work is to make a further step toward

endowing robot with such capability. To this purpose, we focus on the identification of

relevant time instants in an observed action, called dynamic instants, informative on the

partner’s movement timing, and marking instants where an action starts or ends, or

changes to another action. The time instants are temporal locations where the motion

can be ideally segmented, providing a set of primitives that can be used to build a

temporal signature of the action and finally support the understanding of the dynamics

and coordination in time. We validate our approach in two contexts, considering first a

situation in which the human partner can perform multiple different activities, and then

moving to settings where an action is already recognized and shows a certain degree of

periodicity. In the two contexts we address different challenges. In the first one, working

in batch on a dataset collecting videos of a variety of cooking activities, we investigate

whether the action signature we compute could facilitate the understanding of which type

of action is occurring in front of the observer, with tolerance to viewpoint changes. In the

second context, we evaluate online on the robot iCub the capability of the action signature

in providing hints to establish an actual temporal coordination during the interaction with

human participants. In both cases, we show promising results that speak in favor of the

potentiality of our approach.

Keywords: human motion understanding, action synchronization, motion signature, optical flow, human-robot

interaction, view-invariance

1. INTRODUCTION

Working efficiently together relies on mutual understanding of the two agents, often based on
intuitive and fast comprehension of what the partner is doing and when it is the right moment
to act. Humans are quite effective in establishing this type of coordination with their colleagues
(Flanagan and Johansson, 2003), also thanks to a set of pro-social abilities naturally developed since
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childhood (see e.g., Vignolo et al., 2017). In view of the adoption
of novel technologies in the future workplaces and industrial
environments, it becomes crucial to understand how to endow
also these new artificial “interactors” with similar skills. The
goal is to make the transition from human-human interaction
to human-technology interaction smoother, easier and not too
cumbersome for the human workers (Sciutti et al., 2018).

The presence of robots is envisaged in our future industries.
Importantly, unlike traditional industrial robots, whose actions
are precisely programmed and scheduled a priori, future robots
are expected to performmore unconstrained activities, being able
to adapt to frequent changes in the specific task to be handled and
to the collaboration with users with limited technical expertise
in the use of the machine. In these contexts, the robot will need
to autonomously understand—to a certain degree—the activity1

it is confronted with and—additionally—to be able to select
the appropriate timing for its actions, ideally by adapting to its
human partner.

In this paper we take a step toward endowing robots with
action understanding and synchronization abilities, by focusing
on the identification of relevant time instants in an observed
action, informative of the partner’s movement timing. The
instants can be interpreted as temporal locations where the time
signal describing a motion can be ideally segmented, providing a
set of primitives that can be used to build a temporal signature of
the action and finally support the understanding of the dynamics
and coordination in time.

We propose to identify such relevant instants by exploiting
motion information embedded in the so-called dynamic instants,
i.e., time instants in which the dynamic of an action is subject to
a change, that may be due to variations in velocity, acceleration,
or direction of motion. The original formulation of the dynamic
instants date back to the 80’s (Rubin and Richards, 1985; Gould
and Shah, 1989) and has been later renewed by Rao et al.
(2002) to mathematically prove that they are preserved after
projective transformations, and as a consequence, that their
detection is robust to viewpoint changes. Other methodological
approaches detect successfully dynamic instants (Dollar et al.,
2005; Buchsbaum et al., 2011; Gong et al., 2014) and prove them
to be meaningful tools for coordination (Chou et al., 2018),
but our method adopts a different computational approach and
detects dynamic instants without either a priori knowledge or
relevant amount of training data.

In our approach, dynamic instants are identified as minima
of the velocity profile, which we directly derive from the
optical flow, obtaining a compact yet highly informative measure
representing the motion evolution over time (Noceti et al., 2015).
The dynamic instants we obtain in this way are classified as
instants where an action is starting, ending, or changing (Noceti
et al., 2018). In other words they are distinguishable events during
continuous movements which could help segmenting the action
and predicting the timing of a repetitive motion (see in Figure 1,
in red, examples of dynamic instants detected for three different
actions). Notably we look for instants that could be robust across

1Notice in this work we use the terms action and activity interchangeably, although

they refer in general to different concepts.

different views and without requiring any a priori information
about the actor’s shape or position. As a consequence, we are
able to process sequences of motion observed at different levels
of granularity (e.g., performed with the entire arm or with a
single hand) guaranteeing the capability of adapting to a variety
of scenarios.

While in our previous work (Noceti et al., 2018) we
experimentally assessed the accuracy in the detection of our
dynamic instants, in this paper we also validate the use of
a string-based description of the partner’s motion to support
human-robot collaboration in two contexts. First, we show that
such a description could facilitate the understanding of which
type of action is occurring in front of the robot, when the
activities that can be performed by the human partner can
be of a various nature. Second, we verify that it can help in
establishing an actual temporal coordination online with naive
users, once the activity has been determined and shows a certain
degree of periodicity. In both contexts, action representation is
approached by segmenting the observed complex action into
intervals, delimited by pairs of temporally adjacent dynamic
instants and composed by the values in the velocity profile
occurring between the two.

To address action understanding in free interaction, we derive
from the sequence a motion signature based on the use of
strings encapsulating the sequence of dynamic instants and
intervals over time. Next, the signatures are compared to explore
similarities with known models using a string kernel (Noceti
and Odone, 2012), which is able to capture similarities in terms
of sub-strings, i.e., in this contexts sub-movements shared by
the actions.

To validate this approach we focus on the batch analysis of
a dataset we collected in-house depicting a variety of kitchen
activities observed frommultiple points of view. In the context of
Computer Vision, interesting results based on action classifiers
have been achieved (Chou et al., 2018). Our approach may be
related to works on action recognition, as Rao et al. (2002),
Shi et al. (2008), Shao et al. (2012), and Cabrera and Wachs
(2017), but differently from those works, we are not pursuing a
recognition task, rather we explore the feasibility of using such
signature to address motion understanding from a more general
perspective, i.e, to investigate (i) What kind of information is
embedded in the representation, and (ii) How far a relatively poor
description, as the one we propose, can bring the system in the
task of understanding actions properties.

In the second application context, action synchronization is
based on the assumption that the activity to be monitored and
executed together is summarily known in advance and has a
certain degree of periodicity. This task however poses a different
set of challenges: it requires being able to extract action timing
in real time and a process to allow for adaptation of the robot
action. Indeed, although the average execution time of the action
can be known a priori, significant differences might exist among
different operators and slight variations in the task execution—as
simple as changing the relative positions of the tools or objects
to be used or factors like training or tiredness—can lead to
significant changes in human timing. To test this skill we propose
an interactive scenario recalling a collaborative interaction in a
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FIGURE 1 | Examples of dynamic instants detected for a variety of actions (as eating, mixing, and sprinkling the salt) and viewpoints. Dynamic instants are marked in

red circles, while blue crosses show the dynamic evolution of the action over time. (A) Eating, (B) Mixing, (C) Spreading salt.

table-top work environment with the humanoid robot iCub and
we validate the interaction with human participants, based on an
online version of the algorithm.

We experimentally show that the proposed method detects
rather accurately the dynamic instants of the variety of actions
included in the dataset, across the different views presented.
Moreover, the action segmentation and reconstruction approach
based on dynamic instants allows up to a certain extent to
categorize the variety of activities recorded. When tested in
the synchronization task, the system shows the feasibility of
its use in online settings, enabling the reliable detection of
dynamic instants. For actions where each instance can be
delimited by pair of dynamic instants—i.e., actions composed
by a single primitive—this process also allows the estimation
of action duration. This is the feature that we exploit to
allow for synchronization in human-robot collaboration for
rhythmic activity and we demonstrate the robustness of the
method even in presence of relevant modifications in action
(e.g., in the rhythm or the direction) execution within and
between users.

The remainder of the paper is organized as follows.
Section 2, which introduces our approach to build the
motion descriptor, is followed by section 3 where we assess
the method in an offline scenario. Section 4 considers the
application to enable adaptive synchronization in HRI, that
we experimentally evaluate considering the methodologies in
section 5. The results of the online experimental analysis
are reported in section 6, while section 7 is left to a
final discussion.

2. MOTION SIGNATURE FROM VIDEOS

In this section we describe our approach to build the motion
description, which is based on deriving a motion signature
composed as the sequence of dynamic instants and intervals
over time. In the following we review each step in our video-
based analysis, to finally describe the motion signature adopted.
To summarize, we envisioned the adoption of a compact
motion description based on strings, as a way to compactly
describe all the kinematics features relevant to the task, to
facilitate the comparison and similarity assessment of a variety
of different actions.

2.1. Extracting Motion Features
Given a video stream, we start by applying at each frame
the method (Vignolo et al., 2016) to identify and describe a
moving region. The method relies on the computation of the
optical flow using Farnebäck (2003) to provide an estimate of the
apparent motion vector in each pixel (see Figure 2, left). Next, a
motion-based image segmentation is applied to detect the region
of interest. The segmentation leverages a thresholding of the
optical flow magnitude to identify points with significant motion
information. To such points, a standard approach for perceptual
grouping is applied to identify the connected components: given
a binary image, obtained after thresholding, we consider eight-
connected pixels as belonging to the same object. Finally the
largest component is selected as a representation of the structure
of interest moving in the scene. We will refer to it asR(t), i.e., the
moving region of time t. Given a video V of length T, we finally
obtain a sequence of moving regions, i.e., with V we associate a
sequence [R(t)]Tt=1.

Let ui(t) = (ui(t), vi(t)) be the optical flow components
associated with point pi(t) ∈ R(t), and N the size of the region,
i.e., the number of pixels in it.

The motion of the region can be compactly yet effectively
described by computing the average of the optical components:
V(t) = 1

N

∑
pi(t)∈R(t) ||ui(t)||. By combining the obtained

representations over time, we finally compose a temporal
description of the occurring dynamic event: from the video V we
derive the sequence [V(t)]Tt=1 (see an example in Figure 2, right).

2.2. Detecting Dynamic Instants and
Intervals
As in Noceti et al. (2018), we derive the dynamic instants as
the local minima of the velocity profile describing the apparent
motion in a sequence. From a more formal point of view,
dynamic instants are locations t̂ in time in the interval [1 . . .T]
such that V ′(t̂) = 0 and V

′′(t̂) > 0. Such time locations can
be categorized as START, STOP, and CHANGE points. START
points are those instants in which the motion starts after a rest,
while STOP points correspond to the end of an action followed
by an interval in which no motion is occurring. CHANGE points
refer to time instants between two atomic action units, performed
continuously in time. As for the detection procedure, given the
locations t̂ of the local minima in the velocity profile, we analyse
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FIGURE 2 | A visual representation of the computation of low-level motion features. Optical flow is computed and thresholded to detect the moving region, where the

information is collapsed in a centroid associated with the average velocity magnitude. Such value, analyzed of time, is the signal on which dynamic instants

are detected.

each of these points to assign them a label. More specifically, if
the velocity of a certain dynamic instant t̂ is above a threshold τ ,
then it is assigned the CHANGE label. Conversely, if the velocity
is very close to zero, meaning lower than a threshold ǫ referring
to the floating point precision of the machine, then we verify
if a plateau is present after the current location, in which the
velocity persists in this status. To this purpose, we simply count
how many consecutive values of the velocity verify the above
condition, and detect a plateau if they are at least 5 (value chosen
empirically). If this is the case, then we assign the labels STOP
and START to, respectively, current and next dynamic instant,
otherwise a CHANGE is again detected.

At this point, we can easily represent our original video V as
a set

M = {Ŵ,6} (1)

where Ŵ = {t̂1, t̂2, . . . , t̂D−1, t̂D} is the set of D dynamic instants
locations in time, i.e., the ordered sequence of the time instants
in the temporal reference system of the video V, while 6 =

{V(t̂1 : t̂2), . . . ,V(t̂D−1 : t̂D)} is the corresponding set of dynamic
intervals (the notation t̂k : t̂k+1 refers to all the values in the
velocity vector between the two dynamic instants).

The informative content embedded in M is exploited to
address the action synchronization task, while for the action
understanding in more unconstrained settings a further step is
needed, which is described in the following section.

2.3. Building a Motion Signature
We obtain a motion signature on the action sequence deriving
a string representation from the set M. To this purpose, we first
collect a training set of dynamic intervals which we cluster using
K-Means (Duda et al., 2012) to obtain a set of K prototypical
dynamic intervals profiles (i.e., the centroids of the clusters).

To allow for the clustering, we first downsample each dynamic
interval to a fixed length, set to 8 in our experiments.

Each prototype is associated with a character label, that
compose the alphabet A = {α1, . . . ,αK}. Then, given a sequence
described according to Equation (1), we compute the distance
between each dynamic interval and the prototypes, and associate
the interval with the character in A corresponding to the closest
one. This leads us to map a sequence of temporally ordered
dynamic intervals into a string s1. As a distance measure, we
employ the Euclidean distance between the dynamic interval and
the cluster centroids.

We further enrich the string s1 by combining it with another
string s2 derived from the sequence of dynamic instants. To
this purpose, we define a second alphabet B = {β1,β2,β3} in
which the characters refer to the classes of, respectively, START,
STOP, and CHANGE points, and associate each dynamic instant
detected in an action sequence with the corresponding label.

The combination of the two strings s1 and s2 in a single one,
by putting the characters in an ordered sequence reflecting their
original temporal occurrence in the video, provides the final
string s representing our motion signature of the sequence.

3. ASSESSING DYNAMIC INSTANTS

In this section we validate our strategy in an offline setting,
considering the Multimodal Cooking Actions (MoCA) dataset2,
we acquired in-house, that includes videos depicting cooking
activities observed by three different view points. The goal of this
experimental assessment is to evaluate the quality of our motion
signature in a simple motion understanding task, we implement
in the form of a matching problem between actions. With this
analysis, we want to highlight how powerful is the relatively

2https://github.com/nicolettanoceti/cookingdataset
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FIGURE 3 | A visual representation of the computation of our motion signature.

poor description we adopt, speaking in favor of its inherent high
level of expressiveness. In the reminder, we first briefly describe
the MoCA dataset, and then discuss the experimental analysis
in details.

3.1. Multimodal Cooking Actions Dataset
The Multimodal Cooking Actions (MoCA) dataset is a
multimodal dataset including MoCap data and video sequences
acquired from multiple views of upper body actions in a cooking
scenario. Differently from available datasets acquired in similar
environments (see e.g., Damen et al., 2018) it has been collected
with the specific purpose of investigating view-invariant action
properties in both biological and artificial systems, and in this
sense it may be of interest for multiple research communities in
the cognitive and computational domains.

The dataset includes 20 cooking actions, namely grating a
carrot, cutting the bread, cleaning a dish, eating, beating the eggs,
squeezing the lemon, using the mezzaluna knife, stirring a mixture,
opening a bottle, using a pan, crushing the garlic, peeling a potato,
pouring water, reaching an object, rolling the dough, mixing a
salad, sprinkling salt, spreading the cheese, cleaning the table,
transporting an object. The actions are performed by a single user
acting in a common environment which is observed by a set
of three cameras acquiring the video sequences synchronously
(sample frames from the three views are reported in Figure 1):
a lateral view, a viewpoint slightly above the subject’s head
(reminiscent of an ego-centric point of view), and a frontal view.
As it can be noticed, the motion appearance can be significantly
influenced by the viewpoint, which impacts not only on the
direction but also on the magnitude of the average optical flow
vectors. For this reason, the dataset is an ideal test-bed for
evaluating the tolerance to viewpoint changes of our motion
representation. To this purpose, we manually annotated the

dataset marking the temporal locations of START, STOP, and
CHANGE dynamic instants. Notice that actions may contain
only some of the dynamic instants type, e.g., repetitive actions as
mixing a salad only contains CHANGE points. Only 17 actions
out of the 20 (we left out grating a carrot, using a pan, spreading
the cheese) allowed for an unambiguous annotation.

Most of the observed actions also involve the manipulation
of objects. Each video consists in the repetition of 20 instances
of the atomic action. For each action a pair of videos has been
acquired, so to have available a training and a test sequence.
Cameras acquire images of size 1, 293× 964 at a rate of 30fps.

3.2. Experimental Analysis
We start by evaluating the accuracy of our method in detecting
the dynamic instants, moving then to a preliminary analysis on
the application to action recognition. If not otherwise stated, in
all the experiments reported in the paper, the threshold applied
to the optical flow estimates for the identification of the moving
region has been set to 2, while the value of τ (see section 2.2) has
been fixed to 5. The values has been experimentally selected on
the training set.

3.2.1. Dynamic Instants Detection
In Figure 4 we report a visual impression on the performance of
the dynamic instants detection in terms of Precision and Recall
values obtained on the different views of the MoCA dataset. A
dynamic instant with label L is successfully detected at time t, if
it exists in the ground truth an annotated instant at time t′ with
same label and such that |t − t′| ≤ 1T. In the experiments, we
fixed 1T = 6, corresponding to 1

5 s.
On the left panel of Figure 4 we show with bars the

precision, averaged across the different actions on the test set,
for each type of dynamic instants (START, STOP, CHANGE)
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FIGURE 4 | A visual impression of Precision and Recall values for the detection of START, STOP, and CHANGE dynamic instants in the different views of the

MoCA dataset.

TABLE 1 | A detailed analysis of Precision, Recall, True Positives, False Positives, and False Negatives obtained with our method on the View 2 of the MoCA dataset.

START STOP CHANGE

Length Prec. Rec. TP FP FN Prec. Rec. TP FP FN Prec. Rec. TP FP FN

Cutting 1,717 1 0.25 4 0 12 1 0.25 4 0 12 0.84 1 107 20 0

Cleaning 388 – – – 0 – – – – 0 – 1 1 41 0 0

Eating 1,756 1 0.93 26 0 2 1 0.89 25 0 3 – – – 3 –

Eggs 615 – – – 1 – – – – 1 – 1 0.82 56 0 12

Lemon 580 – – – 3 – – – – 3 – 1 0.76 32 0 10

Mezzaluna 543 – – – 0 – – – – 0 – 0.98 1 54 1 0

Mixing 456 – – – 0 – – – – 0 – 1 1 38 0 0

Openbottle 2,070 1 0.72 26 0 10 1 0.69 25 0 11 1 0.78 56 0 16

Pestling 455 – – – 0 – – – – 0 – 0.95 1 21 1 0

Pouring 1,050 1 0.90 36 0 4 1 0.90 36 0 4 – – – 7 –

Reaching 1,900 1 1 38 0 0 1 1 38 0 0 – – – 0 –

Rolling 755 – – – 0 – – – – 0 – 1 0.98 43 0 1

Salad 720 – – – 0 – – – – 0 – 1 0.98 39 0 1

Salt 1,180 1 0.24 5 0 16 1 0.24 5 0 16 0.75 1 63 21 0

Table 500 – – – 0 – – – – 0 – 0.98 1 43 1 0

Transporting 2,060 1 1 38 0 0 1 1 38 0 0 – – – 0 –

The second column also reports the length of the sequences in frames.

which have been grouped with respect to the view. The
lines on top of the bars represent the standard deviations.
It can be noticed how the Precision values are all very high,
and stable across views and class of dynamic instants. On
the right panel of the same figure, we report instead the
corresponding Recall values, from which we can observe a higher
robustness (i.e., higher Recall) in the detection of CHANGE
instants in comparison to the detection of START and STOP
points, that are nevertheless characterized by Recall’s very
close to 0.80.

A closer look to the performance associated with each action
shows uneven results. To highlight this aspect we report in
Table 1 the values of Precision and Recall we obtained for each
action. In this analysis, we consider as a reference the data
from View 2, which appears to be the weakest in terms of
detection results. For completeness we also included in the table
the number of true positive, false negative, and false positive

detections. The latter, in particular, can occur also in actions
not including them (and in such case their influence can not be
evaluated with the Recall because the number of true positives
would be null). It is easy to note that some actions are particularly
affected by the problem of missed detections. An example is
Cutting the bread for which, the pause the actor makes between
consecutive actions is too short to be successfully detected. A
similar example is the action Sprinkling salt, which in addition is
also affected by the presence of many false positives, most likely
due to the high speed of the action; Pouring the water is also
characterized by a small amount of false positives, that in this
case are however due to the apparent motion of the water inside
the container manipulated by the subject. We finally observe that
actions characterized by a limited variation in space, as opening a
bottle and squeezing a lemon, can be affected by missed detection,
mainly due to the limited amount of information derived from
the motion segmentation stage.
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FIGURE 5 | (A) (Left) Motion primitives obtained using K-Means to cluster the motion intervals detected between two dynamic instants. (B) (Right) The ROC curves of

simple classifier based on thresholding the similarity measures between actions across views.

FIGURE 6 | Results of the assignments between views using the Hungarian algorithm. Although not perfect, the results show a strong capability of the descriptor in

highlighting affinity between actions across views. (A) View 0 - View 0, (B) View 0 - View 0, (C) View 0 - View 0, (D) View 0 - View 0, (E) View 0 - View 0,

(F) View 0 - View 0.

3.2.2. Motion Understanding With Strings
To address the motion understanding task we built a dictionary
of 6 primitives using all the measures extracted from the training
sequences of the cooking dataset. The primitives, shown on
the left in Figure 5, are characterized by a bell shaped velocity
profile with different relative timing between acceleration and
deceleration phases, a typical trait of human motion (Atkeson
and Hollerbach, 1985; Sciutti et al., 2012).

To evaluate the expressiveness of the primitives, we set
up a simple matching tasks based on a thresholding of the

similarity between pairs of motion signatures. More specifically,
we estimated as described in section 2.3 the motion signatures
for each video in training and test set. Then, we compare each
test signature with all the training signature and threshold their
similarity with respect to a value δ, i.e., a pair of signatures is
considered a match if their similarity is above δ. The similarity
between signatures (that are strings) is done using a string kernel,
and in particular the P-Spectrum kernel (Noceti and Odone,
2012). It evaluates the similarity between two strings counting
howmany substrings of length P the two strings have in common.
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Given the nature of our strings, which are in general sequences of
dynamic intervals delimited by a pair of dynamic instants, in our
task a reasonable value for P is 3. By varying the value of δ we built
the ROC curve reported on the right of Figure 5. Notice that the
performance ofmulti-viewmatching (View i vs. View j, with i 6= j)
is very much in line with the results obtained comparing actions
in the same view. This is an evidence of the fact the motion
signature embeds invariant properties of the actions.

As a further evidence of this point, we notice that the fact the
matching between actions, either intra- or inter- views, does not
provide perfect scores suggests the presence of groups of actions
sharing some similarities. However, if we apply the Hungarian
algorithm (Kuhn, 1955) to assignment problems on the similarity
matrices obtained comparing the views, we obtain the results
in Figure 6. Although not perfect, the quality of the obtained
assignments is very promising, especially considering we start
form a simple description purely based on motion. This will give
us hints on possible future development, we will highlight in the
final discussion, to exploit this strategy for enabling a proficient
collaboration also in this challenging setting.

4. USING DYNAMIC INSTANTS FOR HRI

In the previous sections we have shown that it is possible to
extract dynamic instants from an offline analysis of videos of
complex actions and that this information could be used to
segment and describe different activities in a compact way. The
possibility to detect dynamic instants online however would
provide a robot with a precious information supporting action
timing coordination in joint tasks. In this section we introduce
the software solution that detects the dynamic instants through
vision (see a visual sketch of the procedure in Figure 7). We
verified the implementation with the humanoid robot iCub.
To this purpose, we designed a version of the Dynamic
Instant Detection algorithm that could work on-line, i.e.,
during the interaction and we integrated in the existing iCub
software framework, based on the middleware Yarp (Metta
et al., 2010). More specifically, the online dynamic instants
detection follows the same process described in section 2, but
leverages a sliding window of varying dimension in which the
detection is performed. Assuming that the observed action is
cyclic, the instant detection reliably predicts the occurrence of
the successive dynamic instant. Further, the interval between
successive dynamic instants represents an estimation of the
action duration which in turn can be used to generate a
robotic action with the appropriate duration. We can obtain
reliable action coordination between the human and robot when
associating the next starting event predicted for the robot action
and the proper action duration. In the following we give details
on each module developed to provide such coordination.

4.1. Online Dynamic Instants Detection in
the iCub Framework
The input for the dynamic instant detection is a sequence of
images from the right camera of the robot iCub, acquired with
a frame rate of 15fps at the image resolution of 320 × 240. The

FIGURE 7 | A visual sketch of the online procedure to detect dynamic instants

on the and plan the consequent action of the robot.

method uses the image analysis of the software module proposed
in Vignolo et al. (2016) and Vignolo et al. (2017). Thanks to
this the humanoid robot iCub recognizes the presence of motion
in the surrounding and segments motion that is produced by
a human, i.e., by a potential interacting agent. The dynamic
instants are detected from the video stream generated by the
human movement on to the image plane and fed into the core
software module called oneBlobMotionExtractor. The robot head
orientation is fixed to simplify the estimation of humans motion
feature. Consequently the module extracts motion features from
the optic flow associated with the observed human action. The
relevant features are sent to the input port of the minimaFinder
module (see Figure 7), which analyzes in particular one feature,
i.e., the velocity over time. From the analysis of the instant
temporal location of the minima in the velocity profiles, the
system computes the expected occurrence of future dynamic
instants (see description of minimaFindermodule below) and the
duration of the human action. Thanks to these two key aspects
of the movement, the robot plans the action indicating when
the action starts (i.e., action trigger event) and its duration. The
action trigger event and duration of the robot action are sent
to the handProfiler module, which is devoted to the synthesis of
biological-plausible robot actions. In the remainder of the section
we provide a more detailed description of each module.

4.1.1. oneBlobMotionExtractor
The analysis of the optic flow relies on two separate processes, i.e.,
the two classes of concurrent computing modules opfCalculator
and featExtractor. The two processes address, respectively the
segmentation based on motion of the moving element (i.e., blob)
and the description of the blob motion through a series of
features. The separation in blobs guarantees that the computation
of the module leverages multi-threading and implements
efficient parallel computing. In particular, the opfCalculator
module outputs separate maps for the horizontal and vertical
components of the optical flow (see section 2.1). From the
computed optic flow, the featExtractor process analyzes the
largest and most persistent moving blob. Our assumption is that
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only one region of interest moves in the scene. This assumption
is acceptable in several human-robot interaction settings, e.g.,
in table top scenarios where the task of the human partner is
in general of moving or passing one object or tool with his or
her hand. The process provides to the rest of the Yarp network,
and thus to the other modules in the software infrastructure the
velocity feature and the corresponding timestamps.

4.1.2. Minimafinder
Following the consideration in section 2, the module interprets
the velocity profile to detect the dynamic instants in the observed
actions. Themodule uses exclusively the velocity profile extracted
by the oneBlobMotionExtractor. The minimaFinder instantiates
two parallel and asynchronous processes aiming, respectively
at monitoring and commanding execution. For the monitoring
task, the minimaFinder reads the vector of features provided
by the featExtractor, and it finds the minima in the dynamic
progression of velocity. The values are filtered in time using a
running average formulation:

Vel
f

k
= α · Vel mk + (1− α) · Vel

f

k−1
(2)

where α is a weight controlling the importance of the two terms,

Vel
f

k
is the filtered velocity and Velm

k
is the measured velocity.

This step helps us to eliminate small fluctuations due to noise in
the sensing.

For the entire non-overlapping sliding time window, the
module stores in a buffer the instant measures of velocity passed
by featExtractor and the corresponding timestamp. Within the
buffer of all the velocity measures in the time window, the
minimaFinder extracts the global minimum.

By subtracting the timestamp of such minimum with the
previous one, we estimate the temporal interval between two
consecutive dynamic instants in the motion as 1tk = tk − tk−1

where tk is the timestamp of the current minimum and tk−1 of
the previous minimum in the velocity profile.

The temporal duration of the non-overlapping sliding time
window is adjusted with the estimated human action duration
1tk. The duration is filtered in order to guarantee at the same
time prompt and smooth adaptation to changes in the human
action pace.

In particular, assuming that the observed action is cyclic and
repeatable over time, the module computes the duration using
again a running average:

1̄tk = β · 1tk + (1− β) · 1̄tk−1 (3)

with β balancing the importance of the two terms, and
1̄tk representing the estimated time interval before the next
dynamic instant.

The occurrence of the next dynamic instant, hereafter
also called targetTimestamp, t̂k+1, is then obtained by
summing to estimated interval the last detected dynamic
instant t̂k+1 = tk + 1̄tk.

In the command execution phase, when the internal clock is
close to the targetTimestamp, i.e., in the interval t̂k+1 ± ǫ, the
minimaFinder sends to the controller of the whole body motion

of iCub the command EXEC(t̂k+1, 1̄tk). The first parameter
sets the timing of the robot action in correspondence to the
(predicted) dynamic instant, the second parameter controls the
duration of the next action to a value corresponding to the
estimated time interval.

In the first condition the minimaFinder waits until the
targetTimestamp is reached to send the new command. In
the second condition the minimaFinder immediately executes
another action command but the action duration is computed
as 1̄tk − ǫ, it is shortened to guarantee next synchronization
between robot and human minima. In the third condition the
minimaFinder immediately executes another action with same
duration as the temporal interval between dynamic instants. The
minimaFinder avoids to send new commands to the controller
if the controller has not terminated the action. At the end of
the action execution the minimaFinder adopts three strategies in
relation to three possible conditions (Figure 8, on the top: [1] The
new targetTimestamp occurs after the end of the action execution
time; [2] The new targetTimestamp occurs before the end of the
previous action execution time of ε seconds; [3] The new action
execution occurs after the end of the next time window).

4.1.3. Handprofiler
The handProfiler module generates and executes wholebody
biologically plausible movements, given a desired trajectory and
the desired action duration. The only constraint is that the
trajectory of each motion (or part of motion) can be represented
as a portion of an ellipse. Ellipses have been chosen for their
characteristic of generic curves. Thanks to their parametric
definition, ellipses reproduce a great number of trajectories
with different curvatures, ranging from circles to quasi-straight
curves. The robot executes the 3D motion guaranteeing at the
same time that the velocity of the end-effector (center of the
palm in the iCub robot) visits the different sections of the ellipse
respecting a law of biological motion, and more specifically the
Two-Third Power Law (Richardson and Flash, 2002; Noceti et al.,
2017). The selection of biologically plausible motion for the
humanoid robot is motivated by findings that suggest that this
choice promotes improved coordination in HRI collaborative
tasks (e.g., Bisio et al., 2014). Once generated, the position in
time of every step action are saved as trajectory in the space of
joint angles. To perform such conversion the module computes
the inverse kinematic in realtime during the action execution.
This establishes perfect repeatability in the trajectory execution
and fast generation of the action, since inverse kinematic is only
computed during the first execution. The user can change the
duration of the action. In such case, the module automatically
recomputes the temporal scale factor that changes proportionally
all the time intervals between consecutive joint positions in file.
Since the procedure does not change the shape of the velocity
profile, it also maintains the action compatible with the Two-
Third Power Law.

5. EXPERIMENTAL METHODS

In order to assess the ability of the robot to coordinate its
actions with a human partner by using the online dynamic
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FIGURE 8 | (A) On the top, the three strategies adopted by minimaFinder in

relation to three possible conditions: (1) The new targetTimestamp occurs after

the end of the action execution time; (2) The new targetTimestamp occurs

before the end of the previous action; (3) The new action execution occurs

after the end of the successive action execution. (B) On the bottom,

experimental setup where the robot iCub stands in front of the subject

observing his or her movements. The subject performs reaching movements

between the BW-TW, BC-TC, RW-LW, RC-LC where B: bottom, T: top, R:

right, L: left, C: central, and W: wide. The optotrack active markers are

indicated with m1, m2, m3 labels. The iCub robot performs stamping action

whose trajectory is highlighted in dashed black line.

instant detection described in the previous section, we considered
a scenario recalling a collaborative interaction in a table-top
work environment. We emulate a situation in which the human
partner is performing a repetitive task at his or her own pace and
the robot has to perform a subsequent action, adapting to the
partner’s timing. We explicitly want to assess the ability of the
robot to understand the appropriate action timing with no exact
specification of the actions performed by the human partner,
in terms of trajectories or movement speed. The assumption
however is that the human action will be cyclic. In the experiment
the participants have to move a stamp on a table toward different
targets at their natural rhythm, mimicking a stamping task. The
robot, which is in front of the human partner, with the cameras
looking at his movements, has to perform a stamping action
itself orthogonal to the human partner’s trajectories on a different
target, in coordination with him (see the experimental setup in
Figure 8, on the bottom).

We tested the system to observe how the robot adapts to
different people by recording 7 naive subjects (5 males and
2 females, average age 29 ± 10 years old). More in detail, the
participants have been instructed to move the stamp on different
locations marked on a table, first 15 times from point BW to
the point TW and back (phase w-v, wide, and vertical), then
the same for LW and RW (phase w-h, wide and horizontal),
BC and TC (phase s-v, small and vertical), LC and RC (phase
s-h, small and horizontal) (see Figure 8, on the bottom). The
target locations have been indicated on the table with small
circles and participants have been instructed to stamp precisely
in the circle. To maintain the attention of the participants to the
task, the stamp was filled with water and they were asked to be
careful not to pour it during the transportation of the object.
Moreover, we asked the subjects to be focused on their own
motion and not consider the robot moving in front of them in
order to avoid motor contagion and make them maintain their
natural speed (Vannucci et al., 2017). This choice was made to
guarantee that the adaptation measured during the experiment
was a result of the robot’s ability to achieve synchronization
and not a consequence of participants’ tendency to adapt to
the partner.

We collected kinematic data of each participant and the
robot through an Optotrak motion capture system (NDI) with
three active infrared markers placed on the right hand of the
participant (two on the left and right part of the wrist and one
on the first knuckle of the little finger, in order to be sure to
have always at least one marker well visible from the Optotrak)
and 1 marker on the left hand of the robot (with 100 Hz as
frequency of recording). We also collected the motion features
extracted from the optical flow of the observed action by the
module oneBlobMotionExtractor, in order to compare in post-
processing the ground truth of the human speed (recorded with
the Optotrak system) and the speed measurement computed
by the robot from the camera images online. The camera is
static and monitors human movements to simplify the task,
however the eventual egomotion can be compensated by existing
iCub software.

In the experiment, the robot detects the dynamic instants
in the observed action, predicts the occurrence of the next
dynamic instants and assesses accordingly the start instant and
the duration of its own action. In the remainder, the value
of α (Equation 2) has been set to 0.4, while the size of the
non-overlapping sliding time window is initialized to 2 s. The
weight β in Equation (3) is kept to 0.5. Finally, we set ǫ, to
define the width of the interval around the targetTimestamp,
to the value 0.9.

6. ONLINE EXPERIMENTAL EVALUATION

In this section we discuss the results of the online experimental
analysis we performed on the iCub, considering the task and
the methodologies introduced before. We start with a qualitative
assessment of the robot behavior on specific fragments of
the interaction sessions, and later we summarize the overall
performance on the entire sample set.
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FIGURE 9 | Above, bell shaped profile of human and robot actions with the commands of movement execution sent to the robot and the ones actually executed.

Below, duration of human actions estimated by the robot, duration sent to the controller of the robot, and duration actually executed by the robot.

6.1. Qualitative Evaluation of Action
Execution
We start with a detailed description of how the robot coordinated
with the human in the execution of the coordinated stamping
task. In Figure 9, top panel, the data recorded from the
motion capture for the coordination between the robot and
a representative subject during phases w-v and phase w-h are
reported. The detailed quantitative measures of the adaptation
are reported later in this section. This figure is meant to
provide a snapshot of the type of behaviors exhibited by the
robot in the interaction. In this example, the robot infers the
duration of human action in twelve reachingmovement recorded
from the first phase (w-v: wide and vertical movements).
In the following, we will refer to the command planned at
time t as EC<t>.

With the command of action execution planned by the
robot at 52.0s (EC52—indicated with a full red circle in the

x-axis of Figure 9, top panel), the robot starts the execution
of a stamping action which comprises first 800 ms of no-
movement, constituted by two bell shaped velocity profiles, that
synchronize with the execution of a back and forth human
stamping (two bell shaped velocity profiles, marked in blue).
The action commands EC53, EC55 are planned in agreement
with the human dynamic observation but never executed by the

robot motor control system. In fact, the algorithm is designed to

neglect action commands that occur when the previous motor

action is still in execution. On the other hand, the command
EC57 is executed and generates two movements that synchronize

with the two human movements. The small movements of
the robot after the motor command and before the consistent

acceleration to the velocity maximum are small preparatory

adjustments of the joint angles. The adjustment is also considered
in the analysis of the duration of human and robot actions (see
Figure 9, bottom panel). Both the timing of the action-start and
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action-stop events (and consequently the duration) are aligned
with human actions and minima of both the human and robot
movements coincide. EC58 and EC59 commands are ignored
since the robot is executing previous motor commands. The
EC62 triggers another motor action that ends after the E63, and
E65 commands are generated.The execution of the successive
action starts with EC67 but in that precise moment the human
participant changes the direction and the speed of the movement
to initiate phase w-h. The dashed vertical line indicates the
change of the next phase and consequently the beginning of
the first reaching movement in the phase w-h. The monitoring
and coordination with the human individual adapts to the pace
change and the robot executes an action (execution command
EC76) that has its minimum aligned with the minimum of
human action. However, it is clear that the duration can be
further adjusted.

6.2. Robot Adaptation to Human Action
Pace
The monitoring of human actions guides automatic adjustment
of robot pace, as can be seen also from Figure 9, bottom panel.
In this figure, the phase changes are indicated by vertical dashed
lines and the duration of action executions for both the subject
5 (in blue color) and the robot (in red color) are reported. In
particular, the cross marker represents the duration estimated
by the robot, the circle marker represents the action command
sent by the robot but not actually executed, whereas the full
circle marker indicates the motor commands actually executed
by the iCub.

The initial a priori estimate of human action duration is 2.0
s, and starting from this value, the duration estimated by the
robot converges to the real value through the observations of
the partner’s movements. Considering the duration of the actions
planned by the robot (both for those that are actually executed
and the ones which are just planned), it can be seen that some
them are of reduced duration. We limited the duration of robot’s
actions to a minimum of 2 s in order to avoid the execution of
too fast actions, which could have been perceived as dangerous
by the human partner. These correspond to anticipatory action
commands that are programmed to synchronize the robot with
a lost human action without stopping the robot execution. The
advantage of such approach is that the robot action pace is never
interrupted and flows smoothly across the entire collaboration.

Before the change from phase w-v and phase w-h, as we
have seen in the graph for the specific case, there is a tendency
to underestimate before t < 50 s. During the change from
phase w-v and phase w-h the human participant increases the
duration of action execution. The robot estimation becomes
generally correct despite this small adjustment, but the system
overestimates the duration at 96.95, 108.2, 116.4 s because of
minima lost in the monitoring process. We considered correct
response when the estimation error is <2 s (upper boundary for
coordination). However the executed motor commands are only
partially affected by this error thanks to the filtering component
(as indicated in Equation 3) in the estimation of the human
actions duration.

6.3. Robot Challenges in Online Scenarios
After having described in detail the behavior of the robot from
the analysis of the interaction with one subject, we assessed
the average performance of the system in the whole sample.
Before reporting the results, it is worth identifying and provide
a quantification of the challenges the robot needs to address to
grant an adaptive behavior.

First, in this interactive scenario iCub has to address variability
occurring both between and within subjects. In fact, although
subjects were instructed to perform the same reaching actions
in the same order, they started at different execution speeds
and adjusted such execution differently over time, as shown in
Figure 10. The reaching and porting movement, computed from
the recordings of the motion capture system, are executed on
average in∼4 s for the w-v and w-h phases and in 3.5 s for the s-v
and s-h phases. More importantly the variability across subjects
is relatively large (standard deviation for the w-v and w-h phase
is approximately±1 s and for the s-v and s-h±1 s, see Figure 10,
left panel).

Further, there is also variability within subjects, with
phenomena like habituation leading to change in action duration
over time. For instance, the two right panels in Figure 10,
show how two participants, respectively subject 2 and subject 7,
habituate differently to the task during the 60 repetitions.

Furthermore, the actions performed by humans are assessed
by the robot through vision. This implies that a movement in
three dimensions is projected on the image plane (i.e., point of
view of the robot on the scene), thus producing different apparent
motions as a function of the relative position of the robot camera
and the human agent.

In Figure 11, we can appreciate how the initial and final part
of the reaching movement generate different optic flows due to
different moving body parts (i.e., arm, forearm, and hand). Also
the typology of the generated optic flow varies between the phases
of orthogonal movement (phases h) and movements directed
toward the robot (phases v). In the first, the optic flow direction
is close to be orthogonal to the image plane and in the latter the
optical flow expands in the image plane.

The projection on the image plane generate velocity bells
intrinsically different from those acquired with the motion
tracking system, namely our ground truth (GT). As it can be
seen in Figure 12, while the velocity extracted from the optic
flow (OF) is quite similar to that measured with the Optotrak
(GT) when human motion is orthogonal to the robot (h), when
the human moves his hand back a forth toward iCub (v), the
two velocity profiles differ, with unimodal hand velocity peaks
being perceived by the robot as bimodal. This is due to the
fact that while the end-effector reaches the target the rest of
the arm adjusts (i.e., elbow movements) and the movement is
detected in the optical flow. As a consequence the optical flow
never completely reaches zero when the arm is fully involved in
the movement. This has already an effect, although modest, in
the process of minima detection performed on the ground truth
(GT) and optic flow (OF) measures. The difference is reported
in the figure as number of movements in average across the
experimental trials extracted from the two series GT and OF.
To check the similarity between the two estimates of velocity
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FIGURE 10 | On the left, variability of the duration of human actions in the different phases. On the right, duration of actions of subject 2 (above) and subject 7 (below).

FIGURE 11 | Start and end of the movement viewed by the Optotrak (above)

and by the robot (middle). Below, the optical flow extracted by the robot.

(GT and OF) we computed a posteriori for all subjects the
number of local minima for each phase in the two variables (see
Figure 13, left). The two estimates are not significantly different
for phases w-h and s-h (as the data are not normally distributed,
we performed a Wilcoxon signed-rank test on the difference: p=
0.81, Z = 9; p = 0.63, Z = 7, respectively) whereas a significant
difference is present for phase w-v and s-v (Wilcoxon signed-
rank test on the difference: p = 0.03, Z = 21; p = 0.03, Z = 21,
respectively), suggesting a more important discrepancy between
the velocity profiles extracted from the optic flow from ground
truth when the motion is performed toward the robot.

6.4. Experimental Evaluation on the Whole
Sample
Having considered the challenges to be tackled by the system,
we first analyzed how the robot coordinated with the subjects by
comparing number of movements it executed with the number
of human movements in each phase. As shown in Figure 13 on
the right, the robot performs less movements than the human
in all phases, with the difference becoming larger in the phases
involving shorter (and faster) human movements.

A series of Wilcoxon signed-rank tests (as the data are not
normally distributed) on the difference between the number of
human actions and the corresponding number of robot actions
shows a significant difference in the phases s-v and s-h (p =

0.02, Z = 28; p = 0.02, Z = 28, respectively) while it does
not show a significant difference in the phases w-v and w-
h (p = 0.06, Z = 20; p = 0.06, Z = 20, respectively). A
Kruskall-Wallis test (as the data are not normally distributed)
on the difference between the number of human actions and the
number of robot actions with “phase” as factor, indicates that
such discrepancy is not significantly different from one phase
to another. In the following analyses we have then taken in
consideration only those human actions for which the robot
performed a corresponding coordinated action. To select them
we considered the start instants of each robotic action and we
individuated the human actionwhich startedmore closely in time
to it. For these subset of actions we compared action duration—
between human and robot—and we estimated robot delay, as
the average difference in time between each human dynamic
instant and the closest action start. The average duration of the
movement in the action execution between the robot and the
participants (see Figure 14 left panel) are quite consistent. For all
the phases the durations of the human and robot actions (which
are normally distributed) were not significantly different [one
sample t-tests on the differences: t(6) = 0.22, p = 0.83 for phase
w-v, t(6) = −0.23, p = 0.83 for phase w-h, t(6) = −2.28, p =
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FIGURE 12 | (A) On the left, speed computed from the Optotrak data (GT) and from the optical flow extracted by the robot camera (OF) for the 5th subject. (B) On

the right, mean of the number of actions detected a posteriori from the two speed signals for all the subjects and all the phases.

FIGURE 13 | (A) On the left, number of actions detected a posteriori from the data recorded by the Optotrak (GT) and from the optical flow extracted by the robot

camera (OF) in the different phases. (B) On the right, mean of the number of movements performed by the human and by the robot in the different phases for all

the subjects.

0.06 for phase s-v, t(6) = −2.25, p = 0.07 for phase s-h].Since p-
values are close to significance we cannot exclude that additional
subjects might reveal a significant difference.

From the figure it is possible to note that for the duration in
action execution the first two phases are different from the second
two phases. In particular for the phases s-v and s-h the change in
human movement duration reflects the fact that the distance of
porting action is shorter. The monitoring process of the system
detects a change in the human actions, but the action execution
is only partially adjusted as demonstrated by the increase of the
standard deviation of the last phases. However, a one-way RM
anova on the difference between the duration of human actions
and the duration of robot actions with “phase” as factor, fails to
individuate a significant difference among the phases [F(3, 24) =
1.23, p= 0.321].

Considering together these results, we conclude that the
estimation of the human action duration is reasonable but
not precisely accurate. This explains the reduced number of
robot movements in the phase s-v and s-h with respect to
human movements.

Last, in Figure 14, right panel the delays of action execution
between each participant and the robot are reported for each
phase. As the data are normally distributed, we performed a
series of one sample t-tests that shows that for all the phases the

delay was not significant [t(6) = 1.08, p = 0.32 for phase w-v, t(6)
= 0.67, p = 0.53 for phase w-h, t(6) = 0.20, p = 0.85 for phase
s-v, t(6) = 1.08, p= 0.32 for phase s-h]. It is worth noting though
that this analysis was performed on the subset of human action
that were closer in time to the actions actually instantiated by the
robot. We then performed a one-way RM anova on the delay,
and the results [F(3, 24) = 0.3, p = 0.8237] say that no phase is
significantly different from the others.

We conclude that despite the wide variability of the different
subjects, the monitoring and coordination system of the robot
can synchronize with the human partner, at least when his or
her movement is of sufficient width and duration to be properly
perceived online by the robot cameras. Some considerations
about the huge variability between and within subjects indicate
the rate at which estimated duration adjusts should be improved.
In particular, the rate should be subject dependent and should
accommodate individuals that vary considerably their pace of
repetitive movements.

7. DISCUSSION

With this study we investigated the use of a motion signature
that relies on the detection of dynamic instants—points where the
motion is subject to a change—and dynamic intervals—portions
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FIGURE 14 | (A) On the left, average duration and standard deviation from the mean of human and robot actions in the different phases for all the subjects. (B) On the

right, delay between human and robot movements.

of the velocity profile of a movement delimited by a pair
of dynamic instants—to the purpose of understanding actions
in unconstrained collaborations, and achieving synchronization
in collaborative HRI tasks characterized by a repetitive
action. The method has been designed to work without
a priori knowledge of the actor’s posture or the trajectory
of his/her action execution. In addition the solution is
robust to change in the perspective from which the action
is observed.

Overall, it is our opinion that, despite necessary fine tuning of
the parameters, both action understanding and synchronization
enable dependable collaboration between the robot and the
human. The solution we propose is particularly well-suited for
robotics, in that it is “agnostic” to a priori knowledge and
sensors quality: it requires only a single RGB camera, as well
as only a very short training dataset, providing a simple and
versatile approach to these tasks. The use of dynamic instants
to classify the action and to detect opportune coordination
timing constitutes an advantageous solution, with the potential
of promoting natural interaction and facilitating efficient mutual
understanding between the two coordinated agents.

More precisely, in the sections 2, 3 we showed how the
method, despite its simplicity, is able to capture similarities
between actions in unconstrained interaction settings. This
suggests that the motion signature incorporates very relevant
motion properties that may be further exploited for more
complex understanding tasks. A first straightforward extension
concerns the level at which the descriptor is built. In this
work, the motion signature incorporate information from the
whole video and thus is a way of representing repetitions
of actions rather than a single action instance. However, for
favoring collaborations also in challenging scenarios with free
and unconstrained possibilities of interaction, a more detailed
representation is needed to associate semantic information
with action segments. This is turn enables the capability
of understanding when and where to intervene. For all
these reasons, we are now working on the design of novel
motion representations combining the information derived from
dynamic instants and intervals at multiple temporal scales, to

cope with single instance action recognition but accounting for
the possible different durations in time of actions.

From section 4 on, we presented the implementation of the
proposed method in the iCub framework, to detect and predict
dynamic instants occurrences and consequently plan reaction
with appropriate action executions. To validate the system in
an interactive online context, we considered a proof-of-concept
scenario, where the robot had to execute a stereotyped action
in coordination with a human performing its own task. Our
results provide strong evidence of the potential of the proposed
approach, which proved also to be robust to drastic changes in
the properties of the sensors adopted in the action observation
(e.g., frame rate or camera resolution).

Our work can be extended in several different directions.
Currently, conflicts in the interaction are handled so to guarantee
a continuous action flow, favoring coordination and mutual
adaptation. Future works will specifically consider situations in
which the stability of the robot action duration is more crucial, so
as to diversify the robot response depending on the context.

The fundamental aspect of our implementation is that the
method assumes observation of repetitive actions and it promotes
coordination only when parameters are fine-tuned for the specific
individual. In the future we will consider an “observation phase”
in which the robots monitors the human partner behaviors
(including the computation of 3d optical flow), infers the class of
actions and evaluates the stability of the timing, before deciding
the parameters of the action coordination.

The extension to full body motion will be also object of
investigation in future works. Given the strong assumption
we are making when we collapse all the information derived
from the optical flow in a single point, i.e., that there is just
one main body part conveying relevant information about the
observed movement, the method in the present form is going
to fail in situations where such assumption is not valid, as in
the case of full body motion. In such circumstance, a more
refined pre-processing of the low-level features is needed, first
identifying the body parts and then building a description for
each of them, possibly combining their different contribution in a
later stage.
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