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Abstract

Resilience is the ability to cope with critical situations through the use of personal and

socially mediated resources. Since a lack of resilience increases the risk of developing

stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD) and

major depressive disorder (MDD), a better understanding of the biological background is

of great value to provide better prevention and treatment options. Resilience is undeni-

ably influenced by genetic factors, but very little is known about the exact underlying

mechanisms. A recently published genome-wide association study (GWAS) on resilience

has identified three new susceptibility loci, DCLK2, KLHL36, and SLC15A5. Further inter-

esting results can be found in association analyses of gene variants of the stress response

system, which is closely related to resilience, and PTSD and MDD. Several promising

genes, such as the COMT (catechol-O-methyltransferase) gene, the serotonin transporter

gene (SLC6A4), and neuropeptide Y (NPY) suggest gene × environment interaction

between genetic variants, childhood adversity, and the occurrence of PTSD and MDD,

indicating an impact of these genes on resilience. GWAS on PTSD and MDD provide

another approach to identifying new disease-associated loci and, although the functional

significance for disease development for most of these risk genes is still unknown, they

are potential candidates due to the overlap of stress-related psychiatric disorders and

resilience. In the future, it will be important for genetic studies to focus more on resilience

than on pathological phenotypes, to develop reasonable concepts for measuring resil-

ience, and to establish international cooperations to generate sufficiently large samples.
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1 | INTRODUCTION

Besides diagnostics and treatment of neuropsychiatric disorders, pre-

vention and the identification of risk factors are fundamental to

promote mental health. Therefore, research on resilience increased

rapidly over the last decades. Resilience is defined as the ability to

adapt to stress while maintaining healthy mental and physical perfor-

mance. The American Psychological Association defines resilience as

“[…] the process of adapting well in the face of adversity, trauma, trag-

edy, threats or significant sources of stress—such as family and
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relationship problems, serious health problems or workplace and

financial stressors. It means ‘bouncing back’ from difficult experi-

ences” (APA, 2018). Since all individuals are at some point exposed to

stressful life events or traumas, understanding of how some of us can

cope with such experiences and others not, is crucial to maintaining

or regaining mental health in society. In this context, a better under-

standing of the genetic mechanisms underlying resilience is important

to improve treatment and prevention strategies and to implement

personalized medicine.

In the past 20 years there have been enormous developments in

the discovery of genetic factors associated with complex psychiatric

diseases such as schizophrenia (Giegling et al., 2017) and Alzheimer's

disease (Kunkle et al., 2019), but also with personality traits (Sanchez-

Roige, Gray, MacKillop, Chen, & Palmer, 2018) and intelligence

(Savage et al., 2018). However, there are very few studies that have

investigated the genetic impact on resilience. An important reason for

this is the large number of resilience-related indicators, so that the

measurement of resilience is neither clearly operationalized

(Rodriguez-Llanes, Vos, & Guha-Sapir, 2013) nor a gold standard has

been defined (Windle, Bennett, & Noyes, 2011). Moreover, the focus

has so far been less on health-promoting factors than on disease-

associated and deficit-oriented aspects. One way to counter this

problem, at least in part, and still being able to draw conclusions about

the underlying genetic mechanisms of resilience, is to consider studies

in which vulnerable phenotypes have been investigated. Why this is a

reasonable approach becomes apparent when one considers resilience

and vulnerability as the poles of a continuum (Haddadi & Besharat,

2010; Kim-Cohen & Turkewitz, 2012). In addition, there is an

overlap of indicators between vulnerable phenotypes, especially post-

traumatic stress disorder (PTSD) and major depressive disorder

(MDD), and psychological resilience, which is reflected by the fact that

after a trauma or an adverse life event, a lack of resilience can contrib-

ute to the development of PTSD or MDD (Ahmadpanah et al., 2017;

Mattson, James, & Engdahl, 2018). Thus, genetic case–control studies

comparing individuals who have developed a mental disorder after

stress exposure with those who have not developed mental problems

provide a way to identify genetic factors associated with resilience,

since these studies compare resilient and nonresilient phenotypes.

Moreover, there is evidence for mechanisms that predict vulnerability

to stress and susceptibility to PTSD and MDD in the face of stress

and trauma (Southwick & Charney, 2012; Wu et al., 2013).

Based on these preliminary considerations, this review is struc-

tured as follows: The first section focuses on the heritability of resil-

ience. As there are few studies on this issue, it is necessary to use

other resources to gain a deeper insight into the genetic background

of resilience. Therefore, the second section gives an overview of

studies that have investigated associations of vulnerable phenotypes

with genetic variants of the neuroendocrine stress response system.

It is assumed that the stress response system plays a key role for

resilience (Feder, Nestler, & Charney, 2009), so that the focus in this

section is on the serotonergic, noradrenergic, and dopaminergic

systems as well as the hypothalamic–pituitary–adrenal axis (HPA axis),

neuropeptide Y (NPY), and brain-derived neurotrophic factor (BDNF).

In particular, results will be presented that have revealed a

gene × environment interaction in the development of mental disorders

and thus suggest a connection with resilience. In the third section,

results of genome-wide association studies (GWASs) on resilience,

PTSD and MDD will be presented, as they offer a relatively new

approach to the identification of hypothesis-free phenotype-associated

genetic variants and thus an opportunity to gain direct insights into the

genetics of resilience. Finally, the discussion section contains a sum-

mary of the most important results, a conclusion on the current state of

knowledge and an outlook for the future.

2 | METHODS

A MEDLINE (PubMed) research was conducted for this review. First

of all, studies were considered in which genetics and heritability of

resilience were addressed. Since the literature in this field is limited,

we have included studies that have investigated the association of

genetic variants of the stress response system with psychiatric disor-

ders and have therefore considered PTSD and MDD as outcome vari-

ables in terms of a lack of resilience. It should be noted that the focus

was on studies from the last 10 years and that not all studies were

included, in particular those with very small sample sizes and those

from which no relationship to resilience could be derived. Finally, a

systematic search for GWAS on resilience, PTSD and MDD was con-

ducted to use this new and promising approach, which has led to a

significant development in genetic research in recent years.

3 | HERITABILITY OF RESILIENCE

Most of the knowledge about the heritability of resilience derives

mainly from twin studies. In a study of more than 1,000 pairs of twins

in childhood, genetic and environmental factors affecting resilience

were investigated, with 46% of the variance of cognitive and 70% of

the variance of behavioral resilience being explained by genetic

effects (Kim-Cohen, Moffitt, Caspi, & Taylor, 2004). A study carried

out by Wolf et al. (2018) on 3,318 male twin pairs from the Vietnam

Era Twin Registry, which included analyses of genetic and environ-

mental influences on the severity of PTSD symptoms as measured by

the PTSD Checklist (Weathers et al., 2017) and an assessment of resil-

ience, measured with the Connor–Davidson Resilience Scale-10

(Connor & Davidson, 2003), revealed a heritability of resilience of

25% and PTSD of 49%. Resilience and PTSD were negatively corre-

lated at r = −.59, and 59% of this correlation was attributable to a sin-

gle genetic factor, whereas the remainder was due to a single

nonshared environmental factor (Wolf et al., 2018). Another study

investigating the genetic contribution to resilience in a genome-wide

approach with 8,734 participants from the GS:SHFS study

(Generation Scotland:Scottish Family Health Study) confirmed the

heritability of resilience, but the estimated phenotypic variance of 8%

attributable to genetic factors was significantly lower than in the

aforementioned studies (Navrady et al., 2018). This study also investi-

gated the influence of genetic factors on different coping styles (task-
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oriented, emotion-oriented, avoidance-oriented coping), which are

closely related to resilience (Iacoviello & Charney, 2014). Interestingly,

a large genetic correlation between emotion-oriented coping and

resilience was found, which indicates a common genetic background

of these traits (Navrady et al., 2018). Amstadter, Maes, Sheerin,

Myers, and Kendler (2016) found in patients with MDD and general-

ized anxiety disorder (GAD) that 42% of MDD heritability and 60% of

GAD heritability are due to genetic factors influencing resilience,

suggesting shared heritability of these diseases and resilience. These

findings support an impact of genetics on resilience, whereby the

studies differ in the extent of heritability. There is also evidence that

the investigation of PTSD and MDD may allow conclusions to be

drawn about the genetic background of resilience, as there is at least

a partial overlap between resilience and these psychiatric disorders.

4 | CANDIDATE GENES OF THE
NEUROENDOCRINE STRESS RESPONSE
SYSTEM

Several neurotransmitter systems contribute to resilient responses to

stress and are implicated in the development of PTSD and MDD.

Genetic variants of the noradrenergic, dopaminergic, and serotonergic

systems, as well as genes encoding for neurotrophic factors or genes

related to the HPA axis have been most extensively studied (Sheerin,

Lind, Bountress, Nugent, & Amstadter, 2017; Wu et al., 2013). The

following sections provide an overview of the main results of associa-

tion studies on genetic variants of the stress response system with

PTSD and MDD in the context of resilience.

4.1 | Serotonergic system

The serotonergic system is connected to the function of two key

stress response systems: the HPA axis (Leonard, 2005) and the locus

coeruleus (LC)–norepinephrine (NE) system (Goddard et al., 2010).

A promising gene from this neurotransmitter system is the SLC6A4

gene (solute carrier family 6 member 4), encoding the serotonin

transporter (SERT). Within the promotor region of SLC6A4, there is a

polymorphism (serotonin transporter-linked polymorphic region;

5-HTTLPR) with short (S) and long (L) repeats, with the S allele leading

to decreased SERT expression compared to the L allele (Lesch et al.,

1996). A meta-analysis showed that the S allele is associated with

increased stress sensitivity (M. Zhao et al., 2017) and furthermore, S

allele carriers are more likely to develop MDD, which has already been

proven in several studies (López-León et al., 2008). Overall, there

seems to be an association between the promoter polymorphism of

the SLC6A4 gene, depression and environmental interactions, as car-

riers of the low-active S allele had a markedly elevated risk of devel-

oping depression under stress exposure, which was demonstrated in a

meta-analysis of 54 studies (Karg, Burmeister, Shedden, & Sen, 2011).

This study also found evidence for the association of the S allele with

stress sensitivity and depression in maltreated children. A connection

of the S allele was also shown in an increased risk for PTSD in patients

with childhood adversity and adult traumatic events (Xie et al., 2009).

A dose-dependent relationship between SLC6A4 variants and emo-

tional resilience was additionally demonstrated in a study on 423 psy-

chology students, with lower resilience scores found in S allele

carriers (Stein, Campbell-Sills, & Gelernter, 2009). However, a number

of meta-analyses investigating the SLC6A4 × environment interaction

revealed mixed results, and the effect, if present, is modest and

unlikely to be generalized (Culverhouse et al., 2018; Karg et al., 2011;

Munafò, Durrant, Lewis, & Flint, 2009; Risch et al., 2009; van der

Auwera et al., 2018). Taken together, S allele carriers are more likely

to develop stress-related psychiatric disorders, such as PTSD and

MDD, which may be due to lower resilience in S allele carriers.

In addition to the SLC6A4 gene, serotonin receptors and enzymes

of the serotonin metabolism have been investigated. The mitochon-

drial enzyme monoamine oxidase A (MAOA) is responsible for the

degradation of serotonin as well as epinephrine and NE and a meta-

analysis found an association between a variable number of tandem

repeats polymorphism (uVNTR) in the MAOA promoter region and

MDD, but limited to Asians (Fan et al., 2010). In addition, epigenetic

modifications by DNA methylation of the MAOA gene have been

associated with PTSD (increased methylation status) and panic disor-

der (decreased methylation status) as well as the occurrence of posi-

tive and negative life events (Domschke et al., 2012; Ziegler et al.,

2017). Another enzyme in the serotonin metabolism is tryptophan

hydroxylase 2 (TPH2), the rate-limiting enzyme in the synthesizing

pathway for brain serotonin (Invernizzi, 2007). A higher risk for MDD

has been reported for two independent SNPs of TPH2 (Gao et al.,

2012), with the T allele of rs4570625 being associated with smaller

volumes of bilateral amygdala and hippocampus, a typical finding in

emotion-related psychiatric disorders (Inoue et al., 2010). Genetic var-

iants of the genes HTR1A (5-hydroxytryptamine receptor 1A; Kishi

et al., 2013) and HTR2A (X. Zhao et al., 2014) appear to be associated

with depression and of HTR2C with depressive symptoms in women

and elevated cortisol levels induced by acute mental stress, implying a

direct link between HTR2C and HPA axis activation (Brummett et al.,

2012; Brummett, Babyak, Kuhn, Siegler, & Williams, 2014).

4.2 | Dopaminergic and noradrenergic systems

Dopamine emerges in several, relatively confined groups of neurons

projecting to various brain areas including the prefrontal cortex,

nucleus accumbens (NAcc), hippocampus, and amygdala. Differences

in striatal dopamine transporter (DAT) density in PTSD patients com-

pared to healthy, traumatized individuals, suggest an influence of the

dopaminergic system on vulnerable phenotypes and resilience

(Hoexter et al., 2012). In a meta-analysis by Li et al. (2016), two

genetic variants in genes of the dopaminergic system with increased

susceptibility to PTSD were detected, namely the VNTR polymor-

phism in the promoter region of the human DAT gene (SCL6A3) and a

polymorphism (rs1800497) in the dopamine receptor D2 gene

(DRD2). DRD2 has also been shown to regulate synaptic modification

in response to stress (Perreault, Hasbi, O'Dowd, & George, 2014; Sim

et al., 2013). In addition, both genes, SCL6A3 and DRD2, are
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associated with MDD, whereby the association of DRD2 has been

demonstrated in a large GWAS with 130,664 cases and 330,470 con-

trols (López-León et al., 2008; Wray & Sullivan, 2017). Also an influ-

ence on resilience could have variants of the DRD4 gene (dopamine

receptor D4), where carriers of seven or more copies of a VNTR poly-

morphism in the third exon had a seemingly protective effect and thus

an increase of resilience if they suffered adversity during childhood.

Conversely, this effect was not observed when no childhood trauma

occurred.

The catecholamine NE is released from its main production site—

the LC in the pons—upon stress-induced activation of the noradrener-

gic system and transported to its various projection sites, including

amygdala, hippocampus, hypothalamus, and prefrontal cortex

(Bandelow et al., 2017). β-adrenergic receptors as well as α-adrenergic

receptors and the NE transporter are considered to be involved or

affected in various psychiatric disorders and resilience (Borodovitsyna,

Flamini, & Chandler, 2017; Krystal & Neumeister, 2009). So far, how-

ever, there are no conclusive results on genetic variants of the NE sys-

tem related to resilience.

One potential candidate affecting both the dopaminergic and nor-

adrenergic systems is the enzyme catechol-O-methyltransferase

(COMT). The SNP rs4680 (Val158Met), which affects the activity of

encoded COMT, is probably the most replicated disease-relevant

polymorphism of this system. The Met allele is associated with a

decreased COMT enzyme activity and thus higher NE and dopamine

levels (Chen et al., 2004). Homozygous carriers of the Met allele show

lower emotional resilience against negative mood states in humans

(Smolka et al., 2005) and exaggerated stress reactivity in mice

(Papaleo et al., 2008). The Met allele was found to be associated with

decreased inhibition-related activation in the hippocampus, which in

turn was associated with PTSD and depression symptoms in patients

with childhood trauma (van Rooij et al., 2016). An accumulation of the

Met allele was also found in individuals who developed PTSD after

being exposed to urban violence (Valente et al., 2011). A study on

genocide survivors showed, that Val allele carriers exhibited an ele-

vated risk for PTSD, depending on the number of lifetime traumatic

events, while Met/Met homozygotes were at high risk for PTSD

regardless of the traumatic load (Kolassa, Kolassa, Ertl, Pap-

assotiropoulos, & de Quervain, 2010). The presence of the COMT

Met allele also leads to a stronger cortisol stress response in children

(Armbruster et al., 2012). These results imply an interaction of the

COMT variants with stress and thus suggest an influence on resilience.

However, it should not go unmentioned that the study data on COMT

and PTSD are inconsistent and that a meta-analysis of five studies did

not show any significant effect (Li et al., 2016).

4.3 | Hypothalamic–pituitary–adrenal axis

The HPA axis is a major neuroendocrine system that affects various

organ systems and plays a fundamental role in mediating stress

response which is supported by the fact that disturbances in normal

HPA function are associated with depressive and anxiety symptoms

(Russell et al., 2018; Russo, Murrough, Han, Charney, & Nestler, 2012).

With regard to the HPA axis, several genes and their potential impact

on vulnerable phenotypes have been studied, but there are few studies

that have investigated the link between genes of this hormone system

and resilience. However, a connection between the HPA system and

resilience processes is supported, for example, by the observation of an

altered HPA reactivity in later life depending on the presence of adverse

life events in early life (Romeo, 2015). For the corticotropin-releasing

hormone receptor CRHR1, several polymorphisms are associated with a

reduced risk of depressive symptoms after being exposed to early life

stress (for review see Laryea, Arnett, & Muglia, 2012). And another

study on gene × environment interactions in children revealed an asso-

ciation between CRHR1 haplotypes with resilience depending on their

maltreatment status (Cicchetti & Rogosch, 2012). A similar

gene × environment effect has been found in two studies that investi-

gated maltreatment during childhood, with CRHR1 variants appearing to

moderate the risk of depressive symptoms in adulthood (Bradley et al.,

2008; Polanczyk et al., 2009). Such gene × environment interactions are

a strong indication of a genetic impact on resilience, as variations in

resilient behavior after adversity or stress may be caused by a different

genetic composition. In addition, significant associations of genetic vari-

ants in the CRHR1 gene have been detected in PTSD patients

(Boscarino, Erlich, Hoffman, & Zhang, 2012; White et al., 2013; Wolf

et al., 2013).

Studies focusing on the relationship between variants of the glu-

cocorticoid receptor gene (NR3C1) and resilience have not yet been

conducted. However, epigenetic modifications by DNA methylation

related to trauma exposure have been shown, although the results of

these studies were inconsistent (Watkeys, Kremerskothen, Quidé,

Fullerton, & Green, 2018). There is also evidence that NR3C1 polymor-

phisms are associated with PTSD symptoms and depression (Hauer

et al., 2011; Lian et al., 2014; Peng, Yan, Wen, Lai, & Shi, 2018).

Another gene of the HPA axis is the FK506-binding protein 5 gene

(FKBP5), which interacts with the glucocorticoid receptor binding

heat-shock protein 90 (HSP90). Elevated FKBP5 levels lead to a

decreased negative feedback regulation of the HPA axis and glucocor-

ticoid receptor resistance, which is probably responsible for a dys-

regulated stress response (Binder et al., 2008). In several association

studies, genetic variations in the FKBP5 gene were associated with

PTSD occurrence and severity, depending on the presence of child-

hood trauma (Binder et al., 2008; Buchmann et al., 2014; Comasco

et al., 2015; Watkins et al., 2016). These results were substantiated in

a recently published study showing a gene × environment interaction

between FKBP5 polymorphisms and childhood abuse to predict the

risk for PTSD (Tamman et al., 2019). Such findings can help to identify

patients with an increased risk of mental disorders and to implement

personalized medicine in the future. Moreover, common allelic vari-

ants in the FKBP5 gene are associated with an increased risk of

developing affective disorders like anxiety, depression, and PTSD

(Criado-Marrero et al., 2018).

A higher risk for depression susceptibility after maltreatment in

childhood was also found for haplotypes of the mineralocorticoid

receptor (NR3C2), whereby a relationship between NR3C2 variants

and current depressive symptoms and lifelong MDD diagnosis has
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been demonstrated in two samples (Vinkers et al., 2015). Since the

HPA axis is the most important physiological stress response system

(Silverman & Deuster, 2014), genetic variations in this system are

likely to influence resilience and contribute to psychiatric disorders in

vulnerable phenotypes.

4.4 | Neuropeptide Y

Neuropeptide Y is a biologically active peptide and acts as a neuro-

modulator in the brain. In several brain regions (hippocampus, hypo-

thalamus, LC, and amygdala) corticotropin-releasing hormone

mediated anxiogenic effects are counteracted by NPY, which is neces-

sary for the compensation of stress reaction and homeostasis

(Thorsell et al., 2000).

Polymorphisms within the NPY locus affect NPY expression and it

has been reported that NPY haplotypes that mediate lower NPY

expression are associated with diminished resilience to stress (Zhang

et al., 2012; Z. Zhou et al., 2008). In addition, several polymorphisms

in the NPY gene have been described in connection with anxiety-

related disorders, early childhood adversity, and early life stress. Vari-

ous studies on gene × environment interactions of the NPY promotor

variant rs16147 in traumatized subjects revealed promising results.

One study showed that the C allele of this polymorphism is associated

with anxiety and depressive symptoms depending on childhood

adversity (Sommer et al., 2010), while T allele homozygotes were at

higher risk of developing a GAD after high hurricane exposure

(Amstadter et al., 2010). A gene × environment interaction study of

the same SNP for a divergent stress-induced response of cortisol and

adrenocorticotropic hormone levels depending on adversity exposure

of the participants during childhood was also demonstrated (Witt

et al., 2011). And in two cohorts of traumatized participants, T allele

carriers of rs16147 adopted better traumatic stress than C homozy-

gotes and developed a higher positive future focus, which is a relevant

aspect of resilience (Gan, Chen, Han, Yu, & Wang, 2019). Based on

these studies, an influence of this promoter polymorphism in interac-

tion with environmental factors on resilience is likely, which could

possibly be mediated by differential expression of the protein.

Other polymorphisms of the NPY region have been associated

with increased susceptibility to anxiety disorders in case of early life

stress (Donner et al., 2012). Studies on associations of NPY variants

with depression are inconsistent, whereby a recently published

GWAS–environment interaction study in depression conducted by

the childhood trauma working group of the Psychiatric Genomics

Consortium-major depressive disorders (PGC-MDDs) detected a poly-

morphism (rs3214187) located near the NPY gene (p = 7.4 × 10−7;

van der Auwera et al., 2018).

4.5 | Neuronal and synaptic plasticity

According to the neurotrophic hypothesis of MDD, the disease may

be associated with impaired structural plasticity and cellular resilience,

with a key role of BDNF, a neurotrophin highly expressed in the hip-

pocampus and involved in the regulation of synaptic plasticity,

neurogenesis, neuronal survival, and differentiation (Ferrari & Villa,

2017). It has been repeatedly demonstrated that BDNF is a contribut-

ing factor to a variety of psychiatric disorders, and it is known that

BDNF levels are affected by stress in PTSD and MDD patients (Casey

et al., 2009; Duman, 2009; Duman & Monteggia, 2006).

Association studies on the functional BDNF Val66Met polymorphism

(rs6265) revealed inconsistent results regarding the influence on stress

response and resilience. Although there were studies that found no sig-

nificant association between the polymorphism Val66Met and PTSD

diagnosis (Rakofsky, Ressler, & Dunlop, 2012), further studies, including

a meta-analysis, discovered an increased risk for PTSD and the severity

of PTSD symptoms in Met allele carriers (Bruenig et al., 2016; Dai et al.,

2017). An interesting approach, which explored possible causes of this

connection was followed in a study by Felmingham et al. (2018), which

showed that Met allele carriers presented more severe PTSD symptoms

in addition to poorer fear extinction learning, which is crucial for PTSD

treatment. An overlap with resilience is possible, because disturbed fear

extinction can lead to the development or maintenance of mental ill-

nesses and a lack of resilience (Shansky, 2015).

Stressful early life events in combination with the Val66Met vari-

ant are able to predict syndromic depression and anxiety with an

association of increased depression for Met allele carriers and

increased anxiety in Val/Val homozygotes (Gatt et al., 2009), indicat-

ing a gene × environment interaction. These findings suggest a role of

the Val66Met polymorphism in modulating the relationship between

stress and MDD (Hosang, Shiles, Tansey, McGuffin, & Uher, 2014) as

well as the risk of late life depression (Tsang, Mather, Sachdev, & Rep-

permund, 2017).

Other genes that are relevant for neuronal and synaptic plasticity

and that are also linked to nonresilient phenotypes are CREB1 and

CACNA1C. CREB1 (cyclic adenosine monophosphate response

element-binding protein 1) encodes a downstream effector of BNDF

that increases the expression of BDNF target genes (Juhasz et al.,

2011). Polymorphisms in CREB1 have been reported to modulate the

risk of different major psychiatric disorders including MDD (Xiao

et al., 2017), while no association has been found with PTSD (Serretti

et al., 2013). The CACNA1C gene (calcium voltage-gated channel alpha

1C subunit) is involved in the regulation of calcium-mediated mem-

brane depolarization and modulates intracellular signaling, gene tran-

scription, and synaptic plasticity (Bhat et al., 2012). CACNA1C has

been proposed as a susceptibility gene for various psychiatric disor-

ders (Cross-Disorder Group of the Psychiatric Genomics Consortium,

2013). The effect of CACNA1C polymorphisms on MDD susceptibility

was confirmed by a meta-analysis that extracted genotypic data from

available GWAS and performed a candidate gene study in an indepen-

dent sample (Rao et al., 2016).

5 | GENOME-WIDE ASSOCIATION STUDIES

Genome-wide association studies represent the methodological

answer to the observation of the highly polygenic component of psy-

chiatric traits, including MDD and PTSD, and of course resilience
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(Peterson et al., 2017). In addition, GWAS enable the detection of

genetic variants associated with specific phenotypes that could not be

discovered with conventional hypothesis-based strategies. This pro-

vides a completely new starting point for a better understanding of

pathophysiological mechanisms and factors that influence disease

development, as well as for the investigation of complex traits or con-

structs such as resilience.

To date there is only one GWAS on resilience, which was published

recently by Stein et al. (2019). Since PTSD in particular, but also MDD,

can occur frequently due to trauma, stress a result of a lack of resil-

ience, these phenotypes are useful to identify new potential loci that

can then be further investigated to assess possible effects on resilience.

For this reason, the next section summarizes the first GWAS on resil-

ience on the one hand and the most important GWAS results on PTSD

and MDD on the other. Tables 1 and 2 additionally provide an over-

view of all GWA studies on PTSD and MDD carried out so far.

In the only GWAS on resilience to date, US soldiers of European

descent were studied, and resilience was measured using a five-item

self-report questionnaire and by measuring the outcome using the

Composite International Diagnostic Interview screening scales to

record the common stress-related psychiatric disorders MDD, PTSD,

GAD, and panic disorder. The meta-analysis of the three cohorts of

this study with a total of 11,492 participants revealed a genome-wide

significant locus on chromosome 4 in an intergenic region upstream

to DCLK2 (doublecortin-like kinase 2). A further analysis using a

genome-wide gene-association study (GWGAS) revealed an aggrega-

tion of several polymorphisms on chromosome 16 in the KLHL36

region (Kelch-like family member 36). The analyses of prospective

outcome-based resilience were performed in a smaller sample

(N = 1,939), with no SNP reaching genome-wide significance. How-

ever, if only those participants who had experienced high stress expo-

sure (N = 581) were considered, a genome-wide significant

polymorphism was detected less than 0.1 Mbp downstream from

SLC15A5 (Solute Carrier Family 15 Member 5; Stein et al., 2019).

There are significantly more GWAS on posttraumatic stress disor-

der, although most of them do not have well-powered samples

(Table 1). The first GWAS by Logue et al. (2013), involving military vet-

erans, identified the retinoid-related orphan receptor alpha (RORA) as

best association with PTSD. Another study detected the Tolloid-like

1 gene (Xie et al., 2013) and LINC01090 as a risk factor for PTSD

(Guffanti et al., 2013). A study on 3,394 US Marines reported genome-

wide association for PRTFDC1 (phosphoribosyl transferase domain con-

taining 1 gene) as a potential predictor of combat stress vulnerability

and resilience (rs6482463; OR = 1.47, p = 2.04 × 10−9; Nievergelt et al.,

2015). In a study (New Soldier Study) combining 3,167 PTSD patients

and 4,607 trauma-exposed controls, a genome-wide significant locus

was found in ANKRD55 on chromosome 5 (rs159572; OR = 1.62;

p = 2.34 × 10−8), which persisted after adjustment for cumulative

trauma exposure (OR = 1.64; p = 1.18 × 10−8) in the African-American

samples (Stein et al., 2016). ANKRD55 has previously been associated

with diabetes mellitus type 2 (Harder et al., 2013) and various autoim-

mune diseases, such as rheumatoid arthritis (Viatte et al., 2012) and

multiple sclerosis (Alloza et al., 2012), suggesting a genetic overlap of

these diseases, as PTSD is also associated with autoimmune diseases

and diabetes. Restricted to the European ancestry subgroup, a genome-

wide significant association near zinc finger protein 626 gene (ZNF626)

on chromosome 19 (rs11085374; OR = 0.77; p = 4.59 × 10−8) was

detected. The Psychiatric Genomics Consortium-PTSD continues to

encourage the further discovery of genes involved in the pathology and

susceptibility to PTSD (Banerjee, Morrison, & Ressler, 2017). The larg-

est GWAS on PTSD so far (including 20,730 samples: 15,548 controls,

5,182 cases) revealed no genome-wide significant association with the

disease in a multiethnic PGC-PTSD cohort, but suggested a robust

genetic overlap with bipolar disorder and schizophrenia (Duncan et al.,

2018). A previously found overlap of PTSD with MDD could not

be confirmed, but this as well as the failure to detect genome-wide

significant associations was attributed to the relatively low power of

the PTSD and MDD studies. Nevertheless, the top pathway was the

neurotrophic factor-mediated Trk receptor signaling pathway, which

includes BDNF and which also showed overlaps to resilience (see

section “Neuronal and synaptic plasticity”).

Although sample sizes were much higher than in PTSD, the identi-

fication of MDD-associated loci that reached genome-wide signifi-

cance in GWAS was challenging, in particular because of the high

genetic heterogeneity and high prevalence of MDD (Table 2). These

considerations at least partially explain the negative results reported

by the first GWAS, which included <10,000 cases (Lee et al., 2012;

Lewis et al., 2010; Muglia et al., 2010, 2010, 2010; Ripke et al., 2013;

Shyn et al., 2011; Sullivan et al., 2009; Wray et al., 2012). Some genes

identified in these earlier studies did not reach genome-wide signifi-

cance, but were replicated in subsequent GWAS or associated with

other relevant traits, notably BICC1 (Lewis et al., 2010; Ryan et al.,

2016) and PCLO (Sullivan et al., 2009; Wray & Sullivan, 2017), while

CACNA1C (Wray et al., 2012) was identified as a pleiotropic gene

across major psychiatric disorders (Cross-Disorder Group of the Psy-

chiatric Genomics Consortium, 2013). Upregulation of BICC1

(Bicaudal C homolog 1) and downregulation of BDNF/TrkB signaling

were observed in both hippocampus and cortex after application of

chronic unpredictable stress in a mouse model of depression (Zhou

et al., 2017). In addition, treatment with antidepressants reduced the

expression of BICC1, and the knockdown of this gene in the hippo-

campus also prevented anhedonia, a key feature of depression in the

same model in rats (Ota, Andres, Lewis, Stockmeier, & Duman, 2015).

Moreover, there is evidence that BICC1 associated polymorphisms

affect the capability of the BICC1 promoter to respond to PKA (pro-

tein kinase A) signaling in amygdala neurons (Davidson et al., 2016).

Since the amygdala PKA pathways are implicated in fear learning and

mood, there is a potential link of alterations of BICC1 activity in MDD

as well as resilience mechanisms.

In recent years, larger samples have been collected (up to 130,664

cases and 330,470 controls) to obtain statistical power for the identi-

fication of an increasing number of genome-wide significant loci and

replicated findings. The most recent PGC GWAS identified 44 inde-

pendent loci that were associated with MDD at genome-wide level,

with 14 of these loci being significant in a prior MDD GWAS (Wray &

Sullivan, 2017). Replicated variants were found in particular in the
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TABLE 1 Summary of genome-wide association studies (GWASs) that investigated the genetics of posttraumatic stress disorder (PTSD)

Study (PMID) Sample size Replication sample Ancestry Main findings

Logue et al. (2013)

(22869035)

295 Cases and

196 controls

43 Cases and 41 controls White, non-Hispanic

(discovery); African

American

(AA) (replication)

One SNP with genome-wide significance

was discovered within the RORA gene

(p = 2.5e−08) without replication in the

replication sample. Nominal

significance of other SNPs in the RORA

region in the replication sample

Xie et al. (2013)

(23726511)

European: 300 cases and

1,278 controls

African American:

444 cases and 2,322

controls

European: 207 cases and

1,692 controls

African American:

89 cases and

655 controls

European

AA

In the combined European sample, top hit

with genome-wide significance

(p = 3.97e−08) and further SNPs with

suggestive significance in the TLL gene.

No replication in the African American

samples

Guffanti et al. (2013)

(24080187)

413 Cases and

319 controls

578 Cases and 1963

controls

AA (discovery); European

(replication)

Genome-wide significance (p = 5.09e−08)
in the discovery sample for

rs10170218 in a long intergenic

noncoding RNA (AC068718.1) and

suggestive evidence for HLA-G3,

LARGE, TMCC3, C7orf53, and an

intergenic region. Suggestive evidence

for lincRNA AC068718.1 in the

replication sample

Nievergelt et al. (2015)

(25456346)

940 Cases and 2,554

controls

313 Cases and

178 controls

European, AA, Hispanic,

other (discovery)

White, non-Hispanic

(replication)

Meta-analysis of all ancestral groups of

the replication sample found genome-

wide hit in PRTFDC1 (p = 2.04e−09); no
significance of this region in the

replication sample. Eleven SNPs with

suggestive significance in the discovery

sample meta-analysis

Almli et al. (2015)

(25988933)

63 Cases and 84 controls 2006 Females and

862 males

Mixed sample One genome-wide significant hit

(rs717947) in the COL4A2 region

(p = 1.28e−08). Replication of the top

hit in females, but not in males. The

SNP was associated with methylation

status of the gene

Ashley-Koch et al.

(2015)

(26114229)

759 non-Hispanic White

and 949 non-Hispanic

black individuals

Non-Hispanic White-

non-Hispanic black

individuals

No genome-wide significant hit;

suggestive SNPs in the meta-analysis of

both samples in AK092087, PRKG1,

and DDX60L

Stein et al. (2016)

(27167565)

Cohort 1:1,245 cases and

2,291 controls

Cohort 2:895 cases and

618 controls

672 Cases and 3,335

controls

European, AA, Latino In the meta-analysis of detection samples,

one genome-wide significant hit on

chromosome 19 (ZNF626) in European

samples (p = 4.59e−08) and one on

chromosome 5 (ANKRD55) in AA

samples (p = 2.34e−08). No replication

in the replication sample

Kilaru et al. (2016)

(27219346)

1,158 Cases and 2,520

controls

134 Cases and

246 controls

AA (discovery)

Mixed (replication)

Genome-wide significant associations in

NLGN1 (p = 1.0e−7) and ZNRD-AS1

(p = 1.0e−07). Replication of the

NLGN1 locus, with a LD-independent

SNP found in the replication sample

Melroy-Greif,

Wilhelmsen, Yehuda,

and Ehlers (2017)

(28262088)

254 Cases 258 Cases Mexican (discovery)

American Indian

(AI) (replication)

Association analysis in trauma-exposed

subjects with sum PTSD symptoms. No

genome-wide significant hut, but

OR11L1 with suggestive significance.

No suggestive or genome-wide hit in

the AI sample. No replication of

OR11L1

(Continues)
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regions of RERE, VRK2, RSRC1, PUM3, SORCS3, OLFM4, BAG5, DCC,

L3MBTL2, long intergenic nonprotein coding RNA genes (LINC01360

and LINC00461) and intergenic regions (rs11135349 and a deletion

spanning 5p11 region). Most of these significant loci were shared with

the 23AndMe GWAS (Hyde et al., 2016), some with the SSGAC

(Okbay et al., 2016) and CHARGE (Hek et al., 2013) depressive symp-

toms studies, but very limited overlaps were reported with CON-

VERGE results (CONVERGE consortium, 2015), a consortium that

collected a quite homogeneous Han Chinese sample (females with

recurrent MDD). One reason for this could be the relatively low trans-

ancestry genetic correlation of MDD across European and Chinese.

Among the replicated genome-wide associations, NEGR1 (neuronal

growth regulator 1) shows a role in synaptic plasticity in MDD-

relevant brain regions such as the cortex, hypothalamus, and hippo-

campus (Hashimoto, Maekawa, & Miyata, 2009; Sanz, Ferraro, &

Fournier, 2015; Schäfer, Bräuer, Savaskan, Rathjen, & Brümmendorf,

2005). DCC (Netrin 1 receptor) also looks promising as it is one of the

most relevant genes contributing to the association between the

NETRIN signaling pathway and MDD in different samples (Zeng

et al., 2017).

For the vast majority of the detected genes associated with PTSD

and MDD, pathophysiological mechanisms and their participation in

disease development are not known yet. Whether or not there is a

link to resilience must be evaluated after the function and the effects

of the associated genes have been clarified.

6 | DISCUSSION

Most people are confronted with stress, trauma, and tragedy at some

point in their lives and do not develop mental disturbances as a result.

This ability to deal with and overcome adversity encompasses the

complex construct of resilience. A number of resilience-promoting

factors have been identified in the past, including early life influences

such as supportive, attentive, and responsible parenting, a loving and

supportive environment, positive relationships with adults and peers

(Masten et al., 1999), experience of overcoming manageable life chal-

lenges (Southwick & Charney, 2012), or avoidance of repeated expo-

sure to uncontrollable stress and trauma (Green et al., 2010). Other

factors that indicate resilient behavior in adulthood include adaptive

stress responses, rapid stress recovery, high coping self-efficacy,

strong cognitive reappraisal and emotion regulation, and self-confi-

dence, to name only a few (Southwick & Charney, 2012). These

insights already help today to assist people in difficult life situations

and to avert greater harm. However, in order to better understand

resilience, it is crucial to study and understand the underlying genetic

and neurobiological processes. Such knowledge could make a signifi-

cant contribution to improving health care. On the one hand, people

who have an increased risk of developing mental disorders could be

better identified and assigned to a more intensive treatment. After a

catastrophic event, such as a natural disaster or a war, it would be of

great benefit to identify precisely those of the many victims who

would benefit from intensive therapy, or those who do not have a

higher risk of developing a psychiatric disorder subsequently. If this

concept is further developed, a fundamental understanding of the

molecular mechanisms of resilience can also help to tailor targeted,

individualized therapies to the needs of patients, which certainly

include both psychotherapy and drug treatment that directly target

resilience-promoting pathways. On the other hand, this knowledge

can also be useful for the reduction of mental distress and the preven-

tion of psychiatric disorders in order to reduce the frequency of

occurrence of such disorders and the severity of symptoms. But these

thoughts are currently still dreams of the future.

Although there have been enormous developments in the field of

resilience research in recent years, there are still very few studies in

the field of genetics. Reasons for this are, for example, the lack of

opportunities for genotyping on a large scale until a few years ago,

but also the previously small samples and the imprecise

operationalization of resilience. Nevertheless, there is no doubt that

resilience is partly influenced by genetic factors. The heritability of

TABLE 1 (Continued)

Study (PMID) Sample size Replication sample Ancestry Main findings

Duncan et al. (2018)

(28439101)

5,182 Cases and 15,548

controls

AA, European, Latino,

South African

No genome-wide significant hit in the

meta-analysis of the combined sample.

One genome-wide hit in the AA sample

located in the KLHL1 gene on

chromosome 13 (rs139558732,

p = 3.33e−08). Genetic overlap with

schizophrenia and bipolar disorder

Wilker et al. (2018)

(30467376)

924 Cases 371 Cases African Association tests with lifetime PTSD risk

revealed suggestive significance for

one SNP on chromosome 2, two SNPs

on chromosome 3, two SNPs on

chromosome 5, one SNP on

chromosome 6, and one SNP on

chromosome 13. Replication of one

SNP (rs3852144) on chromosome 5

Abbreviations: AA, African American; AI, American Indian.
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TABLE 2 Summary of genome-wide association studies (GWASs) that investigated the genetics of major depressive disorder (MDD)

Study (PMID) Sample size Replication sample Ancestry Main findings

Sullivan et al.

(2009)

(19065144)

1,738 Cases and

1,802 controls

6,079 Cases and

5,893 controls

European Suggestive nonsignificant signals in the region of PCLO

(top SNPs: rs2715148 and rs2522833, p ≥ 7.7e−07).

Muglia et al. (2010)

(19107115)

1,022 Cases and

1,000 controls

492 Cases and 1,052

controls

European Meta-analysis of the two samples provided no

significant results. Top signal in rs4238010, intergenic

(p = 5.8e−06).

Lewis et al. (2010)

(20516156)

1,636 Cases and

1,594 controls

1,418 Cases and

1,052 controls

European Suggestive nonsignificant signals in BICC1 (p ≥ 1.3e−07).
In women (1,152 cases), genome-wide association was

observed for rs9416742 in BICC1 (p = 1.8e−08). In
the meta-analysis of the two samples no significant

signal and no replication of BICC1 signals, top

suggestive signals were intergenic (one 29.7 kb from

NLGN1, p = 8.54e−06)

Shyn et al. (2011)

(20038947)

1,221 Cases and

1,636 controls

2,736 Cases, 1,792

controls

European No significant findings in the discovery sample. In the

meta-analysis nonsignificant suggestive signals in

ATP6V1B2 (p = 6.78e−07), SP4 (p = 7.68e−07), and
GRM7 (p = 1.11e−06)

Lee et al. (2012)

(23149448)

4,346 MDD cases

and 4,430 controls

(meta-analysis of

three GWAS)

/ European No significant SNP in the meta-analysis. Gene-set

analysis showed enrichment of the glutamatergic

synaptic transmission set (GO:0035249, corrected

p = .029). Genes intersecting with MDD-associated

genomic regions included GRM8, CACNA1A,

UNC13A, PARK2, SLC1A4, SHC3, MET, NR4A2,

MDGA2, PDE4B, PDE4D, PDE3A, GRIN2A, GRIN3A,

GRIA4, GRIK4, NRXN1, NCF2, MUSK, DMXL2, SYNPR,

SYT9, C16orf70

Wray et al. (2012)

(21042317)

2,431 Cases and

3,673 controls

3,332 Cases and

3,228 controls

European No significant finding in the discovery sample or in the

meta-analysis. No replication of PCLO signals. Gene-

based tests showed association with GAL in the meta-

analysis. Other candidate genes found by previous

GWAS did not survive multiple testing correction and

top ones were IL10, OPRM1, HTT, HTR1B, GRIN1, and

CACNA1C

Ripke et al. (2013)

(22472876)

9,240 MDD cases

and 9,519 controls

6,783 MDD cases

and 50,695

controls; 6,998

bipolar disorder

cases and 7,775

controls

European No significant association in discovery or validation

samples or secondary analyses (by sex, recurrent

MDD, early onset, etc.). Fifteen genome-wide

significant SNPs in the mega-analysis with bipolar

disorder, all were in a 248 kbp interval of high LD on

3p21.1

Hek et al. (2013)

CHARGE study

(23290196)

34,549 Subjects with

measure of

depressive

symptoms

16,709 Subjects with

measure of

depressive

symptoms

European No locus reached the genome-wide significant threshold

in the discovery sample or replication sample. In the

meta-analysis rs161645 (5q21) was associated with

depressive symptoms (p = 4.78e−10)

CONVERGE

consortium

(2015)

(26176920)

5,303 Cases and

5,337 controls (all

women)

3,231 Cases and

3,186 controls

Han Chinese Two significant loci were replicated in the independent

sample: One near the SIRT1 gene (p = 2.53e−10), the
other in an intron of the LHPP gene (p = 6.45e−12).
They were not replicated in PGC data

Okbay et al. (2016)

SSGAC study

(27089181)

105,739 Patients

with a continuous

measure of

depression; two

case–control
samples including a

total of 16,471

cases and 58,835

controls

75,607 Cases and

231,747 controls

European Two significant loci were associated with depressive

symptoms and replicated (rs7973260, p = 1.8e−09;
rs62100776, p = 8.5e−09). These SNPs are intron

variants of KSR2 and DCC genes, respectively

(Continues)
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resilience was repeatedly demonstrated in twin studies, although the

proportion of the genetic impact between these studies varied mark-

edly (Connor & Davidson, 2003; Kim-Cohen et al., 2004), as well as in

the so far only GWAS on resilience in which SNP-based heritability

was estimated at 16% (Stein et al., 2019).

In this first GWAS on resilience, some interesting genome-wide

significant hits were obtained, although the sample, especially the

outcome-based analysis, was small. An interesting candidate among

the significant hits was DCLK2, a member of the doublecortin family

of kinases that promote survival and regeneration of neurons (Nawabi

TABLE 2 (Continued)

Study (PMID) Sample size Replication sample Ancestry Main findings

Hyde et al. (2016)

23AndMe study

(27479909)

75,607 Cases and

231,747 controls

45,773 Cases and

106,354 controls

+ PGC data (9,240

cases and 9,519

controls)

European Seven independent significant SNPs identified in the

discovery sample (p < 5e−08) within OLFM4,

TMEM161B-MEF2C, MEIS2-TMCO5A, SPPL3-HNF1A,

N6AMT1, NEGR1, EP300. In meta-analysis with PGC

data, only the N6AMT1 locus was not represented at

p < 5e−06 and SNPs in the OLFM4, TMEM161B-

MEF2C, MEIS2-TMCO5A, and NEGR1 reached

genome-wide significance. In the independent

replication cohort SNPs in the TMEM161B-MEF2C and

the NEGR1 locus were replicated. In the joint analysis

of all data sets, 15 independent loci reached genome-

wide significance, including TMEM161B-MEF2C,

NEGR1, OLFM4, MEIS2-TMCO5A

Direk et al. (2017)

(28049566)

9,240 MDD cases

and 9,519 controls;

51,258 subjects

with measure of

depressive

symptoms

6,718 MDD cases

and 13,453

controls; 8,157

subjects with

measure of

depressive

symptoms

European One SNP was associated with the broad depression

phenotype (rs9825823, p = 8.2e−09) located in an

intron of the FHIT gene and the association was

replicated in an independent sample

Power et al. (2017)

(27519822)

8,920 Cases and

9,519 controls

13,238 Cases and

124,230 controls

European

Chinese

One genome-wide significant (p = 5.2e−11) locus was

associated with adult-onset MDD (>27 years)

(rs7647854, intergenic, with flanking genes including

C3orf70, VPS8, EHHADH, MAP3K13) and it was

replicated in independent cohorts. PRS showed that

earlier-onset MDD was genetically more similar to

schizophrenia and bipolar disorder than adult-onset

MDD

Howard et al.

(2017)

(29187746)

2,659 Cases and

17,237 controls

8,508 Cases and

16,527 controls

European Genome-wide haplotype-based analysis identified one

haplotype (located at 6q21) that was significant in the

discovery sample and nominally significant in the

validation cohort

Wray and Sullivan

(2017)

Major Depressive

Disorder

Working Group

of the PGC, 2017

130,664 Cases and

330,470 controls

(seven cohorts)

CHARGE, SSGAC,

23AndMe, and

CONVERGE were

used for

comparison

European Meta-analysis of seven cohorts identified

44 independent loci that were statistically significant

(p < 5e−08). Of these 44 loci, 30 were novel and

14 were significant in a prior study of MDD or

depressive symptoms, including OLFM4, NEGR1,

LRFN5. Gene-wide analyses identified 153 significant

genes that included CACNA1E, CACNA2D1, DRD2,

GRIK5, GRM5, and PCLO

Xiao et al. (2018)

(28990594)

89,610 Cases and

246,603 controls

(meta-analysis of

three studies)

46,505 Cases and

108,672 controls

(two studies)

European

Chinese

In the discovery meta-analysis, rs9540720 in the PCDH9

gene was associated with MDD (p = 1.69e−08) and
the result was confirmed in the meta-analysis

including two additional data sets (p = 1.20e−08)

Hall et al. (2018)

(29317602)

10,851 Cases and

32,211 controls

/ European Genome-wide meta-analysis of MDD in males yielded

one genome-wide significant locus (p = 2.29e−08) on
3p22.3, with three genes in this region (CRTAP, GLB1,

and TMPPE) were associated with the phenotype in

gene-based tests, but independent replication was

lacking

Abbreviation: PGC, Psychiatric Genomics Consortium.
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et al., 2015). Stein et al. (2019) additionally discussed the possibility of

DCLK2 being an expression quantitative trait locus in the frontal cor-

tex that could alter brain structure or cognitive function and thus resil-

ience. Interestingly, the top hit is located approximately 0.4 Mbp

downstream from the neighboring gene, the NR3C2 gene, which is

also discussed in the context of resilience in this review (Vinkers et al.,

2015). Since there are no further genome-wide studies and so far only

a few genetic studies on resilience, it makes sense to refer to psychi-

atric diseases, as these can often occur after stress and trauma as a

result of a lack of resilience (Southwick & Charney, 2012). The

TABLE 3 Overview of the most promising genes implicated in resilience

Gene Chr. Polymorphism Allele type Assumed effect of the gene on resilience References

BDNF 11 rs6265 C/T (Val66Met) Association of the Met allele with PTSD risk

and severity

Additionally poorer fear extinction learning

Interaction of genotype and stressful early life

events to predict depression (Met) and

anxiety (Val)

Bruenig et al. (2016), Dai et al.

(2017)

Felmingham et al. (2018), Gatt

et al. (2009), Hosang et al.

(2014), Tsang et al. (2017)

COMT 22 rs4680 G/A (Val158Met) Interaction of lifetime trauma load and Val

allele, while Met homozygotes have generally

higher risk for PTSD

Met allele carriers with decreased emotional

resilience against negative mood states

Interaction of genotype and childhood trauma

leads to altered hippocampal activation

(Met allele and childhood trauma is

associated with reduced hippocampal

activation, opposite effect in Val

homozygotes); positive correlation of

hippocampus activation and resilience

Kolassa et al. (2010), Smolka et al.

(2005), van Rooij et al. (2016)

CRHR1 17 rs7209436

rs110402

rs242924

C/T

G/A

G/T

Interaction of the genotype with childhood

abuse influences depressive symptoms in

adults

Laryea et al. (2012)

DCLK2 4 rs4260523 (intergenic

variant �70 kbp

upstream)

A/G Genome-wide association (p = 5.65e−09) with

self-assessed resilience measured with the

STARRS (Army study to assess risk and

resilience in service members) five-item self-

report questionnaire

Stein et al. (2019)

FKBP5 6 rs9296158

rs3800373

rs1360780

rs9470080

A/G

C/A

T/C

T/C

Interaction of genotype and childhood trauma

modulates PTSD risk

Binder et al. (2008), Buchmann

et al. (2014), Comasco et al.

(2015), Watkins et al. (2016)

KLHL36 16 – – Significant association of KLHL36 in an analysis

of a self-assessed resilience questionnaire

(STARRS) in a genome-wide gene-association

study (GWGAS) revealed (p = 1.89e−06)

Stein et al. (2019)

NPY 7 rs16147 C/T (2 kbp

upstream

variant)

C allele is associated with anxiety and

depressive symptoms depending on

childhood adversity

T homozygotes with higher risk for generalized

anxiety disorder after high hurricane

exposure

Better adaption to traumatic stress with

positive future focus in T allele carriers

Sommer et al. (2010), Amstadter

et al. (2010), Gan et al. (2019)

SLC6A4 17 5-HTTLPR S/L allele Increased risk for developing PTSD under stress

in S allele carriers; independent interaction of

stressful life events and childhood adversity

with S allele in PTSD

Increased risk in S allele carriers for developing

depression under stress; association of the S

allele with elevated stress sensitivity

S allele carriers with lower resilience scores

Xie et al. (2009), M. Zhao et al.

(2017), Karg et al. (2011), Stein

et al. (2009)

Abbreviations: Chr., chromosome; 5-HTTLPR, serotonin transporter-linked polymorphic region; PTSD, posttraumatic stress disorder.
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occurrence of PTSD and MDD can be used as outcome variables,

which can at least indirectly give a hint to possible genetic resilience

factors. This is underlined by the fact that when a polymorphism is

associated with a stress-related mental illness, one allele of this poly-

morphism is associated with a higher and the other with a lower dis-

ease risk. In other words, one allele is associated with the resilient

phenotype and the other allele with the nonresilient phenotype.

In connection with resilience, the neuroendocrine stress response

system in particular is attributed a major role (Feder et al., 2009). A

promising candidate is the SLC6A4 gene, which encodes the serotonin

transporter (SERT). Several studies have shown an association

between the S allele variant of this gene and PTSD and MDD in rela-

tion to experienced stress and adversity (Karg et al., 2011; Xie et al.,

2009) as well as a lower level of resilience in S allele carriers (Stein

et al., 2009). Another promising candidate of the catecholaminergic

system is COMT, whose variants also show a gene × environment

interaction effect, with Met allele carriers who experienced trauma or

adversity in childhood exhibiting a greater risk for the development of

PTSD and depression and thus appearing to be less resilient (Valente

et al., 2011; van Rooij et al., 2016). The HPA axis also appears to have

an influence on resilience, particularly for the CRHR1 and FKBP5

genes, with interesting results suggesting a link between genetic vari-

ants and maltreatment during childhood and the development of

PTSD and depression (Bradley et al., 2008; Polanczyk et al., 2009;

Tamman et al., 2019). Although the HPA axis is such an important part

of the stress response system, there are relatively few studies that

address resilience. Table 3 gives an overview of the most promising

genes implicated in resilience.

Many other susceptibility genes have been discovered for PTSD

and MDD (Tables 1 and 2), but the exact function of the respective

genes and the corresponding proteins is often unclear. Whether these

genes also have an impact on resilience must be clarified in future

research projects. However, GWAS offer a promising approach to dis-

cover new common genetic variants, as a hypothesis-driven method-

ology is not necessary. This development is also facilitated by the fact

that GWAS have been increasingly implemented since 2008, as the

costs for genome sequencing began to decrease dramatically and

became more feasible in large samples. This made it possible to iden-

tify previously unknown interacting genetic factors by investigating

large cohorts of PTSD and MDD patients. Furthermore, a growing

number of genome sequencing projects on large samples from the

general population are expected to provide new and notable findings

about the genetics of psychiatric disorders in the near future

(e.g., “Genomic Aggregation Project” in Sweden (Bergen & Sullivan,

2017) and “All of Us” in the United States (https://allofus.nih.gov/).

Although there are several studies that suggest a genetic influence

on resilience processes, investigations on large samples, possibly also

in a longitudinal approach, are necessary in order to shed light on the

underlying genetic processes of resilience. Collaboration in consortia,

such as the Psychiatric Genomics Consortium (PGC), has helped to

expand the sample sizes for psychiatric disorders research. This might

also be an approach for gathering sufficiently large samples to study

resilience in the future. Within this context, it will also be necessary to

operationalize resilience uniformly and not only to investigate

disease-associated phenotypes, which is almost exclusively the case

so far. This could also involve focusing on resilience-related features

such as coping styles, cognitive assessment, emotionality, and cogni-

tive self-regulation, which can be helpful to address the problem from

the nondisease-related side.

Further research into resilience is of great importance, also to bet-

ter understand the healthy functioning of the human mind and to iden-

tify factors that could prevent the occurrence of mental disorders. This

is also necessary in order to develop precise psychotherapeutic inter-

ventions and pharmacological treatments that selectively target resil-

ience associated signaling pathways, in order to specifically promote

resilience, avert consequential damage, and strengthen prevention.
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