Stereoscopic estimation of volcanic ash cloud-top

 height from two geostationary satellitesThe parallax method
Luca Merucci ${ }^{(1)}$, Klemen Zakšek ${ }^{(2)}$, Elisa Carboni ${ }^{(3)}$, Stefano Corradini ${ }^{(1)}$

on Volcanic Ash (IWVA/7) Anchorage (Alaska), USA 19-23 October 2015

Photogrammetric methods can be used to improve volcanic ash cloud top height (ACTH) estimates.

We propose a novel application of a method based on the parallax between data acquired from two geostationary instruments.

A combination of MSG SEVIRI (HRV band; 1000 m nadir spatial and 5 min temporal resolution) and METEOSAT7 MVIRI (VIS band, 2500 m nadir spatial and 30 min temporal resolution) images has been used to estimate the ACTH for a Mt. Etna, Sicily, Italy, eruption occurred on November 23, 2013. The estimated ACTH is of $\sim 8 \mathrm{~km}$. bove the North polee the lines of sight from observe satellites cross in one point. Its coordinates are eas to determine in the Cartesian geocentric coordinates system. Conversion to geodetic coordinates gives us ACTH.

ACTH estimation consists of three main steps: ACTH estimation consists of three main steps:
$>$ Projection of MVIRI data on the SEVIRI spatial grid
Automatic image matching to identify point pairs between two satellite images.

Schema of area-based image matching

Generation of lines of sight connecting observed points of both satellites; the intersection points of estimate ACTH.

The procedure of determining the position of a cloud in SEVIRI image at the time of MVIRI retrieval. * Shifts in column and line direction are estimated twice by automatic image matching
between MVIRI (retrieved at time X) and SEVIRI between MVIRI (retrieved at time X) and
(retrieved at times 1 and 2). *E Estimated geographic cloud's positions are observed by SEVIRI at times 1 and $2 . * * *$ Interpolated geographic position of the plume as SEVIRI would observe it at times X corresponding to MVIRI
retrieval retrieval

The Etna 23.11.2013 eruption viewed in the images collected around 11:49 UTC from SEVIRI $\left(9.5^{\circ} \mathrm{E}\right)$ on the left and MVIRI $\left(57.5^{\circ} \mathrm{E}\right)$ on the right. The cloud of volcanic origin is marked by a blue ellipse

(a) Correlation, (b) parallax, (c) distance between intersection lines, (d) final height based on the following quality control: appropriate spectral value, smal distance between the intersection lines, AHCT > 3000 m (Etna is 3300 m). The Inset in the lower left corner is a zoomed region to the area of the volcanic cloud

Multi-purpose VIS/IR imagery from GEO satellites

Definition
Reference Observing Strategy

This capability consists of medium-resolution multi-channel radiometers operating in the VIS and IR parts of the spectrum, in geostationary orbit.

- six sectors, 60 degrees wide along the equator (centres: $0^{\circ}, 60^{\circ} \mathrm{E}, 120^{\circ} \mathrm{E}, 180^{\circ} \mathrm{E}, 120^{\circ} \mathrm{W}, 60^{\circ} \mathrm{W}$)
- at least one "SEVIRI-class" instrument in each sector, and one backup, as similar as possible.

Reference Observing Strategy

The GEO observational capability will rapidly grow allowing for the GEO parallax-based ACTH estimation: \checkmark Optimal viewing geometry
\checkmark Continuous global coverage
\checkmark Increasingly better spatial/spectral resolution, and repetition cycle of GEO VIS/IR data acquisition

Overview of satellite methods for cloud top height retrieval

