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In this paper, the hybrid kinetic models of tumor-immune system competition are studied under the assumption of pure
competition.The solution of the coupled hybrid system depends on the symmetry of the state transition density which characterizes
the probability of successful occurrences. Thus by defining a proper transition density function, the solutions of the hybrid system
are explicitly computed and applied to a classical (realistic) model of competing populations.

1. Introduction

In this paper, the two-scale tumor immune-system compe-
tition hybrid model [1–6] is studied under the assumption
that the transition density function is a symmetric and
separable function. The competition between tumor and
immune-system can be modeled at different scales. Cells of
different populations are characterized by biological func-
tions heterogeneously distributed, and they are represented
by some probability distributions. The interacting system is
characterized at a macroscopic scale by a density distribu-
tion function which describes the cells activity during the
interaction proliferation. At this level, the distribution of
cells fulfills some partial differential equations taken from
the classical kinetic theory. In this case, the more general
model consists in a nonlinear system of partial differential
equations. From the solution of this system, one can define a
parameter which defines the time evolving distance between
the two distributions, and this parameter is the charactering
coefficient of themicroscopic equations, typically an ordinary
differential system for the competition of two populations.

This parameter has been considered [4, 5] as a random
coefficient whose probability density distribution is modeled
by the hiding-learning dynamics referred to biological events
where tumor cells attempt to escape from immune cells
which, conversely, attempt to learn about their presence.

Therefore, when the coupling parameter is obtained by
solving the kinetic equations for the distribution functions,
then it will be included in the classical Lotka-Volterra com-
petition equations.Wewill analyze on a concrete example the
influence of this stochastic parameter on the evolution. This
method can be easily extended to more realistic competition
models (see, e.g., [7–20]).

2. The Hybrid Model for the Tumor-Immune
System Competition

Let us consider a physical system of two interacting pop-
ulations, each one constituted by a large number of active
particles with sizes:

𝑛
𝑖
= 𝑛
𝑖 (
𝑡) , (𝑛𝑖 (

𝑡) : [0, 𝑇] → R
+
) (1)

for 𝑖 = 1, 2 and R
+

def
= [0, +∞).

Particles are homogeneously distributed in space, while
each population is characterized by amicroscopic state, called
activity, denoted by the variable 𝑢. The physical meaning
of the microscopic state may differ for each population. We
assume that the competition model depends on the activity
through a function of the overall distribution:

𝜇 = 𝜇 [𝑓
𝑖 (
𝑡, 𝑢)] , (𝜇 [𝑓𝑖 (

𝑡, 𝑢)] : R+ → R
+
) . (2)
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Thedescription of the overall distribution over themicro-
scopic state within each population is given by the probability
density function:

𝑓
𝑖
= 𝑓
𝑖 (
𝑡, 𝑢) , (𝑓𝑖 (

𝑡, 𝑢) : [0, 𝑇] × 𝐷𝑢
→ R

+
, 𝐷
𝑢
⊆ R)

(3)

for 𝑖 = 1, 2, such that 𝑓
𝑖
(𝑡, 𝑢)𝑑𝑢 denotes the probability that

the activity 𝑢 of particles of the 𝑖th population, at the time 𝑡,
is in the interval [𝑢, 𝑢 + 𝑑𝑢]:

𝑑𝜇 = 𝑓
𝑖 (
𝑡, 𝑢) 𝑑𝑢. (4)

Moreover, it is

∀𝑖, ∀𝑡 ≥ 0 : 0 ≤ 𝑓
𝑖 (
𝑡, 𝑢) ≤ 1, ∫

𝐷
𝑢

𝑓
𝑖 (
𝑡, 𝑢) 𝑑𝑢 = 1. (5)

We consider, in this section, the competition between two
cell populations.The first one with uncontrolled proliferating
ability and with hiding ability; the second one with higher
destructive ability, but with the need of learning about the
presence of the first population. The analysis developed in
what follows refers to a specific case where the second
population attempts to learn about the first population which
escapes by modifying its appearance. The hybrid evolution
equations specifically can be formally written as follows [4, 5]:

𝑑𝑛
𝑖

𝑑𝑡

= 𝐺
𝑖
(𝑛
1
, 𝑛
2
; 𝜇 [𝑓]) ,

𝜕𝑓
𝑖

𝜕𝑡

= A
𝑖
[𝑓] ,

(6)

where 𝐺
𝑖
, for 𝑖 = 1, 2, is a function of 𝑛 = {𝑛

1
, 𝑛
2
} and 𝜇

acts over 𝑓 = {𝑓
1
, 𝑓
2
}, while A

𝑖
, for 𝑖 = 1, 2, is a nonlinear

operator acting on 𝑓 and 𝜇[𝑓] is a functional (0 ≤ 𝜇 ≤
1) which describes the ability of the second population to
identify the first one. Then, (6) denotes a hybrid system of
a deterministic system coupled with a microscopic system
statistically described by a kinetic theory approach. In the
following the evolution of density distribution will be taken
within the kinetic theory.

The derivation of (6)
2
can be obtained starting from

a detailed analysis of microscopic interactions. Consider
binary interactions specifically between a test, or candidate,
particle with state 𝑢

∗
belonging to the ith population and field

particle with state 𝑢∗ belonging to the jth population. The
modelling of microscopic interactions is supposed to lead to
the following quantities.

(i) The encounter rate, which depends for each pair of
interacting populations on a suitable average of the
relative velocity 𝜂

𝑖𝑗
, with 𝑖, 𝑗 = 1, 2.

(ii) The transition density function 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢), which is

such that 𝜑
𝑖𝑗
(⋅; 𝑢) denotes the probability density that

a candidate particle with activity 𝑢
∗
belonging to the

ith population falls into the state 𝑢 ∈ 𝐷
𝑢
, of the

test particle, after an interaction with a field entity,

belonging to the jth population, with state 𝑢∗. The
transition density 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) fulfills the condition

∀𝑖, 𝑗, ∀𝑢
∗
, 𝑢
∗
: ∫

𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) > 0,

(7)

when 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸= 0 and

∀𝑢
∗
, 𝑢
∗
: ∫

𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = 0 ⇐⇒ 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0.

(8)

The state transition

𝑢
∗

𝑢
∗

→ 𝑢
(9)

follows from the mutual action of the field particle (F) of the
𝑖th population on the test particle (T) of the 𝑗th population
and vice versa so that

𝑢
∗(
𝐹)

𝑢
∗

(𝑇)

→ 𝑢 ⇐⇒ 𝑢
∗
(𝑇)

𝑢
∗
(𝐹)

→ 𝑢.
(10)

With respect to this mutual action, we can assume that this
function depends on the biological model, as follows.

(1) Competition within the first group and with others:
particles of the 𝑖th population interact with any other
particle both from its own 𝑖th population and from
the 𝑗th population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸= 0, (𝑖 fixed, ∀𝑗) . (11)

In this case, each particle of the 𝑖th population can
change its state not only due to the competition with
the 𝑗th population but also by interacting with par-
ticles of its own population. Instead, the individuals
of the 𝑗th population change their state only due to
the interaction with the other 𝑖th populations. They
donot interferewith each otherwithin their 𝑖th group.

(2) Competition within the second group and with oth-
ers: particles of the 𝑗th population interact with any
other particles both from its own 𝑗th population and
from the 𝑖th population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸= 0, (𝑗 fixed, ∀𝑖) . (12)

(3) Full competition within a group and with others:
particles of each population interact with any other
particles both from its own population and from the
other population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) ̸= 0, (∀𝑖, ∀𝑗) . (13)

(4) Competition of two groups: particles of each pop-
ulation interact only with particles from the other
population so that

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0, (𝑖 = 𝑗) . (14)

We can assume that this kind of competition arises
when the dynamics in each population are stable and
each population behaves as a unique individual.
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Then, by using the mathematical approach, developed in
[1, 2], it yields the following class of evolution equations:

𝜕𝑓
𝑖

𝜕𝑡

(𝑡, 𝑢) =

2

∑

𝑗=1

∫

𝐷
𝑢
×𝐷
𝑢

𝜂
𝑖𝑗
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑓
𝑖
(𝑡, 𝑢
∗
)

× 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
𝑖 (
𝑡, 𝑢)

2

∑

𝑗=1

∫

𝐷
𝑢

𝜂
𝑖𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

(𝑖 = 1, 2)

(15)

which can be formally written as (6)
2
.

3. Transition Density Function Based on
Separable Functions

In this section, we give the solution of (15) under some simple
assumptions on the form of the transition density (7).

3.1. On the Symmetries of the State Transition Density. We
assume that the integrability condition on 𝜑

𝑖𝑗
,

𝜕
2

𝜕𝑢
∗
𝜕𝑢
∗
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) = 0, (16)

holds true. As a consequence, if we write the transition
density as a linear combination of separable functions, this
definition implies some symmetries which will be useful for
the following computations, in particular.

Theorem 1. If one defines the transition density as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=

1

2

[𝑎
𝑖
𝜓
𝑗
(𝑢
∗
, 𝑢) + 𝑎

𝑗
𝜓
𝑖
(𝑢
∗
, 𝑢)] ,

(𝑎
𝑖
, 𝑎
𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(17)

with 𝜓
𝑖
(𝑢
∗
, 𝑢), 𝜓

𝑗
(𝑢
∗
, 𝑢) > 0 (𝑖, 𝑗 = 1, 2), the following

symmetry holds true:

∫

𝐷
𝑢

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜑
𝑗𝑖
(𝑢
∗
, 𝑢
∗
, 𝑢) 𝑑𝑢. (18)

Proof. From (7), (17), we have

∫

𝐷
𝑢

[𝑎
𝑖
𝜓
𝑗
(𝑢
∗
, 𝑢) + 𝑎

𝑗
𝜓
𝑖
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2. (19)

There follows, with 𝑖 = 1, 𝑗 = 2 and 𝑖 = 2, 𝑗 = 1,

∫

𝐷
𝑢

[𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) + 𝑎

2
𝜓
1
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2,

∫

𝐷
𝑢

[𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) + 𝑎

1
𝜓
2
(𝑢
∗
, 𝑢)] 𝑑𝑢 = 2

(20)

so that by a comparison of

∫

𝐷
𝑢

{𝑎
1
[𝜓
2
(𝑢
∗
, 𝑢) − 𝜓

2
(𝑢
∗
, 𝑢)]

+ 𝑎
2
[𝜓
1
(𝑢
∗
, 𝑢) − 𝜓

1
(𝑢
∗
, 𝑢)]} 𝑑𝑢 = 0

(21)

to be valid for all 𝑎
1
, 𝑎
2
, that is, as a consequence of the

definition (17),

∫

𝐷
𝑢

𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢,

∫

𝐷
𝑢

𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢.

(22)

In particular, to fulfill (20), we can assume

∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1, ∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1, ∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = 1,

(23)

from which, by taking into account (22), we get

∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝑎
2
𝜓
1
(𝑢
∗
, 𝑢) 𝑑𝑢

= 1 ⇒ ∫

𝐷
𝑢

𝜓
1 (
𝑤, 𝑢) 𝑑𝑢 =

1

𝑎
2

,

∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢 = ∫

𝐷
𝑢

𝑎
1
𝜓
2
(𝑢
∗
, 𝑢) 𝑑𝑢

= 1 ⇒ ∫

𝐷
𝑢

𝜓
2 (
𝑤, 𝑢) 𝑑𝑢 =

1

𝑎
1

(24)

so that, by a difference,

∫

𝐷
𝑢

[𝑎
𝑖
𝜓
𝑗 (
V, 𝑢) − 𝑎𝑗𝜓𝑖 (𝑤, 𝑢)] 𝑑𝑢 = 0,

(V, 𝑤 = 𝑢
∗
, 𝑢
∗
; 𝑖, 𝑗 = 1, 2) .

(25)

Thus, according to (25), the mutual action of the state
transition given by the definition (7) can be summarized by
(18).

Equations (17), (18) imply that the functions 𝜓
𝑖
have to be

carefully chosen so that (22), (24), and (18) are fulfilled.
In the following, we will consider a special choice for the

transition density (17) as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=

1

2

𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑎
𝑖𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(26)

so that (18) is fulfilled.

3.2. Preliminary Theorems. The special choice of 𝜑
𝑖𝑗
(𝑢
∗
,

𝑢
∗
, 𝑢), as defined in (26), enables us to explicitly solve (15);

however, prior to computing the analytical solutions of (15),
we need to show these preliminary theorems.

Theorem 2. Let𝑋(𝑡, 𝑢) be a function satisfying

∫

𝐷
𝑢

𝑋 (𝑡, 𝑢) 𝑑𝑢 = 𝐾 (




𝑓 (𝑡, 𝑢)





< 𝑀 < ∞;𝐾 ≥ 0) (27)
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and 𝜓(𝑤, 𝑢) a given function for which

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =

𝑏

𝑎

(0 ≤ 𝜓 (𝑤, 𝑢) ≤ 1; 𝑎 ̸= 0) (28)

holds, then the equation

𝜕𝑋

𝜕𝑡

(𝑡, 𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑤) 𝑑𝑤 − 𝑏𝑓 (𝑡, 𝑢)

(𝑎 ≥ 0, 𝑏 ≥ 0)

(29)

is solved by

𝑋 (𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑢) (𝐾 ≥ 0) , (30)

where 𝐹(𝑢) is the solution of the second kind homogeneous
Fredholm integral equation

𝐹 (𝑢) = 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤, ∫

𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0, (31)

with 𝜆 being the eigenvalue of the integral equation, and

𝐺 (𝑢) =

𝑎

𝑏

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤,

∫

𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1 (𝑏 ̸= 0) ,

(32)

when 𝑏 = 0, 𝐺(𝑢) is any arbitrary function fulfilling (32)
2
.

Proof. Let us first notice that in the trivial case of 𝑎 = 0, there
is no dependence on the function 𝜓

𝜕𝑋

𝜕𝑡

(𝑡, 𝑢) = −𝑏𝑋 (𝑡, 𝑢) (𝑏 ≥ 0) , (33)

but this equation is also solved by (30) being

𝑋 (𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−𝑏𝑡
+ 𝐾𝐺 (𝑢) . (34)

In the more general case, (31)
2
, (32)
2
are direct consequence

of the condition (5).
By a simple computation, (29) can be transformed into

the Fredholm integral equations (31), (32).
In fact, by deriving (30), we have

𝜕𝑋

𝜕𝑡

(30)

= −(𝑏 −

𝑎

𝜆

)𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡 (35)

so that (29), taking into account (30), becomes

− (𝑏 −

𝑎

𝜆

)𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡

= 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝐹 (𝑤) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑤)] 𝑑𝑤

− 𝑏 [𝐹 (𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡

+ 𝐾𝐺 (𝑢)] ,

(36)

that is,

[(

𝑎

𝜆

)𝐹 (𝑢) − 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤] 𝑒
−(𝑏−𝑎/𝜆)𝑡

= 𝐾[𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤 − 𝑏𝐺 (𝑢)] ,

(37)

from which (31), (32) and (30) hold true.
When 𝑏 = 0, from the r.h.s, we have

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 = 0, ∫

𝐷
𝑢

𝐺 (𝑤) 𝑑𝑤 = 1 (38)

so that 𝐺(𝑢) cannot be univocally determined.

When the initial conditions are given, we have the fol-
lowing corollary.

Corollary 3. Let 𝑋(𝑡, 𝑢) be a function satisfying (27) that is

∫

𝐷
𝑢

𝑋(𝑡, 𝑢) 𝑑𝑢 = 𝐾, (




𝑓 (𝑡, 𝑢)





< 𝑀 < ∞;𝐾 ≥ 0) (39)

and 𝜓(𝑤, 𝑢) a given function for which

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =

𝑏

𝑎

(0 ≤ 𝜓 (𝑤, 𝑢) ; 𝑎 > 0, 𝑏 ≥ 0) (40)

holds, then the solution of the initial value problem

𝜕𝑋

𝜕𝑡

(𝑡, 𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑤) 𝑑𝑤 − 𝑏𝑓 (𝑡, 𝑢) ,

𝑋 (𝑡, 𝑢)|𝑡=0
= 𝑋 (0, 𝑢)

(𝑎 ≥ 0, 𝑏 ≥ 0)

(41)

is as follows:
(1) 𝑎 > 0, 𝑏 > 0, 𝐾 > 0

𝑋 (𝑡, 𝑢)

=

𝜆𝑏/𝑎

𝜆𝑏/𝑎 − 1

[𝑋 (0, 𝑢)

−

𝑎

𝑏

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓 (0, 𝑤) 𝑑𝑤] 𝑒
−(𝑏−𝑎/𝜆)𝑡

+

1

1 − 𝜆𝑏/𝑎

[𝑋 (0, 𝑢) − 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑w] ,

𝜆 ̸= 1,

(42)

𝑋 (𝑡, 𝑢) = 0, 𝜆 = 1, (43)

(2) 𝑎 > 0, 𝑏 > 0, 𝐾 = 0.
The solution

𝑋 (𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
−(𝑏−𝑎/𝜆)𝑡 (44)

exists only for𝑋(0, 𝑢) = 𝜆 ∫
𝐷
𝑢

𝜓(𝑤, 𝑢)𝑋(0, 𝑤)𝑑𝑤,
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(3) 𝑎 > 0, 𝑏 ≥ 0. The solution

𝑋 (𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
𝑎/𝜆𝑡 (45)

exists only for𝑋(0, 𝑢) = 𝜆 ∫
𝐷
𝑢

𝜓(𝑤, 𝑢)𝑋(0, 𝑤)𝑑𝑤,
(4) 𝑎 = 0, 𝑏 ≥ 0. For 𝐾 > 0, the solution of (41) does not

exist. When 𝐾 = 0, the solution is

𝑋(𝑡, 𝑢) = 𝑋 (0, 𝑢) 𝑒
−𝑏𝑡
. (46)

Proof. According to Theorem 2, the solution of (41)
1
is (30)

with derivative (35). In the more general case, these two
equations, at the initial time, give

𝑋(0, 𝑢) = 𝐹 (𝑢) + 𝐾𝐺 (𝑢) ,

− (𝑏 −

𝑎

𝜆

)𝐹 (𝑢) = 𝑎∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤 − 𝑏𝑋 (0, 𝑢)

(47)

having taken into account (41)
1
.

The proof of all cases above is followed by solving
these two equations in 𝐹(𝑢), 𝐺(𝑢) with respect to the initial
condition𝑋(0, 𝑢).

For instance, for the first case (1), there follows

𝐾𝐺 (𝑢) = 𝑋 (0, 𝑢) − 𝐹 (𝑢) ,

𝐹 (𝑢) = −

1

𝑏/𝑎 − 1/𝜆

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤

+

𝑏/𝑎

𝑏/𝑎 − 1/𝜆

𝑋 (0, 𝑢) ,

(48)

that is

𝐾𝐺 (𝑢) =

1

1 − 𝜆𝑏/𝑎

[𝑋 (0, 𝑢) − 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤] ,

𝐹 (𝑢) =

𝜆𝑏/𝑎

𝜆𝑏/𝑎 − 1

[𝑋 (0, 𝑢) −

𝑎

𝑏

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤]

(49)

so that (42) holds true.
When

𝑋 (0, 𝑢) =

𝑎

𝑏

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤 (50)

which implies 𝜆 = 1, from (49), we get a trivial solution of
(29), (31), (32) and (47); that is,

𝐹 (𝑢) = 0, 𝐺 (𝑢) = 0. (51)

Analogously, for the case (2) system (47) becomes

𝑋(0, 𝑢) = 𝐹 (𝑢) + 𝐾𝐺 (𝑢) ,

−𝐹 (𝑢) = 𝜆∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (0, 𝑤) 𝑑𝑤.

(52)

However, if 𝐾 ̸= 0, the integral of the right side of the second
equation is𝐾, while the integral of the first side must be zero.

With similar reasonings, we get the proof of the remain-
ing cases.

4. Solution of the System (15)
In this section, we will give the explicit solution of the system
(15) under some suitable hypotheses on both the encounter
rate 𝜂
𝑖𝑗
and the transition density 𝜑

𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢). Let us assume

the symmetry of 𝜂
𝑖𝑗
so that

𝜂
1

def
= 𝜂
11
, 𝜂

2

def
= 𝜂
22
, 𝜂

0

def
= 𝜂
12
= 𝜂
21
. (53)

Thanks to the previous theorems, and the symmetry of
𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) as given by (18), system (15) simplifies, the

following.

Theorem 4. Let the transition density 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) be defined

as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

1

2

𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] , (𝑖, 𝑗 = 1, 2)

𝑎
1

def
= 𝑎
11
, 𝑎

2

def
= 𝑎
22
, 𝑎

0

def
= 𝑎
12
= 𝑎
21
,

(54)

which fulfills (7) and the symmetries conditions (18), and the
density function 𝜓(𝑤, 𝑢) such that

1

2

𝑎
𝑖𝑗
∫

𝐷
𝑢

[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] 𝑑𝑢

(7)

= 1 (55)

holds. Equation (15) can be simplified into

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢) = 𝜂1
𝑎
1
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓1 (
𝑡, 𝑤) 𝑑𝑤

+

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓1 (
𝑡, 𝑤) + 𝑓2 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1 (
𝑡, 𝑢) [𝜂1

+ 𝜂
0
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓2 (
𝑡, 𝑤) + 𝑓1 (

𝑡, 𝑤)] 𝑑𝑤

+ 𝜂
2
𝑎
2
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓2 (
𝑡, 𝑤) 𝑑𝑤

− 𝑓
2 (
𝑡, 𝑢) [𝜂0

+ 𝜂
2
] .

(56)
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Proof. By a substitution of (54) into (15), we get

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢) =

2

∑

𝑗=1

∫

𝐷
𝑢
×𝐷
𝑢

𝜂
1𝑗
𝑎
1𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
1 (
𝑡, 𝑢)

2

∑

𝑗=1

∫

𝐷
𝑢

𝜂
1𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢) =

2

∑

𝑗=1

∫

𝐷
𝑢
×𝐷
𝑢

𝜂
2𝑗
𝑎
2𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

− 𝑓
2 (
𝑡, 𝑢)

2

∑

𝑗=1

∫

𝐷
𝑢

𝜂
2𝑗
𝑓
𝑗
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
,

(57)

that is,

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢)

=

1

2

[∫

𝐷
𝑢
×𝐷
𝑢

𝜂
11
𝑎
11
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜂
12
𝑎
12
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
1 (
𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
11
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜂
12
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢)

=

1

2

[∫

𝐷
𝑢
×𝐷
𝑢

𝜂
21
𝑎
21
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜂
22
𝑎
22
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)]

×𝑓
2
(𝑡, 𝑢
∗
) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
2 (
𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
21
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜂
22
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

(58)

from which,
𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
11
𝑎
11
[∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

×𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

+

1

2

𝜂
12
𝑎
12
[∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
)

×𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
1 (
𝑡, 𝑢) [𝜂11

∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
12
∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
21
𝑎
21
[∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

×𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

+

1

2

𝜂
22
𝑎
22
[∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗

+ ∫

𝐷
𝑢
×𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
)

× 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
𝑑𝑢
∗
]

− 𝑓
2 (
𝑡, 𝑢) [∫

𝐷
𝑢

𝜂
21
𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜂
22
𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] .

(59)
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There follows

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
11
𝑎
11
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+

1

2

𝜂
12
𝑎
12
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
1 (
𝑡, 𝑢) [𝜂11

∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
12
∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
21
𝑎
21
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

×∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+

1

2

𝜂
22
𝑎
22
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ ∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

× ∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
2 (
𝑡, 𝑢) [𝜂21

∫

𝐷
𝑢

𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+ 𝜂
22
∫

𝐷
𝑢

𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
] .

(60)

According to (5), we get

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
11
𝑎
11
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+

1

2

𝜂
12
𝑎
12
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
1 (
𝑡, 𝑢) [𝜂11

+ 𝜂
12
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢)

=

1

2

𝜂
21
𝑎
21
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
1
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

+

1

2

𝜂
22
𝑎
22
[∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗

+∫

𝐷
𝑢

𝜓 (𝑢
∗
, 𝑢) 𝑓
2
(𝑡, 𝑢
∗
) 𝑑𝑢
∗
]

− 𝑓
2 (
𝑡, 𝑢) [𝜂21

+ 𝜂
22
] .

(61)

Thus, we obtain, by a variable change,

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢) = 𝜂11
𝑎
11
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓1 (
𝑡, 𝑤) 𝑑𝑤

+

1

2

𝜂
12
𝑎
12
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓1 (
𝑡, 𝑤) + 𝑓2 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1 (
𝑡, 𝑢) [𝜂11

+ 𝜂
12
] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
21
𝑎
21
[∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓2 (
𝑡, 𝑤) + 𝑓1 (

𝑡, 𝑤)] 𝑑𝑤]

+ 𝜂
22
𝑎
22
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑓2 (
𝑡, 𝑤) 𝑑𝑤

− 𝑓
2 (
𝑡, 𝑢) [𝜂21

+ 𝜂
22
]

(62)

so that (56) follows.
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4.1. Pure Competition Model. We will consider the solution
of (56) when, together with the hypotheses (53), (54)

2
, some

more conditions are given on the parameters.
According to (26), let us assume

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢)

def
=

1

2

𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑎
𝑖𝑗
≥ 0; 𝑖, 𝑗 = 1, 2)

(63)

together with the symmetries conditions (18).
If we define

𝜂
1

def
= 𝜂
11
, 𝜂

2

def
= 𝜂
22
, 𝜂

0

def
= 𝜂
12
= 𝜂
21
,

𝑎
1

def
= 𝑎
11
, 𝑎

2

def
= 𝑎
22
, 𝑎

0

def
= 𝑎
12
= 𝑎
21
,

(64)

we will discuss only the following hypotheses:

𝑎

def
= 𝑎
1
= 𝑎
2
= 0, (65)

𝜂
1
= 𝜂
2
= 𝜂 ̸= 0, 𝜂

0
𝑎
0
̸= 0, (66)

which seem to have some biological interpretations, being the
pure encounter-competition model. This happens when the
transition of state arises onlywhenparticles of one population
interact only with an individual of the other population. In
this case, individuals of one population do not interact with
individuals of the same population.

Theorem 5. Let the transition density 𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) be defined

as

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

1

2

𝑎
𝑖𝑗
[𝜓 (𝑢
∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] , (𝑖, 𝑗 = 1, 2)

(67)

with 𝑎
𝑖𝑗
as given by (64), (65). This definition of the transition

density fulfills (7) and the symmetries conditions (18). The
density function 𝜓(𝑤, 𝑢) is such that

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑢 =

1

𝑎

. (68)

By assuming

𝑎
1
= 𝑎
2
= 0, 𝜂

1
= 𝜂
2
= 𝜂 ̸= 0 (69)

and for 𝑎
0
, 𝜂
0
, the condition

𝜂
0
𝑎
0
̸= 0 (70)

system (56) becomes

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓1 (
𝑡, 𝑤) + 𝑓2 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1 (
𝑡, 𝑢) [𝜂 + 𝜂0

] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓2 (
𝑡, 𝑤) + 𝑓1 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
2 (
𝑡, 𝑢) [𝜂 + 𝜂0

] ,

(71)

and its solution is given by

𝑓
1 (
𝑡, 𝑢) = 𝑒

−[𝜂+𝜂
0
]𝑡
[𝐹 (𝑢) 𝑒

[𝜂
0
𝑎
0
/𝜆]𝑡
+ 𝐻 (𝑢)] + 𝐺 (𝑢) ,

𝑓
2 (
𝑡, 𝑢) = 𝑒

−[𝜂+𝜂
0
]𝑡
[𝐹 (𝑢) 𝑒

[𝜂
0
𝑎
0
/𝜆]𝑡
− 𝐻 (u)] + 𝐺 (𝑢) ,

𝐹 (𝑢) = 𝜆

𝜂 + 𝜂
0

𝜂
0
𝑎
0

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤, ∫

𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0,

𝐺 (𝑢) =

𝜂
0

𝜂 + 𝜂
0

𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤, ∫

𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1,

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 =

𝜂 + 𝜂
0

𝜂
0
𝑎
0

,

∫

𝐷
𝑢

𝐻(𝑤) 𝑑𝑤 = 0.

(72)

Proof. From (56), we have

𝜕𝑓
1

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓1 (
𝑡, 𝑤) + 𝑓2 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
1 (
𝑡, 𝑢) [𝜂 + 𝜂0

] ,

𝜕𝑓
2

𝜕𝑡

(𝑡, 𝑢) =

1

2

𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓2 (
𝑡, 𝑤) + 𝑓1 (

𝑡, 𝑤)] 𝑑𝑤

− 𝑓
2 (
𝑡, 𝑢) [𝜂 + 𝜂0

] ,

(73)

from which by linear combination, we get

𝜕

𝜕𝑡

[𝑓
1 (
𝑡, 𝑢) + 𝑓2 (

𝑡, 𝑢)]

= 𝜂
0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) [𝑓1 (
𝑡, 𝑤) + 𝑓2 (

𝑡, 𝑤)] 𝑑𝑤

− [𝑓
1 (
𝑡, 𝑢) + 𝑓2 (

𝑡, 𝑢)] [𝜂 + 𝜂0
] ,

𝜕

𝜕𝑡

[𝑓
1 (
𝑡, 𝑢) − 𝑓2 (

𝑡, 𝑢)] = − [𝑓1 (
𝑡, 𝑢) − 𝑓2 (

𝑡, 𝑢)] [𝜂 + 𝜂0
] .

(74)

With the above positions, we have

𝜕

𝜕𝑡

𝑋 (𝑡, 𝑢) = 𝜂0
𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢)𝑋 (𝑡, 𝑢) 𝑑𝑤 − 𝑋 (𝑡, 𝑢) [𝜂 + 𝜂0
] ,

𝜕

𝜕𝑡

𝑌 (𝑡, 𝑢) = −𝑌 (𝑡, 𝑢) [𝜂 + 𝜂0
]

(75)
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so that, by taking into account Theorem 2, it is

𝑋(𝑡, 𝑢) = 𝐹 (𝑢) 𝑒
−[𝜂+𝜂

0
−𝜂
0
𝑎
0
/𝜆]𝑡
+ 𝐺 (𝑢) ,

𝐹 (𝑢) = 𝜆

𝜂 + 𝜂
0

𝜂
0
𝑎
0

∫

D
𝑢

𝜓 (𝑤, 𝑢) 𝐹 (𝑤) 𝑑𝑤,

∫

𝐷
𝑢

𝐹 (𝑢) 𝑑𝑢 = 0,

𝐺 (𝑢) =

𝜂
0

𝜂 + 𝜂
0

𝑎
0
∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝐺 (𝑤) 𝑑𝑤,

∫

𝐷
𝑢

𝐺 (𝑢) 𝑑𝑢 = 1,

∫

𝐷
𝑢

𝜓 (𝑤, 𝑢) 𝑑𝑤 =

𝜂 + 𝜂
0

𝜂
0
𝑎
0

,

𝑌 (𝑡, 𝑢) = 𝐻 (𝑢) 𝑒
−[𝜂+𝜂

0
]𝑡
,

∫

𝐷
𝑢

𝐻(𝑤) 𝑑𝑤 = 0

(76)

from which (72) follows.

Example 6. A transition density, which is compatible with
this case, is the following:

𝜑
𝑖𝑗
(𝑢
∗
, 𝑢
∗
, 𝑢) =

𝑎
0

2

(1 − 𝛿
𝑖𝑗
) [𝜓 (𝑢

∗
, 𝑢) + 𝜓 (𝑢

∗
, 𝑢)] ,

(𝑖, 𝑗 = 1, 2)

(77)

with 𝛿
𝑖𝑗
, Kronecker symbol.

5. Application to Lotka-Volterra Model

In this section, we will study a coupled system (6) where
the macroscopic equations are the Lotka-Volterra equations
(6)
1
. Concerning the coupling stochastic parameter 𝜇[𝑓], we

have to define the functional 𝜇 in (2), (6) depending on the
“distance” between distributions; that is,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 𝜇 (






𝑓
𝑖
− 𝑓
𝑗






) (𝑡) (78)

with

0 ≤ 𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) ≤ 1, ∀𝑢 ∈ 𝐷𝑢

∧ 𝑡 ∈ 𝑇,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 1 ⇐⇒ 𝑓𝑖

= 𝑓
𝑗
,

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 0 ⇐⇒ 𝑓𝑖

= 0 ∨ 𝑓
𝑗
= 0,

(79)

where the maximum learning result is obtained when the
second population is able to reproduce the distribution of the
first one: 𝑓

1
= 𝑓
2
, while the minimum learning is achieved

when one distribution is vanishing.
In some recent papers; it has been assumed [4, 5] that

𝜇 [𝑓
𝑖
, 𝑓
𝑗
] (𝑡) = 𝜇 (






𝑓
𝑖
− 𝑓
𝑗






) (𝑡)

= 1 − ∫

𝐷
𝑢





𝑓
1 (
𝑡, 𝑢) − 𝑓2 (

𝑡, 𝑢)




𝑑𝑢.

(80)

In this case, it is 𝜇 = 1, when 𝑓
1
= 𝑓
2
; otherwise 𝜇 ̸= 1

with 𝜇 ↓ 0, depending on the time evolution of the distance
between 𝑓

1
and 𝑓

2
.

Let us notice that 𝜇 is the coupling term which links the
macroscopicmodel (6)

1
to themicroscopicmodel (6)

2
.There

follows that the solution of the hybrid system (6) depends
on the coupling parameter 𝜇 (80) which follows from the
solution of (15). System (15) is a system of two nonlinear
integrodifferential equations constrained by the conditions
(7), (5). Moreover, its solution depends also the constant
encounter rate 𝜂

𝑖𝑗
, on the transition density function 𝜑

𝑖𝑗
, and

the initial conditions 𝑓
𝑖
(0, 𝑢). In the following section, we

will study the solution of (6), under some suitable, but not
restrictive, hypotheses on 𝜑

𝑖𝑗
.

Under the hypotheses ofTheorem 5 and the solution (72),
we have

𝑓
1 (
𝑡, 𝑢) − 𝑓2 (

𝑡, 𝑢) = {

2𝑒
−(𝜂+𝜂

0
)𝑡
𝐻(𝑢) , 𝐻 (𝑢) ̸= 0,

0, 𝐻 (𝑢) = 0.

(81)

Let us take

𝐷
𝑢
= [0, 1] , 𝜂 + 𝜂

0
= 𝑝 > 0, 𝐻 (𝑢) = sin 2𝜋𝑢

(82)

so that (72) are fulfilled. We have

𝜇 [𝑓] (𝑡) = 1 − 2𝑒
−𝑝𝑡
[∫

1/2

0

sin 2𝜋𝑢𝑑𝑢 − ∫
1

1/2

sin 2𝜋𝑢𝑑𝑢] ,

(83)

that is

𝜇 [𝑓] (𝑡) =

{
{

{
{

{

1 −

1

𝜋

𝑒
−𝑝𝑡
, sin 2𝜋𝑢 ̸= 0, 𝑢 ∈ [0, 1] ,

1, 𝑢 ∈ {0,

1

2

, 1} .

(84)

In the last case we have the usual Lotka-Volterra system,
therefore, we will investigate the first case.Thus, according to
(6), we have the system

𝑑𝑛
1

𝑑𝑡

= 𝛼𝑛
1
− (1 −

1

𝜋

𝑒
−𝑝𝑡
) 𝑛
1
𝑛
2
,

𝑑𝑛
2

𝑑𝑡

= −𝛽𝑛
2
+ 𝛾𝑛
1
𝑛
2

(85)

with

𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 ≥ 0. (86)

The numerical solution of this system depends on both the
parameters 𝛼,𝛽, 𝛾,𝑝 and on the initial conditions 𝑛

1
(0),

𝑛
2
(0). We can see from Figures 1 and 2 that albeit the

initial aggressive population 𝑛
2
is greater than 𝑛

1
, the first

population can increase and keep nearly always over 𝑛
2
in the

quasilinear case in Figure 1(a) or always under 𝑛
2
in presence

of a strong nonlinearity in Figure 1(b).
If we invert the initial conditions so that the initial

population of 𝑛
1
is greater than 𝑛

2
, we can see that in case

of quasilinear conditions (see Figure 2(a)) the population
𝑛
1
after some short time becomes lower than 𝑛

2
. For a

strongnonlinearity, instead after an initial growth 𝑛
1
, it
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105

1

10

𝑡

(a)

105

1

𝑡

(b)

Figure 1: Numerical solution of 𝑛
1
(𝑡) (plain) and 𝑛

2
(𝑡) (dashed) of the system (85) with initial conditions 𝑛

1
(0) = 1, 𝑛

2
(0) = 3, for 𝑡 ≤ 10,

and parameters 𝛼 = 1.636, 𝛽 = 0.3743 ((a) with parameters 𝛾 = 0.1, 𝑝 = 0.01) and ((b) with parameters 𝛾 = 0.9, 𝑝 = 0.9).

105

1

10

𝑡

(a)

105

1

𝑡

(b)

Figure 2: Numerical solution of 𝑛
1
(𝑡) (plain) and 𝑛

2
(𝑡) (dashed) of the system (85) with initial conditions 𝑛

1
(0) = 3, 𝑛

2
(0) = 1, for 𝑡 ≤ 10

and parameters 𝛼 = 1.636, 𝛽 = 0.3743 ((a) with parameters 𝛾 = 0.1, 𝑝 = 0.01) and ((b) with parameters 𝛾 = 0.9, 𝑝 = 0.9).

tends to zero in a short time, while the second population
grows very fast and becomes the prevalent population in
Figure 2(b).

6. Conclusion

In this paper, the hybrid competition model has been solved
under some assumptions on the transition density. In the
simple case of Lotka-Volterra, the numerical solution gives

some significant and realistic insights on the evolution of
competing populations.

References

[1] N. Bellomo, Modeling Complex Living Systems—Kinetic Theory
and Stochastic Game Approach, Springer, Boston, Mass, USA,
2008.



Mathematical Problems in Engineering 11

[2] A. Bellouquid and M. Delitala,Mathematical Modeling of Com-
plex Biological Systems. A Kinetic Theory Approach, Springer,,
Boston, Mass, USA, 2006.

[3] C. Bianca and N. Bellomo, Towards a Mathematical Theory
of Multiscale Complex Biological Systems, World Scientific,
Singapore, 2010.

[4] C. Cattani andA. Ciancio, “Qualitative analysis of second-order
models of tumor-immune system competition,” Mathematical
and Computer Modelling, vol. 47, no. 11-12, pp. 1339–1355, 2008.

[5] C. Cattani and A. Ciancio, “Hybrid two scales mathematical
tools for active particles modelling complex systems with
learning hiding dynamics,” Mathematical Models and Methods
in Applied Sciences, vol. 17, no. 2, pp. 171–187, 2007.

[6] C. Cattani and A. Ciancio, “Separable transition density in
the hybrid model for tumor-immune system competition,”
Computational and Mathematical Methods in Medicine, vol.
2012, Article ID 610124, 6 pages, 2012.

[7] D.Abrams, “The evolution of predator-prey systems: theory and
evidence,”Annual Review of Ecology, Evolution, and Systematics,
vol. 31, Article ID 79105, 2000.

[8] H. P. deVladar and J. A.González, “Dynamic response of cancer
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