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SUMMARY

Owing to its availability, ease of collection and correlation with (patho-) physiology, urine is

an attractive source for clinical proteomics. However, the lack of comparable datasets from

large cohorts has greatly hindered development in this field. Here we report the

establishment of a high resolution proteome database of naturally occurring human urinary

peptides and proteins - ranging from 800–17,000 Da - from over 3,600 individual samples

using capillary electrophoresis coupled to mass spectrometry, yielding an average of 1,500

peptides per sample. All processed data were deposited in an SQL database, currently

containing 5,010 relevant unique urinary peptides that serve as classifiers for diagnosis

and monitoring of diseases, including kidney and vascular diseases. Of these, 352 have

been sequenced to date. To demonstrate the applicability of this database, two examples

of disease diagnosis were provided: For renal damage diagnosis, patients with a specific

renal disease were identified with high specificity and sensitivity in a blinded cohort of 131

individuals. We further show definition of biomarkers specific for immunosuppression and

complications after transplantation (Kaposi‘s sarcoma). Due to its high information content,

this database will be a powerful tool for the validation of biomarkers for both renal and non-

renal diseases.
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INTRODUCTION

Analysis of urine plays a central role in clinical diagnostics. The human urinary

proteome/peptidome has been extensively investigated to gain information on disease

processes affecting the kidney and the urogenital tract1-3. Urinary proteins and peptides

originate not only from glomerular filtration, but also from tubular secretion, epithelial cells

shed from the kidney and urinary tract, secreted exosomes, and semen4-6. Thus, in

principle, urine is a rich source of biomarkers for a wide range of diseases due to specific

changes in its proteome/peptidome7-10. To test the feasibility of urinary proteomics as a

non-invasive diagnostic tool, large-scale studies are needed to analyze urine with reliable

and quantitative methods. A variety of techniques have been applied to this effort,

including two-dimensional electrophoresis combined with mass spectrometric (2-DE-MS)

and/or immunochemical identification of proteins11-13, liquid chromatography coupled to

mass spectrometry (LC-MS)14, 15, and surface-enhanced laser desorption ionization mass

spectrometry (SELDI-MS)16.

Due mostly to technical challenges, studies of urine based on proteomic methods

often included only two groups of subjects (i.e., healthy controls versus patients with one

disorder), and low numbers of patients and lack of comparability severely limit the

suitability of such data for a meta-analysis to define biomarkers. Consequently, the

findings from several studies cannot be combined to construct a broad database. Ideally,

the analysis must be accomplished within a reasonably short time with high resolution,

enabling profiling of an adequate number of features from sufficient samples to yield

robust diagnostic panels.

Capillary electrophoresis coupled to mass spectrometry (CE-MS) enables

reproducible and robust high-resolution analysis of several thousand low-molecular-weight

urinary proteins/peptides in less than an hour1. This approach has been used to analyze
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urine samples from healthy volunteers and patients with various diseases17-24. The high

number of datasets analyzed using identical conditions on the same instruments allows

the establishment of a low-molecular-weight proteome database that can serve as a basis

for the diagnosis, classification, and monitoring of a wide range of diseases using

proteome analysis. Here, we report on the establishment of a database of urinary peptides

analyzed by CE-MS and illustrate the application of this database to chronic renal

diseases (CRD) and to non-renal diseases.

RESULTS

All urine samples were prepared identically and analyzed by CE-MS analysis, using

identical instruments. Analysis resulted in individual data sets containing information on

generally 1,200-2,000 peptides and proteins per sample. All information recommended by

the “minimum information about proteomics experiments” (MIAPE) guidelines25 about

proteome analysis using CE and MS is recorded, and available upon request. The data

were evaluated using MosaiquesVisu26 (see methods), resulting in a list of

peptides/proteins defined by mass, migration time, and ion-counts, serving as a measure

of relative abundance. Different charge states of identical peptides/proteins were

combined and included as a single identification in the database. A list of tentatively

identified peptides of any sample is obtained and subsequently calibrated using “internal

standards”, peptides generally present in urine21 (see methods). This allows the digital

compilation of individual datasets into a specific “disease group” that can be compared to

any desired “control group”, enabling the identification of statistically significant changes

that result in the definition of potential biomarkers. Only datasets that fulfilled all quality

control criteria (see methods) were subsequently utilized and included in the database,
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which currently includes CE-MS data from 28 different pre-selected pathophysiological

conditions (see figure 1).

To improve the mass accuracy, several samples were analyzed using CE-online

coupled to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS).

Due to the high cost and the lower sensitivity of the FT-ICR MS instrument used in

comparison to TOF-instruments, it was not practical to analyze all samples using CE-FT-

ICR MS, and only a set of 20 samples was re-analyzed using this technique. Owing to the

higher detection limit of the FT-ICR instrument (in comparison to the ESI-TOF used), the

number of FT-ICR-traceable peptides was significantly lower (a factor of ~10). However,

the analysis using CE-FT-ICR resulted in the definition of over 300 urinary peptides, and

80 of these precise masses (mass deviations <0.5 ppm) were utilized to calibrate the TOF-

MS derived masses. The high FT-ICR MS resolution also enabled an accurate analysis of

the first isotope signal of ions with z>6, which is crucial for the exact mass determination of

proteins and high molecular weight peptides. These data were used to refine the TOF-MS

masses in the human urinary proteome database. Consequently, ‘FT-ICR-calibrated’ TOF

masses of most peptides revealed a deviation from the theoretical mass of 3±9 ppm.

All detected peptides and proteins in the 3,687 human urine samples that passed

all quality control criteria (on average, 1,724 peptides/proteins were detected in each

individual urine sample, ranging from 983 to 4,094) were deposited in a Microsoft SQL

database and subsequently matched for further analysis and comparison of individual

samples. This process resulted in the definition of 116,869 different peptides and proteins.

Each peptide was assigned a unique identification number (Protein ID). As described

previously22, 27, several of these peptides appeared sporadically, being observed in only

one or a few samples. To eliminate such peptides of apparently low significance, only

those present in more than 20% of the urine samples in at least one group (samples from
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patients with same disease) were further investigated. This noise-filtering process reduced

the number of peptides available for analysis significantly: applying these limits, 5,010

“relevant” different peptides characterized by molecular mass [Da] and normalized CE-

migration time [min] could be detected. The filtered data of all individual samples can be

accessed in the supplementary table 1.

We sequenced an array of the peptides with a variety of tandem MS technologies

(MS/MS). As described previously28, 29, the migration time in CE depends on the size and

the number of charges at pH 2.2, equaling the number of free amino groups (N-terminus

and basic amino acids). Therefore, it is not a prerequisite to use CE-separation for MS/MS

sequencing, as the number of basic amino acids, as well as the exact mass, serves to

correlate sequences with a signal in the CE-MS run with high confidence. To date, we

have identified 352 peptides by sequence analysis with different MS/MS platforms. The

most commonly sequenced peptides were fragments of different collagen types and of

uromodulin (table 1 and supplementary table 2).

Application of the human urinary proteome database

The main purpose of this database is to serve as a universal platform for identification and

validation of biomarkers for a variety of diseases/pathophysiological changes. This

process is demonstrated in the following two examples:

Renal Disease

For the selection of disease-specific biomarkers, the data from individual samples were

compiled as described previously17, 21 and grouped according to the patients’ profiles

(diagnostic group). These were healthy subjects (N=386) and patients with various biopsy-

proven renal diseases (N=226) (for details, see table 2). For biomarker definition, all

peptides and proteins were statistically analyzed and corrected for multiple testing30. This
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resulted in the tentative identification of 35 peptides, listed in supplementary table 3. In

an additional step, an SVM-based classification model was built upon these peptides

(figure 2 and supplementary table 3), enabling distinguishment of both groups in the

training set with 92% sensitivity and 99.5% specificity [for Receiver Operating

Characteristic (ROC) analysis, see also figure 3A].

To examine the value of these biomarkers31, we validated the biomarker pattern

from the reference cohort in a second blinded cohort. The ‘chronic renal disease model’

was assessed in a blinded cohort of 131 urine samples including patients with different

renal diseases and healthy controls. Upon unblinding, 33/35 healthy controls and 86/96

patients with chronic renal disease were correctly classified, resulting in a sensitivity of

89.6% [95% CI: 81.7-94.9] and specificity of 94.3% [95% CI: 80.8-99.1]) (see figure 3B).

Next, two sets of biomarkers were established that discriminated patients with focal

segmental glomerulosclerosis (FSGS) or with membranous glomerulonephritis (MNGN)

from patients with other renal diseases (see table 2) (‘FSGS’ biomarker set; 24 biomarkers

and ‘MNGN’ biomarker set; 19 biomarkers, respectively, see supplementary table 3).

These biomarkers were again combined in an SVM-based model. Upon complete

crossvalidation, the models enabled correct classification of the FSGS patients with 100%

sensitivity and 95.5% specificity, and the MNGN patients with 100% sensitivity and 90.3%

specificity. Application of the model onto the blinded test set resulted in the separation of

all 3 patients with FSGS from patients with other renal diseases in the blinded set (N=88)

and the ‘MNGN’ biomarker set detected all 4 MNGN patients (for the differential analysis

results see figure 4).

Non-renal Disease

An example for the application of the urinary database to non-genitourinary diseases is the

identification and validation of biomarkers indicating immunosuppression in organ or stem
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cell transplantation. In a reference cohort of 395 urine samples (135 patients on

immunosupression and 260 controls, see table 2), 10 indicative and statistically significant

biomarkers were selected (supplementary table 3) that enabled classification of the

training set with 90.4% sensitivity and 87.7% specificity upon complete crossvalidation.

Application of this panel to a test cohort of 1,304 samples resulted in correct identification

of 322/400 transplant patients (sensitivity 80.5%) and 746/904 controls (specificity 82.5%)

(table 2). The control samples consisted of 298 healthy controls and 368 chronic renal

diseases and covered a broad range of non-transplanted controls. In a further step, we

used CE-MS data from patients after liver (N=5) or renal transplantation (N=18) without

Kaposi’s sarcoma (KS) and transplant patients developing KS (N=20). After rigorous

multiple testing using Tmax statistics, we tentatively identified 8 significant biomarker

candidates (supplementary table 3). These 8 peptides were utilized in an SVM-based

model using the samples as the reference set. Upon total cross validation, 22/23 patients

without KS and 18/20 patients with KS of the reference set were classified correctly

(96.7% sensitivity and 91.3% specificity).

DISCUSSION

Here we report on the establishment of a database of naturally occurring urinary peptides

and proteins and demonstrate its application to the definition of biomarkers of human

diseases. These biomarkers apparently reflect primary pathogenetic changes as well as

the reaction to the disease. Hence, their usefulness extends beyond the applicability to

diseases of the urogenital tract, and the approach may be universally applicable to

diseases that result in systemic changes. While genetic analysis can predict the risk of a

disease, proteomics, with its potential to monitor dynamic processes, may more clearly
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show at which point the risk manifests itself as disease and also facilitate monitoring of the

response to therapy. Thus, these methods are complementary in personalized medicine32.

Recently, several groups reported on the sequencing of an array of urinary

proteins12, 33. While these data impressively demonstrate the large amount of proteins –

potential information – contained in urine, critical or even mandatory information for their

application in the definition of biomarkers is missing:

All reports are on tryptic digests of urinary proteins, and the sequences obtained from the

tryptic peptides allow the authors to tentatively assign a protein to this sequence with

variable confidence. Unfortunately, due to the in vitro manipulation of samples via

digestion, it is not possible to define which species are actually present in the urine at the

time of sampling. The actually occurring protein(s) will generally not be the protein in the

database (e.g. Albumin precursor), but one or several variably post-translationally modified

(PTM) proteins. In fact, PTMs are often the hallmark of the potential biomarker, e.g.

advanced glycation endproducts as markers for uremia34. The information that is required

is the definition of the peptide/protein present in urine. Further, if biomarkers are to be

defined, information on the relative abundance of proteins/peptides is mandatory.

We have therefore attempted to obtain such critical information: the naturally occurring

protein/peptide is defined by mass and migration time, and the relative abundance is

defined on ion-counting, set in relation to “internal standards”, mostly specific collagen

fragments that are present in almost every sample and appear not to change significantly

in all the samples and disease-groups investigated to date. While this approach does not

initially allow identification via sequence, it does allow for tentative identification based on

mass and migration time. Sequencing was performed in a second step, but does meet

several obstacles associated with sequencing of naturally occurring peptides [tryptic

digests cannot be utilized, as these would result in a loss of connectivity to the original
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identification parameters35]. Major obstacles are the frequently occurring PTMs that

change the mass, which then is different from the theoretical mass present in the

database, and the higher degree of freedom, as not pre-set terminal Arginine or Lysine

can be employed in the database search. Further, search algorithms are generally

adapted to the needs of tryptic digests, which differ greatly from the requirements for de

novo sequencing of naturally occurring peptides or proteins (see also e.g.1, 27).

CE-MS analysis of urine enables tentative identification of biomarkers for a variety

of diseases of the kidney and the urogenital tract17-19, 21, 22, 36, although the high biological

variability of peptides/proteins presents a serious methodological impediment. Therefore, it

appears imperative to evaluate clinical conditions not on the basis of single peptide/protein

markers, but rather on the basis of a panel of biomarkers that must be derived from distinct

and clearly defined molecules. A panel of biomarkers will tolerate changes in individual

analytes without jeopardizing the diagnostic precision, i.e. such variability will not result in

gross changes of the diagnostic result.

While the exact sequences of biomarkers are not required to exploit their diagnostic

potential, the sequences may offer further insight into the pathogenesis of a disease,

(patho-) physiological mechanisms, and design of relevant therapeutics. Hence, sequence

analysis of naturally occurring peptides in urine completes the content of this database.

Most of the original proteins have also been identified by other research groups12, 33, but

the majority of naturally occurring peptides have not been defined. This is also reflected by

the finding that collagen fragments represented the most abundant peptides in urine (see

table 1).

Most of these naturally occurring urinary peptides are the result of proteolytic

activity. Extracellular proteases may reflect the presence of the disease and its

progression37. Complex changes in protease activities may be more readily recognized by
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the pattern of proteolytic fragments generated than by direct assessment of the specific

protease activity38. CE-MS analysis may be suitable to display the regulated activity of

proteases and protease inhibitors by displaying potential products and enabling monitoring

of their concentrations.

To assess the value of the urinary proteome database, we utilized the data for the

diagnosis of CRD as a representative example for diseases that are related to direct

involvement of the urogenital tract. Using this database, biomarkers could be defined that

allowed classification of a blinded cohort of urine samples, which distinguished 35 healthy

controls from 96 patients with CRD (sensitivity 89.6%, specificity 94.3%) (ROC analysis is

shown in figure 3B). The potential of the approach was further underlined by the

assessment of the same dataset using multiple panels. Without any additional

measurements, the 131 subjects were reassessed using two additional disease-specific

peptide panels, for ‘FSGS’ and ‘MNGN’ (see figure 4). With this approach, the FSGS and

MNGN patients were identified with high sensitivity and specificity. The clear identification

of these FSGS and MNGN patients, representing only a few individuals of this

heterogeneous population (see table 2), demonstrates the feasibility of the use of the

urinary proteome database for clinical purposes. The approach can be extended

systematically to a variety of other CRD to generate a differential diagnosis in a

noninvasive manner without the inherent risks of renal biopsy18. Interestingly, many of the

sequenced biomarkers for CRD are fragments of collagens that are down-regulated. This

down-regulation may be due to the fact that the activities of collagenases, such as matrix

metalloproteases (MMP) are decreased. Regardless of the primary etiology, CRD is

characterized by tubular atrophy, interstitial fibrosis, and glomerulosclerosis. Hence, it has

been assumed that diminished MMP activity is responsible for the accumulation of the

extracellular matrix (ECM) proteins and collagens that typify the fibrotic kidney39. This
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effect may be the response of an increased concentration of inhibitors of MMP, such as

tissue inhibitors of matrix metalloproteinase (TIMPs).

The application of the urinary proteome analysis is not restricted to genitourinary

diseases. For example, we validated a peptide pattern indicative of immunosuppression in

organ or cell transplantation in a test set of 1,304 samples. The identified biomarkers are

most likely a result of immunosuppressive drugs, such as calcineurin-inhibitors. A detailed

reevaluation of the immunosuppressive therapy of the transplanted patients focusing on

the proteomic results may provide novel insights into the molecular mechanisms of the

side effects of treatment. The pathogenic mechanisms of such undesired effects are

rapidly gaining attention, because the focus in transplantation medicine has shifted from

maintaining graft function over a short post-transplantation interval to optimizing quality of

life for the long term23.

As we learn to better appreciate the huge individual differences in the responses of

patients to therapy, objective methods to measure treatment responses will become of

prime importance so as to tailor the therapy to the individual. Noninvasive urinary

proteomics has an advantage in that such monitoring is possible in real time, and

adjustments can be made accordingly. This vision is within reach, but its realization

entirely depends on establishment of databases that allow a quick and robust comparison

of the patient’s profiles against that of healthy controls and other patients. Thus, we

contend that the urinary proteome database presented here is a major step forward in this

direction. We anticipate that the availability of such databases in the future will significantly

improve the options for patients with respect to diagnosis and therapy.
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METHODS

Samples were collected at >20 clinical centers according to established protocols20, 21.

Informed consent was obtained from all patients and ethical approval was obtained from

the appropriate boards for all samples included.

Sample preparation

All samples for CE-MS analysis were from spontaneously voided urine and were stored at

-20°C until analysis. For proteomic analysis, a 0.7 mL aliquot was thawed immediately

before use and diluted with 0.7 mL 2 M urea, 10 mM NH4OH containing 0.02 % SDS. To

remove proteins of higher molecular mass, the sample was filtered with Centricon

ultracentrifugation filter devices (30 kDa molecular weight cut-off; Millipore, Billerica, MA,

USA) at 3,000 g until 1.1 ml of filtrate was obtained. The filtrate was then applied onto a

PD-10 desalting column (Amersham Bioscience, Sweden) equilibrated in 0.01% NH4OH in

HPLC-grade water to remove urea, electrolytes and salts. Finally, all samples were

lyophilized, stored at 4°C, and resuspended in HPLC-grade water shortly before CE-MS

analysis, as described21. The re-suspension volume was adjusted to 0.8 μg/μL, according

to the peptide content of the sample as measured by BCA assay (Interchim, Montlucon,

France).

CE-MS analysis

CE-MS analysis was performed with a P/ACE MDQ capillary electrophoresis system

(Beckman Coulter, USA) coupled online to a Micro-TOF MS (Bruker Daltonic, Germany)21

The ESI sprayer (Agilent Technologies, USA) was grounded, and the ion spray interface

potential was set between -4.0 and -4.5 kV. Data acquisition and MS acquisition methods

were automatically controlled by the CE via contact-close-relays. Spectra were
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accumulated every 3 seconds, over a range of m/z 350 to 3,000. The average recovery of

the sample preparation procedure was approximately 85% with a detection limit of

~1 fmol21. The monoisotopic mass signals could be resolved for z�6. The mass accuracy

of the CE-TOF-MS method was determined to be <25 ppm for monoisotopic resolution and

<100 ppm for unresolved peaks (z>6). The precision of the analytical method was

determined by assessing (a) the reproducibility achieved for repeated measurement of the

same aliquot and (b) by the reproducibility achieved for repeated preparation and

measurement of the same urine sample. The 200 most abundant peptides (“internal

standard” peptides) were detected with a rate of 98%. The performance of the analytical

system over time was assessed with consecutive measurements of the same aliquot over

a period of 24 h. No significant loss of peptides and proteins was observed implying the

stability of the CE-MS set up, the post-preparative stability of the urine samples at 4°C and

their resistance to oxidizing processes or precipitation21, 26.

Data were accepted only if the following quality control criteria were met: A

minimum of 950 peptides/proteins (mean number of peptides/proteins minus one standard

deviation) must be detected with a minimal MS resolution of 8,000 (required resolution of

peaks with z=6) in a minimal migration time interval (the time window, in which separated

peptides can be detected) of 10 minutes. After calibration, the deviation of migration time

must be below 0.35 minutes.

CE-FT-ICR-MS analysis

For CE-FT-ICR-MS, a Bruker Daltonic Apex Qe instrument equipped with a 12-T

magnet and an Apollo II ion source was used. Coupling of the P/ACE 5510 capillary

electrophoresis system (Beckman Coulter, USA) via the Agilent ESI sprayer was

performed as above. The instrument was tuned with a peptide standard mix21 and
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externally mass calibrated on arginine clusters (< 0.1 ppm calibration errors). Mass spectra

were acquired over an m/z range of 300-2,000. Ions were stored in the collision cell for

500 ms and 5 spectra were accumulated for each scan, resulting in a scan rate of 5 s.

Data processing

Mass spectral ion peaks representing identical molecules at different charge states were

deconvoluted into single masses using MosaiquesVisu software40

(www.proteomiques.com). Only signals observed in a minimum of 3 consecutive spectra

with a signal-to-noise ratio of at least 4 were considered. MosaiquesVisu employs a

probabilistic clustering algorithm and uses both isotopic distribution as well as conjugated

masses for charge-state determination of peptides/proteins. The resulting peak list

characterizes each protein/peptide by its molecular mass and its normalized migration

time. TOF-MS data were calibrated utilizing FT-ICR-MS data as reference masses

applying linear regression. Both CE-migration time and ion signal intensity (amplitude)

showed high variability, mostly due to different amounts of salt and peptides in the sample.

Consequently, CE-migration time and ion signal intensity were normalized based on

reference signals by 200 abundant “housekeeping” peptides generally present in urine,

which serve as internal standards20, 21. These “internal standards” were present in at least

90% of all urine samples with a relative standard deviation less than 100%. For calibration,

a weighted regression was performed. The resulting peak list characterizes each protein

and peptide by its molecular mass [Da], normalized CE migration time [min] and

normalized signal intensity. All detected peptides were deposited, matched, and annotated

in a Microsoft SQL database, allowing further analysis and comparison of multiple samples

(patient groups). Proteins and peptides within different samples were considered identical,

if the mass deviation was lower than 50 ppm for small peptides or 75 ppm for larger

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
21

9.
1 

: P
os

te
d 

11
 O

ct
 2

00
7



17

peptides and proteins. The CE migration time deviation was linearly increased over the

entire electropherogram from 2-5%. These clustering parameters showed minimal error

rates and considered increased peak widths at higher migration times. Disease-specific

protein/peptide patterns were generated using support-vector-machine (SVM) based

MosaCluster software17.

Statistical analysis

Estimates of sensitivity and specificity were calculated based on tabulating the number of

correctly classified samples. Confidence intervals (95% CI) were based on exact binomial

calculations performed with MedCalc version 8.1.1.0 (MedCalc Software, Belgium,

www.medcalc.be). The ROC plot was evaluated, as it provides a single measure of overall

accuracy that is not dependent upon a particular threshold41.

The reported p-values were calculated using the natural logarithm transformed

intensities and the Gaussian approximation to the t-distribution. Bonferroni adjustments

were obtained by applying the standard Bonferroni criterion to the subset of markers that

passed the frequency threshold of 70%. The maxT p-values were calculated using the

Westfall and Young maxT-procedure41. This function computes permutation-based step-

down adjusted p-values. A total of 100,000 permutations were performed. To ensure

stability of the results, we verified that the p-values by the minP procedure of Westfall and

Young were of similar magnitude42. Both procedures were implemented as macros in the

commercial statistical package SAS (www.sas.com) and are also part of the multitest R-

package of Dudoit et al. (see e.g.30 and references therein) available at

www.bioconductor.org.

Sequencing of peptides
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Candidate biomarkers and other native peptides from urine were sequenced using CE- or

LC-MS/MS analysis as recently described in detail28.

In addition, MS/MS experiments were performed on an Ultimate 3000 nanoflow

system (Dionex/LC Packings, USA) connected to an LTQ Orbitrap hybrid mass

spectrometer (Thermo Fisher Scientific, Germany) equipped with a nanoelectrospray ion

source. The mass spectrometer was operated in data-dependent mode to automatically

switch between MS and MS/MS acquisition. Survey full-scan MS spectra (from m/z 300–

2,000) were acquired in the Orbitrap. Ions were sequentially isolated for fragmentation in

the linear ion trap using collisionally induced dissociation. General mass spectrometric

conditions were: electrospray voltage, 1.6 kV; no sheath and auxiliary gas flow; ion

transfer tube temperature, 225 °C; collision gas pressure, 1.3 mT; normalized collision

energy, 32% for MS2. Ion selection threshold was 500 counts for MS/MS.

Samples were also analyzed using Electron Transfer Dissociation (ETD)43-45.

Peptides were separated by nRP-HPLC (Agilent 1100; flow split by tee to ~60 nL/min) and

introduced into an ETD-capable Finnigan LTQ quadrupole linear ion trap via nESI, using

previously described instrumental parameters46.

All resulting MS/MS data were submitted to MASCOT (www.matrixscience.com) for

a search against human entries in the MDSB Protein Database. Accepted parent ion mass

deviation was 50 ppm; accepted fragment ion mass deviation was 500 ppm. Only search

results with a MASCOT peptide score of 20 or better, which also met ion coverage

stipulations as related to the main spectral features were included. Data files from

experiments performed on the ETD-enabled LTQ were searched against the NCBI human

non-redundant database using the Open Mass Spectrometry Search Algorithm (OMSSA),

with an e-value cut-off of 0.01. The number of basic and neutral polar amino acids of the
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peptide sequences was utilized to correlate peptide sequencing data to CE-MS data, as

described earlier28.

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
21

9.
1 

: P
os

te
d 

11
 O

ct
 2

00
7



20

Table legends:

Table 1: Distribution of native peptides identified with respect to their protein precursor

(described by SwissProt protein name and gene symbol). Comparison of the located

peptides to other references12, 33.
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Proteins detected by:
Number Protein name Gene symbol

Adachi et al. Castagna et al.
142 Collagen alpha-1 (I) chain [H. sapiens] COL1A1 yes no

57 Collagen alpha-1 (III) chain [H. sapiens] COL3A1 yes no

21 Collagen alpha-2 (I) chain [H. sapiens] COL1A2 yes no

18 Uromodulin [H. sapiens] UMOD yes yes

12 Alpha-1-antitrypsin [H. sapiens] SERPINA1 yes yes

12 Fibrinogen alpha chain [H. sapiens] FGA yes no

11 Serum albumin [H. sapiens] ALB yes yes

7 Hemoglobin beta subunit [H. sapiens] HBB yes yes

6 Polymeric-immunoglobulin receptor [H. sapiens] PIGR yes yes

5 Hemoglobin alpha subunit [H. sapiens] HBA1, HBA2 yes no

3 Beta-2-microglobulin [H. sapiens] B2M yes yes

3 Collagen alpha-1 (II) chain [H. sapiens] COL2A1 no no

3 Membrane associated progesterone receptor component 1 [H. sapiens] PGRMC1 yes no

3 Osteopontin [H. sapiens] SPP1 yes no

2 Alpha-1-microglobulin [H. sapiens] AMBP yes yes

2 Alpha-2-HS-glycoprotein [H. sapiens] AHSG yes yes

2 Apolipoprotein A-I [H. sapiens] APOA1 no yes

2 CD99 antigen [H. sapiens] CD99 no no

2 Clusterin [H. sapiens] CLU yes yes

2 Collagen alpha-1 (XVIII) chain [H. sapiens] COL18A1 yes no

2 Epithelial-cadherin [H. sapiens] CDH1 yes yes

2 Insulin; includes C peptide [H. sapiens] INS no no

2 ProSAAS [H. sapiens] PCSK1N yes no

2 Prostaglandin-H2 D-isomerase [H. sapiens] PTGDS yes yes

1 Alpha-1-acid glycoprotein 1 [H. sapiens] ORM1 yes yes

1 Antithrombin-III [H. sapiens] SERPINC1 yes no

1 Basement membrane-specific heparan sulfate proteoglycan core protein [H. sapiens] HSPG2 yes yes

1 Collagen alpha-1 (XIX) chain [H. sapiens] COL19A1 no no

1 Collagen alpha-1 (XV) chain [H. sapiens] COL15A1 yes no

1 Collagen alpha-1 (XVII) chain [H. sapiens] COL17A1 no no

1 Collagen alpha-1 (XXII) chain [H. sapiens] COL22A1 no no

1 Collagen alpha-2 (VIII) chain [H. sapiens] COL8A2 no no

1 Collagen alpha-3 (IX) chain [H. sapiens] COL9A3 no no

1 Cystatin-B [H. sapiens] CSTB yes no

1 Fibrinogen beta chain [H. sapiens] FGB no no

1 Fillagrin [H. sapiens] FLG yes no

1 Gelsolin [H. sapiens] GSN yes yes

1 Ig kappa chain C region [H. sapiens] IGKC yes yes

1 Ig kappa chain V-III region [H. sapiens] none no yes

1 Ig lambda chain C regions protein [H. sapiens] IGLC1 yes yes

1 Insulin-like growth factor II precursor [H. sapiens] IGF2 yes no

1 Josephin-1 [H. sapiens] JOSD1 no no

1 Liprin-beta-2 [H. sapiens] PPFIBP2 no no

1 Microfibrillar-associated protein 5 [H. sapiens] MFAP5 no no

1 Neurosecretory protein VGF [H. sapiens] VGF yes no

1 Peptidoglycan recognition protein [H. sapiens] PGLYRP1 yes yes

1 Psoriasis susceptibility 1 candidate gene 2 protein [H. sapiens] PSORS1C2 yes no

1 PX domain-containing protein kinase-like protein [H. sapiens] PXK no no

1 Secreted and transmembrane protein 1 [H. sapiens] SECTM1 yes yes

1 Sodium/potassium-transporting ATPase gamma chain [H. sapiens] FXYD2 yes no

1 Transthyretin precursor (Prealbumin) [H. sapiens] TTR yes yes

1 Zinc finger CCHC domain-containing protein 3 [H. sapiens] ZCCHC3 no no

1 Zinc finger protein 653 [H. sapiens] ZNF653 no no
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Table 2: Compendium of all patients and healthy controls of the human urinary proteome

database, which were used for the establishment of training- and test-sets. Additionally, all

sensitivities and specificities including their confidence interval are shown. (Abbreviations:

HC=healthy control; CRD= chronic renal disease; MNGN=membranous

glomerulonephritis; FSGS=focal segmental glomerulosclerosis; MCD=minimal change

disease; SLE=systemic lupus erythematosus; IgAN=IgA nephropathy, DN=diabetic

nephropathy; CAD=coronary artery disease; NTx=renal transplantation; LTx=liver

transplantation; HSCT=hematopoietic stem cell transplantation; PTLD=post-transplant

lymphoproliferative disorders; Fanconi=Fanconi’s syndrome; AD=Alzheimer’s disease;

DM=diabetes mellitus.

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
21

9.
1 

: P
os

te
d 

11
 O

ct
 2

00
7



23

Training set Test set
Disease condition

CASE CONTROL Sensitivity [%] Specificity [%] CASE CONTROL Sensitivity [%] Specificity [%]

CRD

�: 226
18 vasculitis,
21 SLE,
31 MNGN,
24 MCD,
44 IgAN,
27 FSGS,
61 DN

�: 386
386 HC

92.0
[95% CI: 87.7-95.2]

99.5
[95% CI: 98.1-99.9]

�: 96
3 FSGS,
4 MNGN,
8 CAD,
5 SLE,
39 Vasculitis,
15 IgAN,
10 NTx,
1 DN,
11 other CRD

�: 35
35 HC

89.6
[95% CI: 81.7-94.9]

94.3
[95% CI: 80.8-99.1]

FSGS

�: 27
27 FSGS

�: 199
31 MNGN
21 SLE
24 MCD
44 IgAN
61 DN
18 Vasculitis

100.0
[95% CI: 87.1-100.0]

95.5
[95% CI: 91.6-97.9]

�: 3
3 FSGS

�: 128
35 HC,
4 MNGN,
8 CAD,
5 SLE,
39 Vasculitis,
15 IgAN,
10 NTx,
1 DN,
11 other CRD

100.0
[95% CI: 30.5-100.0]

91.4
[95% CI: 85.1-95.6]

MNGN

�: 31
31 MNGN

�: 195
27 FSGS
21 SLE
24 MCD
44 IgAN
61 DN
18 Vasculitis

100.0
[95% CI: 88.7-100.0]

90.3
[95% CI: 89.2-94.0]

�: 4
4 MNGN

�: 127
35 HC,
3 FSGS,
8 CAD,
5 SLE,
39 Vasculitis,
15 IgAN,
10 NTx,
1 DN,
11 other CRD

100.0
[95% CI: 40.2-100.0]

93.7
[95% CI: 88.0-97.2]

Transplantation

�: 135
77 NTx,
17 HSCT,
24 LTx,
17 PTLD

�: 260
66 HC,
7 Fanconi,
7 MCD,
10 FSGS,
8 MNGN,
2 CAD,
4 SLE,
17 Vasculitis,
16 IgAN,
43 DM,
17 DN,
31 AD,
28 blinded CRD
4 other CRD

90.4
[95% CI: 84.1-94-8]

87.7
[95% CI: 83.1-91.4]

�: 400
251 NTx,
49 HSCT,
64 LTx,
36 PTLD

�: 904
298 HC,
21 Fanconi,
20 MCD,
19 FSGS,
28 MNGN,
7 CAD,
21 SLE,
46 Vasculitis,
41 IgAN,
136 DM,
43 DN,
95 AD,
124 blinded CRD
5 other CRD

80.5
[95% CI: 76.3-84.3]

82.5
[95% CI: 79.9-84.9]N
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Figures legends:

Figure 1: Disease conditions which are to date represented in the human urinary

proteome database.

Figure 2: Peptide patterns distinguishing patients with chronic renal disease (CRD) from

healthy controls (HC). This figure shows the compiled data sets of 226 CRD samples

(upper left panel) and 386 healthy control subjects (upper right panel) of the training set.

Normalized molecular weight (y axis) is plotted against normalized CE-migration time (x-

axis). The mean signal intensity is given in 3D-depiction. The lower panel depicts the 35

indicative peptides defining the specific pattern for CRD (lower left panel) and controls

(lower right panel). Red arrows indicate decreased signal intensities and green arrows

show increased signal intensities in urine of patients with CRD.

Figure 3: ROC curve of the ‘Chronic Renal Disease’ specific peptide panel.

ROC analysis of A: the training set (bold line; AUC=0.98; p<0.0001) and B: the test set

after unblinding (bold line, AUC=0.92; p<0.0001). 95 % confidence intervals (95% CI) are

indicated by thin lines.

Figure 4: Flow chart describing differential analysis of spot urine samples from 131

patients in the blinded test-set by CE-MS. In the first step, samples were assessed for

renal injury using the 35 biomarkers comprising the ‘Chronic Renal Disease’ pattern. In the

second step, samples positive for ‘Chronic Renal Disease’ pattern were analyzed for the

FSGS pattern and for the MNGN pattern, respectively.
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Supplementary material:

Supplementary table 1:

Table consists of 19 different spreadsheets called (1) polypeptides, (2) disease conditions,

and (3-19) patients raw data part1 to 17.

(1): Polypeptides. Table listing all 5,010 different peptides/proteins (Protein ID) detected,

their calibrated molecular mass [Da], and normalized CE migration time [min].

(2): Disease conditions. Table includes all 3,687 patients. Sample ID correlated to their

specific indication of diseases.

(3-16): Patients raw data part 1 to 17. Tables in pivot format show the CE-MS data of the

3,687 samples in the database. The protein IDs of all peptides are given in the first column

named “Protein ID”; the unique Sample IDs constitute the first row. The MS data from each

sample are reflected in one column. The number in each cell represents the calibrated

amplitude of the mass spectrometric signal of each peptide/protein detected in the sample.

The table is divided into seventeen spreadsheets, since Microsoft Excel limits the maximal

number of columns to 256.

Supplementary table 2:

352 peptide sequences obtained with MS/MS sequencing.

The table contains (from left to right) the number of the data base entry (Protein ID), the

associated mass, the CE migration time, and the amplitude of the peptide signal. The

additional information after sequence analysis is the peptide sequence, the name of the

protein fragment, the SwissProt entry, the accession number, the calculated monoisotopic

mass, and the deviation between observed and expected mass. In addition, FT-ICR

masses are shown, including their deviation to the calculated mass.
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Supplementary table 3:

Disease peptide panels.

Peptide markers derived from trainings sets of different disease conditions (see table 2)

(CRD=chronic renal disease; MNGN=membranous glomerulonephritis; FSGS=focal

segmental glomerulosclerosis; immunosuppression after transplantation; Kaposi’s

sarcoma). The peptide identification results from protein ID; molecular weight [Da] and CE-

migration time [min] of the potential biomarkers.
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Fig. 1
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Fig. 2
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Fig. 3
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