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Abstract:We consider the classical functional of the Calculus of Variations of the form

I(u) =
∫
Ω

F(x, u(x),∇u(x)) dx,

where Ω is a bounded open subset of Rn and F : Ω × R × Rn → R is a Carathéodory convex function; the
admissible functions u coincide with a prescribed Lipschitz function ϕ on ∂Ω. We formulate some conditions
under which a given function in ϕ +W1,p

0 (Ω) with I(u) < +∞ can be approximated in the W1,p norm and in
energy by a sequence of smooth functions that coincide with ϕ on ∂Ω. As a particular case we obtain that
the Lavrentiev phenomenon does not occur when F(x, u, ξ ) = f (x, u) + h(x, ξ ) is convex and x 7→ F(x, 0, 0) is
su�ciently smooth.
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1 Introduction
In 1927, Lavrentiev [1] provided an example of the fact, later called the Lavrentiev phenomenon, that the
in�mum, over the set of absolutely continuous functions, of a one-dimensional functional of the calculus
of variationsmay be strictly lower than the in�mum of the same functional over the set of Lipschitz functions
satisfying the same boundary conditions: the example was re�ned by Manià in [2] and, more recently, by
Ball-Mizel in [3]. Finding the conditions that ensure the non-occurrence of the Lavrentiev phenomenon has
some interest, if just for ensuring to catch the in�mum of the functional via standard numerical methods.
We point out that some authors refer to as the Lavrentiev phenomenon just the fact that the in�ma among
the two aforementioned classes of functions di�er without taking care the boundary datum. If one allows
the boundary datum to vary, things change dramatically: in Lavrentiev’s celebrated example itself the
in�ma among Lipschitz/absolutely functions are the same if one allows one boundary datum to be just
arbitrarily close to the initial one. Some recent results concerning the study of this kind of “local” Lavrentiev
phenomenon have been recently obtained in [4, Theorem 4].

Alberti and Serra Cassano proved in [5] that, when the integration set is an interval inR, the phenomenon
does not occur for autonomous Lagrangians. For scalar problems, where the domain is multi-dimensional,
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few results appeared in the literature. Of course, the problem becomes much easier if one imposes growth
conditions of the Lagrangian from above, since approximations are facilitated by Lebesgue’s dominated
convergence. A two-dimensional analogue of Manià’s example was provided in [6]. There are examples in [7]
of functionals of the form F(x,∇u) depending on the independent variable x of the space and on the gradient
∇u of the admissible functions that exhibit the Lavrentiev phenomenon; there are also cases in which the
Lavrentiev phenomenon does not occur (see [8]). No example is known to the authors for scalar problems
when the Lagrangian is autonomous.

Itwas conjecturedbyButtazzo-Belloni in [9] that the phenomenon shouldnot occurwhen the Lagrangian
F(u,∇u) is autonomous and convex in both variables, a fact that they proved in the case of a (strongly)
star-shaped domain under the hidden growth assumption that F(u, 0) is summable and zero as a boundary
datum. Other results that appeared aimed to prove the conjecture: we mention Ekeland-Temam who proved
in [10] its validity for functionals of the gradient on a Lipschitz domain for a zero boundary datum; Bonfanti
and Cellina in [6, 11] considered autonomous Lagrangians that are sum of a radial function of the gradient
∇u and a function of the variable u, under some smoothness assumptions on the boundary and on the
boundary datum. A complete answer to the conjecture was given by Bousquet-Mariconda-Treu in [12], where
they showed that whenever F(u,∇u) is convex, given u ∈ W1,1

0 (Ω) with a Lipschitz boundary datum and
�nite energy (i.e., F(u,∇u) ∈ L1(Ω)), there is no Lavrentiev gap at u: there exists a sequence (uk)k of Lipschitz
functions that share the same boundary datum and converge to u both inW1,1 and in energy, no matter if u
is a minimizer.

We consider here a convex nonautonomous Lagrangian F(x, u,∇u), and establish a su�cient condition
under which no Lavrentiev gap occurs at any admissible function. As a byproduct it turns out that the
Lavrentiev phenomenon does not occur if the Lagrangian is of the form

F(x, u,∇u) = f (x, u) + h(x,∇u),

with f (·, 0) of class C1(Ω) and h(·, 0) of class C2(Ω). The methods used here are mainly based on [12–14]: we
show that we can approximate a function (both inW1,1 and in energy) with a sequence of bounded functions
that are Lipschitz in a neighbourhood of the boundary of the domain.
A partial motivation for studying these kind of functionals comes fromminimization problems in the Heisen-
berg group where one wants to consider functionals that generalize those studied in [15] and in references
therein.

We do not consider here the vectorial case for which, when the Lagrangian depends only on the gradient,
there are both examples of the occurrence of the Lavrentiev phenomenon and cases where it does not occur
[7].

The authors are grateful to Pierre Bousquet for his useful comments and to both the referees for having
carefully read the manuscript.

2 Notation and assumptions

Notation

– The scalar product of x, y in Rn is denoted by 〈x, y〉.
– The pointwise maximum (resp. minimum) of two functions u, v is denoted by u ∨ v (resp. u ∧ v),
u+ = u ∨ 0 (resp u− = (−u) ∨ 0) is the positive (resp. negative) part of u.

– The convex subgradient of a function g : Rm → R at ξ0 ∈ Rm is the set

∂g(ξ0) := {ν ∈ Rm : g(ξ ) − g(ξ0) ≥ 〈ν, ξ − ξ0〉 ∀ξ ∈ Rm}.

– The partial convex subgradient of F(x, s, ξ ) with respect to x at (x0, s0, ξ0) is the convex subgradient
of x 7→ F(x, s0, ξ0) at x = x0, it will denoted by ∂xF(x0, s0, ξ0). Analogously we will denote by
∂sF(x0, s0, ξ0) (resp. ∂ξF(x0, s0, ξ0)) the partial convex subgradients of F(x, s, ξ ) with respect to s
(resp. ξ ) at (x0, s0, ξ0). Also, the convex subgradient of (s, ξ ) 7→ F(x, s, ξ ) is denoted by ∂s,ξF(x, s, ξ ).
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– For E ⊆ Rn, |E| is the n-dimensional Lebesgue measure of E.
– 1E is the indicator function of a set E.

2.1 Assumptions

– Ω ⊂ Rn is an open and bounded set.
– F : Ω×R×Rn → R, (x, s, ξ ) 7→ F(x, s, ξ ) is a Carathéodory function, bounded below by 〈α(x), ξ〉+β(x)

for some α ∈ L1(Ω;Rn), β ∈ L1(Ω).
– ϕ is a Lipschitz function on Ω.
– p ≥ 1, and for v ∈ ϕ +W1,p

0 (Ω) we de�ne I(v) :=
∫
Ω

F(x, v,∇v) dx (the “energy”).

The following structure condition will be used, in alternative to the boundedness of the reference function u,
in our main result.

2.2 Hypothesis (H)

Hypothesis (H).
1. There are positive sequences (τk)k and (σk)k such that:

– lim
k→+∞

τk = +∞, lim
k→+∞

σk = +∞;
– For each k ∈ N, there are selections (qτk (x), ζτk (x)) of ∂s,ξF(x, τk , 0) and (qσk (x), ζσk (x)) of
∂s,ξF(x, −σk , 0), and C ≥ 0 satisfying

∀k ∈ N ζτk (x), ζσk (x) ∈ W1,1(Ω),

div ζτk (x) ≤ C, div ζσk (x) ≥ −C. (2.1)

2. There is a measurable and bounded selection q(x) of the subgradient ∂sF(x, 0, 0) of F at (x, 0, 0) and,
for all k ∈ N,

qσk (x) ≤ q(x) ≤ qτk (x) a.e. x ∈ Ω. (2.2)

Remark 2.1.
1. Condition (2.2) is satis�ed if s 7→ F(x, s, ξ ) is convex. Indeed the monotonicity of the subdi�erential

implies that, for a.e. x ∈ Ω,

(qτk (x) − q(x))(τk − 0) ≥ 0, (qσk (x) − q(x))(−σk − 0) ≥ 0.

2. When F is of class C2(Ω) and (s, ξ ) 7→ F(x, s, ξ ) is convex for a.e. x, Hypothesis (H) reduces to
Condition 1, namely that there are increasing , divergent sequences (τk)k and (σk)k such that

∀k ∈ N div∇ξF(x, τk , 0) ≤ C, div∇ξF(x, −σk , 0) ≥ −C

for a suitable C ≥ 0.

Here are some Lagrangians that satisfy Hypothesis (H).

Proposition 2.2 (Validity of Hypothesis (H)). Assume that themap (s, ξ ) 7→ F(x, s, ξ ) is convex for a.e. x and
that

(i) Either F(x, s, ξ ) = F(s, ξ ), i.e., F is autonomous, or
(ii) F(x, s, ξ ) = f (x, s) + h(x, ξ ) for some Carathéodory functions f : Ω × R→ R and h : Ω × Rn → R with

x 7→ ∂x f (x, 0) bounded and x 7→ h(x, 0) of class C2(Ω).
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Then F ful�lls Hypothesis (H).

Proof. Let (τk)k , (σk)k be arbitrary positive divergent sequences.

(i) Since ζτk , ζσk do not depend on x it turns out that their divergence is zero. Similarly, Point 2 of Hypothesis
(H) is ful�lled since any q ∈ ∂sF(0, 0) does not depend on x and F is convex.

(ii) Assume now that F(x, s, ξ ) = f (x, s) + h(x, ξ ). Then, for each k,

∇ξF(x, τk , 0) = ∇ξF(x, −σk , 0) = ∇ξh(x, 0)

and div∇ξh(x, 0) is continuous, thus bounded on Ω. Moreover, any element of ∂sF(x, 0, 0) is an element
of ∂x f (x, 0) and is thus bounded. Condition (2.2) follows from the convexity of s 7→ F(x, s, ξ ), proving the
validity of Hypothesis (H).

3 Approximation lemmas
In this section, we establish two preliminary results that will be used in the proof of Theorem 4.2.

As a �rst step, we give a su�cient condition under which there is no Lavrentiev gap between W1,p
ϕ (Ω)

and W1,p
ϕ (Ω) ∩ L∞(Ω). We have de�ned the space W1,p

ϕ (Ω) as the set of those functions u ∈ W1,p(Ω) such
that the extension of u by ϕ onRn \Ω belongs toW1,p

loc (R
n). We still denote by u this extension. In particular,

(u − ϕ) belongs toW1,p(Rn) and has compact support.

Lemma 3.1. Let F : Ω×R×Rn → R satisfyHypothesis (H). Then for every u inW1,p
ϕ (Ω) such that F(x, u,∇u) ∈

L1(Ω), there exists a sequence (uk)k inW1,p
ϕ (Ω) ∩ L∞(Ω) such that (uk)k converges to u inW1,p

ϕ (Ω) and

lim
k→+∞

I(uk) = I(u). (3.1)

Proof. Let (τk)k and (σk)k satisfy the conditions formulated in Hypothesis (H). For k large enough such that
both τk > |ϕ|L∞(Ω) and σk > |ϕ|L∞(Ω), we de�ne uk by

uk(x) = (u+ ∧ τk)(x) − (u− ∧ σk)(x) =


u(x) if − σk ≤ u(x) ≤ τk ,
τk if u(x) ≥ τk ,
−σk if u(x) ≤ −σk .

It is clear that uk ∈ W1,p
ϕ (Ω) ∩ L∞(Ω) and that uk converges to u inW1,p

ϕ (Ω). Moreover,

I(uk) =
∫

{−σk≤u≤τk}

F(x, u,∇u) dx +
∫

{u≥τk}

F(x, τk , 0) dx +
∫

{u≤−σk}

F(x, −σk , 0) dx. (3.2)

Let q(x) and (qτk (x), ζτk (x)) be as in Hypothesis (H). We have

F(x, u,∇u) ≥ F(x, τk , 0) + qτk (x)(u − τk) + ζτk (x) ·∇(u − τk) a.e..

Moreover, from Point 2 of Hypothesis (H) we get

F(x, u,∇u) ≥ F(x, τk , 0) + q(x)(u − τk) + ζτk (x) ·∇(u − k) a.e. on {u ≥ τk}.

Since (u − τk)+ ∈ W1,1
0 (Ω), integration on {u ≥ τk} then gives∫

{u≥τk}

F(x, u,∇u) dx ≥
∫

{u≥τk}

F(x, τk , 0) − ‖q‖∞u dx +
∫

{u≥τk}

ζτk (x) ·∇(u − τk)+ dx

≥
∫

{u≥τk}

F(x, τk , 0) − ‖q‖∞u dx −
∫
Ω

div ζτk (x) (u − τk)+ dx.
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Therefore, Hypothesis (H) yields∫
{u≥τk}

F(x, u,∇u) dx ≥
∫

{u≥τk}

F(x, τk , 0) − (‖q‖∞ + C)u dx. (3.3)

Analogously we get ∫
{u≤−σk}

F(x, u,∇u) dx ≥
∫

{u≤−σk}

F(x, −σk , 0) + (‖q‖∞ + C)u dx. (3.4)

It follows from (3.2), (3.3) and (3.4) that

I(uk) ≤
∫

{−σk≤u≤τk}

F(x, u,∇u) dx +
∫

{u≥τk}

F(x, u,∇u) dx +
∫

{u≤−σk}

F(x, u,∇u) dx + (‖q‖∞ + C)
∫

{u≤−σk}∪{u≥τk}

|u| dx

≤ I(u) + (‖q‖∞ + C)
∫

{u≤−σk}∪{u≥τk}

|u| dx.

(3.5)
Since u ∈ L1(Ω), Lebesgue’s Theorem implies that

lim sup
k→+∞

I(uk) ≤ I(u).

By Fatou lemma,
lim inf
k→+∞

I(uk) ≥ I(u)

and (3.1) follows.

We now prove that there is no Lavrentiev gap at u ∈ W1,p
ϕ (Ω) if u is Lipschitz continuous on a

neighborhood of ∂Ω.

Lemma 3.2. Assume that F : Ω ×R×Rn → R is convexwith respect to its three variables. Let u inW1,p
ϕ (Ω) be

such that F(x, u,∇u) ∈ L1(Ω). Assume, moreover, that either u is bounded or that F ful�ls Hypothesis (H). If
u is Lipschitz continuous on a neighborhood of ∂Ω, then there exists a sequence (uk)k in Lipϕ(Ω) such that
(uk)k converges to u inW1,p

ϕ (Ω) and
lim
k→+∞

I(uk) = I(u).

Moreover, if u is bounded in L∞(Ω), then the sequence (uk)k may be taken to be bounded in L∞(Ω).

Proof. From Lemma 3.1 it is not restrictive to assume that u is bounded. We may consider u as extended by ϕ
out of Ω. By assumption, there exists an open set V ⊂ Rn such that ∂Ω ⊂ V and u is Lipschitz continuous on
V ∩ Ω. In particular u and∇u are in L∞(V ∩ Ω).

Let ρ ∈ C∞c (B1,R+) be even,
∫
Rn

ρ dx = 1 and for k = 1, 2, ..., (ρk)k be the sequence of molli�ers de�ned

by ρk(x) := knρ(kx). Let also θ ∈ C∞c (Ω, [0, 1]) be such that θ = 1 on a neighborhood of Ω \ V. We then de�ne

uk = θ(u * ρk) + (1 − θ)u.

Notice �rst that uk ∈ Lipϕ(Ω). Indeed, if θ = 1 then uk = u * ρk, otherwise {0 ≤ θ < 1} ⊂ V ∩Ω where∇u
is bounded. Clearly, (uk)k converges to u inW1,p

ϕ (Ω). This implies

lim inf
k→+∞

I(uk) ≥ I(u).

It remains to show that
lim sup
k→+∞

I(uk) ≤ I(u). (3.6)
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For this purpose, we decompose I(uk) =
∫
Ω

F(x, uk ,∇uk) dx as the sum

I(uk) =
∫

{θ=1}

F(x, uk ,∇uk) dx +
∫

{0≤θ<1}

F(x, uk ,∇uk) dx. (3.7)

On the set {0 ≤ θ < 1} ⊂ V ∩ Ω,∇u ∈ L∞(V ∩ Ω) and

∇uk = θ(∇u * ρk)+(1 − θ)∇u+(∇θ)(u * ρk − u).

Let k be such that
∀k ≥ k {0 ≤ θ < 1} + B1/k ⊂ V ∩ Ω.

Then, for k ≥ k and x ∈ {0 ≤ θ < 1} we have

|uk(x)| ≤ 2‖u‖L∞(V∩Ω);

|∇uk(x)| ≤ 2‖∇u‖L∞(V∩Ω) + 2‖∇θ‖L∞(V∩Ω)‖u‖L∞(V∩Ω)
which in turn means that under the above assumptions both uk and ∇uk are bounded by a constant that
does not depend on k. Since (uk)k converges to u inW1,p(Ω) we may assume, by taking a subsequence, that
(uk ,∇uk)k converges a.e. to (u,∇u). Now, since F is bounded on bounded sets, by Lebesgue’s Theorem we
have

lim
k→+∞

∫
{0≤θ<1}

F(x, uk ,∇uk) dx =
∫

{0≤θ<1}

F(x, u,∇u) dx. (3.8)

On the set {θ = 1} we have
uk = u * ρk , ∇uk = ∇u * ρk .

It remains to show that

lim sup
k→0

∫
{θ=1}

F(x, u * ρk ,∇u * ρk) dx ≤
∫

{θ=1}

F(x, u,∇u) dx; (3.9)

afterwards, in view of (3.7) and (3.8), we get (3.6). Notice that, since ρ is even,

ρk * x = x ∀k ∈ N.

By Jensen’s inequality,

F(x, u * ρk ,∇u * ρk) = F(x * ρk , u * ρk ,∇u * ρk) ≤ F(x, u,∇u) * ρk .

Whence ∫
{θ=1}

F(x, u * ρk ,∇u * ρk) dx ≤
∫

{θ=1}

F(x, u,∇u) * ρk dx.

Since F(x, u,∇u) ∈ L1(Ω), we get (3.9).

4 Main result
We consider here domains Ω that are locally strongly star-shaped in the sense of [12, De�nition 2.9]. These
include Lipschitz ones and allow even some cusps at some boundary points.

De�nition 4.1. An open and bounded set Ω is called locally strongly star-shaped if for every p ∈ ∂Ω, there
exists an open set H ⊂ Rn such that p ∈ H and H ∩ Ω is strongly star-shaped, i.e., there is zH ∈ H ∩ Ω such
that zH + λ(Ω − zH) is relatively compact in Ω for every λ ∈ [0, 1[.
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Theorem 4.2 (Non-occurrence of the Lavrentiev gap). Assume thatΩ is locally strongly star-shaped and that
F : Ω × R × Rn → R is convex. Let u ∈ W1,p

ϕ (Ω) be such that F(x, u,∇u) ∈ L1(Ω). Assume, moreover, that
either u is bounded or that F satis�es the structure Hypothesis (H). Then the Lavrentiev gap for I does not
occur at u, i.e. there exists a sequence (uk)k in Lipϕ(Ω) converging to u inW1,p(Ω) and such that

lim
k→+∞

I(uk) = I(u). (4.1)

Moreover, if u is bounded in L∞(Ω), the sequence (uk)k may be taken to be bounded in L∞(Ω).

Proof. In view of Lemma 3.2 it is enough to provide a sequence (uk)k inW1,p
ϕ (Ω) satisfying the conditions of

the claimwith the exception that it is just Lipschitz continuous in a neighborhood of ∂Ω (instead of Lipschitz
on Ω). We may consider u to be extended by ϕ out of Ω. Also, in view of Lemma 3.1, it is not restrictive to
assume that u is bounded.

Without loss of generality, we can assume that F ≥ 0. Indeed, since F is convex with respect to its
variables, if x0 ∈ Ω and (a, q, ζ ) ∈ ∂F(x0, 0, 0) then

G(x, s, ξ ) := F(x, s, ξ ) − a · x − qs − ζ · ξ − F(x0, 0, 0) ≥ 0.

Moreover additive a�ne terms do not perturb our convergence results: if a sequence (uk)k converges to u in
W1,p(Ω) then

(
I(uk)

)
k converges to I(u) if and only if

∫
Ω

G(x, uk ,∇uk) dx converges to
∫
Ω

G(x, u,∇u) dx.

Consider �rst the case where Ω is strongly star-shaped with respect to the origin, i.e., for every h ∈ [0, 1[,
hΩ is relatively compact in Ω. Given λ, h ∈]1/2, 1[, set

uλh := ϕ(x) + λh (u − ϕ)
( x
h

)
.

Notice that uλh converges to u inW1,1 as λ, h → 1 and that uλh = ϕ on Rn \ hΩ. We then write(
x, uλh ,∇u

λ
h

)
=
(
x, ϕ(x) + λh (u − ϕ)

( x
h

)
,∇ϕ(x) + λ∇ (u − ϕ)

( x
h

))
as a convex combination in λ, namely

(
x, uλh ,∇u

λ
h

)
= λ

( x
h , u

( x
h

)
, λ∇u

( x
h

))
+ (1 − λ)

 x (1 − λ/h)
1 − λ , ξ λh (x),

∇ϕ(x) − λ∇ϕ
( x
h

)
1 − λ

 , (4.2)

where
ξ λh (x) := u

λ
h − λu

( x
h

)
= 1
1 − λ

(
ϕ(x) − hλϕ

( x
h

)
+ (h − 1)λu

( x
h

))
.

The convexity of F yields

I(uλh) ≤ λ
∫
Ω

F
( x
h , u

( x
h

)
,∇u

( x
h

))
dx + (1 − λ)

∫
Ω

F

 x (1 − λ/h)
1 − λ , ξ λh (x),

∇ϕ(x) − λ∇ϕ
( x
h

)
1 − λ

 dx

(4.3)
Since F ≥ 0, we get∫

Ω

F
( x
h , u

( x
h

)
,∇u

( x
h

))
dx = hn

∫
hΩ

F(x, u(x),∇u(x) dx ≤
∫
Ω

F(x, u(x),∇u(x)) dx.

Fix λ ∈]1/2, 1[; we then study the second term of the right hand side of (4.3). Since h ≥ 1/2, we have∥∥∥∥∥ x
(
1 − λ/h

)
1 − λ

∥∥∥∥∥
∞

≤ sup{|x| : x ∈ Ω}1 − λ , ‖ξ λh‖∞ ≤
1

1 − λ (2‖ϕ‖∞ + ‖u‖∞)
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and ∥∥∥∥∥∥
∇ϕ(x) − λ∇ϕ

( x
h

)
1 − λ

∥∥∥∥∥∥
∞

≤ 2‖∇ϕ‖∞1 − λ .

Moreover
lim
h→1

x
(
1 − λ/h

)
1 − λ = x, lim

h→1
ξ λh (x) = ϕ(x) a.e.

and

lim
h→1

∇ϕ(x) − λ∇ϕ
( x
h

)
1 − λ = ∇ϕ(x) ∀x.

The function F being bounded on bounded sets, by means of the dominated convergence theorem we get

lim
h→1

∫
Ω

F

 x (1 − λ/h)
1 − λ , ξ λh (x),

∇ϕ(x) − λ∇ϕ
( x
h

)
1 − λ

 dx =
∫
Ω

F(x, ϕ,∇ϕ) dx,

so that
lim sup
h→1

I(uλh) ≤ λI(u) + (1 − λ)I(ϕ).

The right-hand side term of the latter inequality tends to I(u) as λ tends to 1. Hence, for every i ∈ N, i ≥ 1,
there are sequences λi and ki ∈ N with ki ≥ i such that uλiki → u in W1,p(Ω) as i → +∞, uλiki are Lipschitz in a
neighbourhood of ∂Ω, and

I(uλiki ) ≤ I(u) +
1
i ∀i ≥ 1.

In particular we get
lim sup
i→+∞

I(uλiki ) ≤ I(u).

Also, Fatou’s lemma gives
lim inf
i→+∞

I(uλiki ) ≥ I(u),

and thus lim
i→+∞

I(uλiki ) = I(u), proving the claim.
The case of a general locally strongly star-shaped domain follows with the obvious changes as in the

proof of [12, Theorem 4.1].

Remark 4.3. Assume that F(x, u,∇u) = f (x, u) + h(∇u) with f convex and superlinear. In Theorem 4.2 the
(alternative) assumption that u is bounded is satis�ed if, for instance, for every constant boundary datum
k ∈ Z, theminimizers of I among the functions that are equal to k in the boundary of Ω are bounded. Indeed,
the fact that ϕ is bounded and the comparison principles of [16, 17] show that u is bounded too.

Acknowledgement: This research is partially supported by the Padua University grant SID 2018 "Controlla-
bility, stabilizability and in�mum gaps for control systems", prot. BIRD 187147.

References
[1] Mikhail Alekseevich Lavrentiev, Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1927), 9–28.
[2] Basilio Manià, Sopra un esempio di Lavrentie�, Boll. Unione Mat. Ital. 13 (1934), 147–153.
[3] John MacLeod Ball and Victor J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-

Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388.
[4] Paolo Baroni, Maria Colombo, and Giuseppe Mingione, Regularity for general functionals with double phase, Calc. Var.

Partial Di�erential Equations 57 (2018), no. 2, art. 62.
[5] Giovanni Alberti and Francesco Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals, Calcu-

lus of variations, homogenization and continuummechanics (Marseille, 1993), vol. 18 of Ser. Adv. Math. Appl. Sci., pp. 1–17,
World Sci. Publ., River Edge, NJ, 1994.



Non-occurrence of a gap | 9

[6] Giovanni Bonfanti and Arrigo Cellina, On the non-occurrence of the Lavrentiev phenomenon, Adv. Calc. Var. 6 (2013), no. 1,
93–121.

[7] Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial di�erential equations, vol. 51 of Mathematical
Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

[8] Pierre Bousquet, Carlo Mariconda, and Giulia Treu, Non-occurrence of the Lavrentiev gap for a class of nonconvex La-
grangians, in preparation (2020).

[9] Giuseppe Buttazzo and Marino Belloni, A survey on old and recent results about the gap phenomenon in the calculus of
variations, Recent developments in well-posed variational problems, vol. 331 of Math. Appl., pp. 1–27, Kluwer Acad. Publ.,
Dordrecht, 1995.

[10] Ivar Ekeland and Roger Témam, Convex analysis and variational problems, vol. 28 of Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, english edition, 1999.

[11] Giovanni Bonfanti and Arrigo Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals,
SIAM J. Control Optim. 51 (2013), no. 2, 1639–1650.

[12] Pierre Bousquet, Carlo Mariconda, and Giulia Treu, On the Lavrentiev phenomenon for multiple integral scalar variational
problems, J. Funct. Anal. 266 (2014), 5921–5954.

[13] Carlo Mariconda and Giulia Treu, Non-occurrence of a gap between bounded and Sobolev functions for a class of nonconvex
Lagrangians, J. Convex Analysis 27 (2020), no. 4, to appear.

[14] Pierre Bousquet, Carlo Mariconda, and Giulia Treu, A survey on the non occurence of the Lavrentiev gap for convex,
autonomous multiple integral scalar variational problems, Set-Valued Var. Anal. 23 (2015), no. 1, 55–68.

[15] Andrea Pinamonti, Francesco Serra Cassano, Giulia Treu, and Davide Vittone, BV minimizers of the area functional in the
Heisenberg group under the bounded slope condition, Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2015), no. 3, 907–935.

[16] Carlo Mariconda and Giulia Treu, A comparison principle and the Lipschitz continuity for minimizers, J. Convex Anal. 12
(2005), no. 1, 197–212.

[17] Carlo Mariconda and Giulia Treu, A Haar-Rado type theorem for minimizers in Sobolev spaces, ESAIM Control Optim. Calc.
Var. 17 (2011), 1133–1143.


	1 Introduction
	2 Notation and assumptions
	2.1 Assumptions
	2.2 Hypothesis (H)

	3 Approximation lemmas
	4 Main result

