Gasparini et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:123

http://asp.eurasipjournals.com/content/2012/1/123

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

A no-reference metric for demosaicing
artifacts that fits psycho-visual experiments

Francesca Gasparini”, Fabrizio Marini', Raimondo Schettini' and Mirko Guarnera

2

Abstract

The present work concerns the analysis of how demosaicing artifacts affect image quality and proposes a novel
no-reference metric for their quantification. This metric that fits the psycho-visual data obtained by an experiment
analyzes the perceived distortions produced by demosaicing algorithms. The demosaicing operation consists of a
combination of color interpolation (Cl) and anti-aliasing (AA) algorithms and converts a raw image acquired with a
single sensor array, overlaid with a color filter array, into a full-color image. The most prominent artifact generated by
demosaicing algorithms is called zipper. The zipper artifact is characterized by segments (zips) with an On-Off pattern.
We perform psycho-visual experiments on a dataset of images that covers nine different degrees of distortions,
obtained using three Cl algorithms combined with two AA algorithms. We then propose our no-reference metric
based on measures of blurriness, chromatic and achromatic distortions to fit the psycho-visual data. With this metric
demosaicing algorithms could be evaluated and compared.

Introduction

Image quality is difficult to assess correctly for a num-
ber of reasons [1]. Firstly, image quality is perceptual by
nature. This makes it hard to measure it in a standardized
way and allows for personal preferences. Secondly, it can
vary widely between different application domains. Due
to its perceptual nature, image quality should be evalu-
ated through a subjective assessment, and quality metrics
should be designed to fit quality judgments collected by
psycho-visual experiments. The efficiency of studies that
involve people’s judgments is very low compared to a
computerized objective study. Nevertheless, to validate
automated approaches, psycho-visual scaling studies are
insurmountable for image quality research [2,3]. We are
interested in developing a pool of no-reference (NR) met-
rics to automatically assess the performance of the algo-
rithms composing the image generation pipeline of digital
cameras. In particular, we are interested in defining these
metrics so that they fit the psycho-visual data. A general
three-step approach to design and develop these types of
metrics has been given by Bartleson [4]:

*Correspondence: gasparini@disco.unimib.it

1 Department of Informatics, Systems and Communication, viale Sarca 336,
University of Milano-Bicocca, 20126 Milano, Italy

Full list of author information is available at the end of the article

@ Springer

1. Identification of perceptual dimensions (attributes)
of quality.

2. Determination of relationships between attribute
scale values and objective, image based measures.

3. Combination of attribute scale values to predict
overall image quality.

To define a no-reference image quality metric is there-
fore needed to design a good psycho-visual experiment.
Ideally, we should be able to generate a dataset of dis-
torted images where the distortion can be controlled by a
proper defect-generating process. In this way the collected
data can be easily related to the considered distortion.
In particular, what we would like to obtain is a mono-
tone behavior of the perceived quality with respect to the
increase of the distortion.

Several kinds of defects can affect digital images. They
can be roughly divided into [5]:

e physical defects, such as out of focus, motion blur,
noise, etc.

e digital defects introduced by the processing pipeline,
such as demosaicing, compression, etc.

For physical defects the procedure adopted to generate
the distorted images used within the experiments could
be a simulation of the physical process, while in the case
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of digital defects the procedure should apply the corre-
sponding algorithm(s) within the pipeline. Note that each
of these distortion processes can vary with respect to one
or more parameters.

Within this context, in this paper we address the prob-
lem of how demosaicing artifacts affect image quality.
The demosaicing operation converts a raw image acquired
with a single sensor array, overlaid with a color filter array,
into a full-color image. The most prominent artifact gen-
erated by demosaicing algorithms is called zipper. The
zipper artifact is characterized by segments (zips) with an
On-Off pattern.

The quality of rendered images depends on the per-
ception of the zipper artifact that can also affect the
sharpness. The perception of this artifact also depends on
image content.

We here propose a no-reference metric to assess image
quality in case of demosaicing artifact that combines
measures of blurriness (intended as lack of sharpness),
chromatic and achromatic distortions and fits the psycho-
visual data. Several full-reference metrics exist for this
kind of artifact [6], while the literature is poor in no-
reference ones. Some no-reference sharpness metrics [7,8]
could be adopted, but they can not take into account
typical chromatic and achromatic zipper effects. Liu et
al. [9] have recently presented a no-reference method
for CFA demosaicing based on double interpolation and
have evaluated several demosaicing algorithms. However
this metric has not been correlated with psycho-visual
experiments.

In this work we have generated a dataset with differ-
ent degrees of zipper artifacts by applying a combination
of three different CI algorithms with two AA algorithms.
These algorithms have been applied to a set of reference
images having different visual contents. More demosaic-
ing and/or anti aliasing algorithms could have been used.
However lengthy psycho-visual tests are not reliable, and
we have preferred to not reduce the number of test
images.

This paper is organized as follows. In Demosaicing
section we briefly describe the demosaicing process, while
in Psycho-visual setup section we describe how we have
generated the dataset utilized during our tests and the
psycho-visual experiments that we have conducted to
rank the chosen algorithms. From the analysis of the
experimental data (detailed in Data analysis section), we
propose our novel no-reference metric, described in No-
reference metric for Demosaicing section, based on mea-
sures of blurriness, chromatic and achromatic distortions.
In Metric parameter estimation section we report details
of the regression we have proposed to fit the subjective
data and we compare our metric with a reference one [9].
All the psycho-visual data presented and the correspond-
ing distorted images are available at http://www.ivl.disco.
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unimib.it/. Finally, in Section Methods we report details
on the testing methodology adopted here.

Demosaicing

To produce a color image there should be at least three
color samples at each pixel location. The more expensive
solution consists in using a color filter in front of each
sensor, generating three full-channel color images. Thus,
many modern cameras use a color filter array (CFA) in
front of the sensor so that only one color is measured
at each pixel. This means that to reconstruct the full-
resolution image, the missing two color values at each
pixel should be estimated. This process, known as demo-
saicing [10] is generally composed of a CI algorithm fol-
lowed by an AA algorithm to reduce possible artifacts.
Among various CFA patterns, the Bayer pattern was the
most popular choice [11]. The Bayer array measures the
green image on a quincunx grid and the red and blue
images on rectangular grids, obtaining 1/2 of the pixels for
the green channel, and 1/4 for both the blue and the red
channels, as depicted in Figure 1.

The most prominent artifact generated by demosaic-
ing algorithms is called zipper. The zipper effect refers to
abrupt or unnatural changes of color differences between
neighboring pixels, manifested as an “On-Off” pattern
[6]. In Figure 2 an example of an original image and two
different demosaiced versions are reported. As can be seen
from Figure 2b, where a typical example of demosaiced
image is shown, the zipper artifacts are both chromatic
and achromatic. On the other hand, demosaicing algo-
rithms that try to mitigate this On—Off pattern, signifi-
cantly blur the image (Figure 2c).

Figure 1 Bayer pattern array. The array of filters of the Bayer pattern.



http://www.ivl.disco.unimib.it/
http://www.ivl.disco.unimib.it/

Gasparini et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:123

http://asp.eurasipjournals.com/content/2012/1/123

Page 3 of 15

Figure 2 Original image and two different demosaiced versions. (a) Original image. (b) An example of demosaicing: the artifacts introduced
can be distinguished into achromatic and chromatic zipper. () A different demosaicing: the image is visibly blurred to mitigate the On-Off pattern.

C

Several algorithms for demosaicing were developed in
the literature [12-17], and some of them are proprietary.
A survey of these methods was presented by Li et al.
[18]. Several methods deal with content adaptive demo-
saicing, based on an edge detection mechanism [19-21].
Recently Rehman and Shao [22] have presented a demo-
saicing method using optimised filters, based on a training
process and well-defined content classification.

We have here considered nine different demosaicing
algorithms obtained combining three CI algorithms with
two anti aliasing (AA) algorithms.

The three CI algorithms adopted here are:

e Bilinear interpolation [18]: it is the simplest
demosaicing algorithm and acts as a benchmark; the
missing values on the three channels are computed
by linear interpolation independently.

e ST1: proposed by Smith [23], it performs an isotropic
interpolation that includes a non-linear step that
minimizes the energy of aliasing artifacts.

e ST2: proposed by Guarnera et al. [24], it uses an
elliptic shaped Gaussian kernel to interpolate data,
according to the gradient information to better
exploit spatial correlation. The authors also included
an enhancement step to restore the lost high
frequencies.

For what concerns the AA algorithms, we have here
considered:

e an algorithm authored by Freeman [14] that
suppresses demosaicing artifacts by applying a
median filtering to the chrominance channels (R-G)
and (B-G) to support the reconstruction of the R and
B channels. The red and blue values estimated from
the median filtered are used only at pixels where
there is no R or B sensor value directly available.

e an algorithm authored by Lu and Tan [6] that
proposes an AA step to extend Freeman’s median
filtering method by lifting the constraint of keeping
the original CFA-sampled values intact.

The nine combinations of these algorithms (summa-
rized in Table 1 produce different levels of the typical
demosaicing distortions. The choice of these algo-
rithms does not affect the effectiveness of the proposed
methodology.

Psycho-visual setup

Testing dataset

To perform the subjective data analysis described in this
paper we have generated a data set of distorted images
(which we have called Zipper database) starting from the
24 images of the Kodak photoCD pcd0992 database avail-
able at http://rOk.us/graphics/kodak/. We have created the
mosaiced images by deleting two of the three RGB values
at each pixel of the full-color images, and then we have
demosaiced them with the nine algorithms of Table 1. The
database is therefore formed by a total of (24 images x
9 demosaicing methods =) 216 images. The image testing
database has been created to satisfy a good compromise
between the number of distortions and the number of
different visual contents, keeping in mind that psycho-
visual sessions should be limited in time to be reliable.
In our work we evaluate the visual impact of the artifacts

Table 1 Demosaicing algorithms considered

Algorithm Color interpolation (Cl) Anti-aliasing (AA)

1 bi Bilinear None

2 bifree Bilinear Freeman

3 bilu Bilinear Lu

4 ST1 ST None

5 ST1free ST1 Freeman

6 ST1lu ST1 Lu

7 ST2 ST2 None

8 ST2free ST2 Freeman

9 ST2Lu ST2 Lu

The nine demosaicing algorithms adopted to obtain the dataset of distorted
images.
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generated by demosaicing methods, and do not perform a
quality evaluation of the algorithms themselves.

Testing methodologies

For the quality analysis of the images we adopted two
different test methods: single stimulus method (1S), and
double stimulus method (2S) [3].

Our goal was to evaluate the perceived quality of the
rendered images; for this reason we have chosen to set
up a single-stimulus test as our primary source of psycho-
visual data, but we were also interested in gathering as
much data as possible from the viewers, so we have also
conducted a double-stimulus test. We followed Sheikh et
al. [25] in setting up our tests by including the original
images in both tests and calculating the Difference Score
(DS) as the difference between the scores of the origi-
nal and the distorted image. This way we have obtained
different data from different setups with the same unit
of measure. In the case of the 1S method, all the images
(rendered images and the original one) are individually
shown. While in the 2S method, the reference image
(original image) is shown together with each of its ren-
dered versions. The 1S method can thus be considered as
an approximation of the 2S one, as the original image is
evaluated only once. The fundamental difference between
these two methods is that the 2S one uses an explicit
reference, while the 1S one does not use any explicit
reference.
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To perform the psycho-visual tests, the images that have
to be judged to obtain a quality rank were shown on a web-
based interface (Figure 3). A Javascript slider assigning a
quality score was used. The workstations adopted were
placed in an office environment with normal indoor illu-
mination levels [25,26].

We used five 19-in. CRT COMPAQ S9500 display
monitors:

e All the monitors were calibrated with a colorimeter
(D65, gamma 2.2).

e Their resolution is 1600 x 1200 pixels, which
corresponds to 110 dpi (using 18 in. as the physical
diagonal of the screen as indicated by the
manufacturer of the monitors)

e The ambient light levels (a typical office illumination)
were maintained constant between the different
sessions. There were no reflections on the screens.

e The distance between the observer and the monitors
was about 60 cm (corresponding to about 46 pixels
per degree of visual angle).

e The refresh rate of the monitors was 75 Hz.

In all our experiments distorted images are shown in
random order, different for each subject. In the case of
the 2S method the relative position of the original with
respect to its distorted version is random in the pair
shown.

Figure 3 Web interface DS. The web interface used during the Double Stimulus tests.
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The panel of subjects involved in this study was
recruited from the Psychology Department. The subject
pool consisted of students inexperienced with image qual-
ity assessment and image impairments. The total number
of subjects involved in our experiments is 39, divided
into three groups as follows: 9 subjects involved in tun-
ing experiments, and 30 subjects involved in 1S and 2S
experiments, 15 for each test group.

Psycho-visual experiments

In our experiments for the collection of subjective data, we
performed three main sessions: a tuning session (where
we verified the test efficacy and the best way to perform
the experiment), a preliminary session (where we trained
the observers about the nature and the range of the dis-
tortion) and a final test session. Details of the tuning and
of the preliminary sessions are reported in Section Meth-
ods. For the test session we used 10 images from the 24
of the original database, together with their correspond-
ing 9 distorted versions, (for a total of 100 images). The
10 images chosen for this session are shown in Figure 4.
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Note that we had to keep the number of analyzed images
limited to 100, since subjects can pay attention only for
up to 30 min. After this time their judgments are no
longer reliable [3]). The number of test images is however
aligned with what is done in the literature. In the work of
Nyman et al. [27] for example, 9 image processing pipes
applied to 8 image contents (for a total of 9 x 8 = 72 test
images) were evaluated with a psycho-visual experiment
involving 14 test subjects. In other works that involve
psycho-visual experiments, the number of original images
considered is even lower, four images each printed on 15
different papers [28], or five images each with 15 different
levels of sharpness [29]. The greater the number of algo-
rithms/processing to be evaluated, the lower the number
of original images that can be considered to keep the time
of the experiment reasonable.

Data processing

As the different algorithms considered produce differ-
ent levels of the typical demosaicing defects (chromatic
and achromatic zipper, blur) we analyzed the subjective

Figure 4 Used dataset. The ten original images utilized during the test session.
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evaluation of these defects through the subjective rank of
the algorithms.

The data processing here described is applied for both
the test methods (1S, 2S) adopted for collecting the exper-
imental data. For each subject j-th and distorted image
i-th we evaluated the perceptual distance between origi-
nal and distorted images in terms of difference of assigned
scores (Difference Score, DS):

DSij = SO,']' - Sd,’j (1)

where Sd;; represents the score assigned by the j-th sub-
ject to the i-th distorted image, while So; the score of
the reference image corresponding to the i-th distorted
image; j = 1,...,J, denotes subjects belonging to the
group of J individuals, and i = 1,...,S x T denotes the
distorted image, with S number of reference images, and
T number of algorithms to be evaluated. For each subject
we evaluated the standard-DS;; (zDS;), a DS distribution
normalized with respect to the subject [25], as:

(DS;; — M))
N

where M; = gy 337 DS, V= b 377 (DS — M)’
are respectively the mean and variance of DS; with
respect to the j-th subject. For each algorithm ¢t € T,
we evaluated the final score R; by summing zDS; of
Equation 2 over the subjects j € /, and on the reference
imagesi € S.

zDS;; = 2)

R =

Z Z ZDS,',' (3)

1
J xS jel ieS
The rank of the algorithms is then obtained sorting these
final scores. We also calculated the rank of the algorithms
starting from the median with respect to subject j € J and
reference images i € S.

MR, = median(zDS;) (4)

Data analysis

In analyzing distorted images supposed to be worse than
the original, we expect all the DS values (distance between
the scores of the original image and the rendered image)
to be positive. It happened sometimes in our experiments
that distorted images were judged better than the corre-
sponding original. This phenomenon is called inversion.
We have decided to maintain all the inversions. The rea-
sons for this decision are detailed in Section Methods.
We want to emphasize that with this data analysis we are
not evaluating the performance of the algorithms, but
instead we are interested in highlighting the major effects
that influence the subjective evaluations of the perceived
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quality of demosaiced images. The final goal is to identify
the significant features to be used in a proper metric so
that it can be able to reproduce the experimental data.
In Figure 5, the rank of the nine demosaicing algorithms
obtained combining the three CI algorithms with the two
AA algorithms listed in Table 1 are reported for both the
1S and the 2S experiments. Figure 5a and Figure 5b show
the ranks of the 2S experiment using respectively the
mean R; and the median MR; as a central tendency indi-
cator. The coherence between these two ranks confirms
the stability of the results. In Figure 5c and Figure 5d, the
same data are reported for the 1S experiment. In Figure 6a
comparison of the two experiments is reported. The solid
line refers to the 1S experiment, while the dotted line
refers to the 2S experiment.

As a preliminary step, we have grouped the 9 demosaic-
ing methods into triplets, with respect to the CI algorithm
applied.

As a general consideration, CI algorithms alone (i.e.
bilinear, ST1 and ST2) were judged worse than their
corresponding versions coupled with any of the AA
algorithms considered. With respect to the CI approach,
the ST2 method (coupled with any AA algorithm) is
always preferred as it produces sharper images. This
behavior is due to the explicit boosting introduced by
the authors to restore the lost high frequencies. These
results confirm that sharpness plays an important role in
influencing image quality judgments [30,31]. 1S tests are
less precise than 2S tests because the reference image is
shown only once, and the comparison between distorted
images and reference ones is more difficult. Were this
the only difference between the two tests, we would not
expect significant changes in the algorithm ranks. This
assumption was not fully verified in our experiments.
This discrepancy is also due to the effect of the perceived
sharpness on image quality, which is more evident in 2S
tests due to the direct comparison with the reference
images. The AA algorithms considered have influenced
the image sharpness at different degrees. In particular
the Freeman algorithm produces a sharper image, while
the Lu algorithm makes the images more blurred. This
phenomenon is more evident when these AA algorithms
are coupled with the basic CI method (bilinear interpo-
lation) as shown in Figure 7. As a consequence, the rank
positions of the algorithms labeled as bifree (algorithm 2)
and st2free (algorithm 8) are swapped from the 2S to
the 1S experiment with respect to the corresponding
bilu (algorithm 3) and st2lu (algorithm 9) as shown in
Figure 7.

Image content

We have analyzed the experimental data to investigate
the cross-talks between the zipper artifacts introduced by
the CI process and the image content. In Figure 4 the
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Figure 5 Psycho-visual results. (a) Algorithm ranks in terms of final score R; in the 2S experiment. (b) The 2S rank resulting from using the median
MR; as a central tendency indicator [25]. (€) Algorithm ranks in terms of Ry in the 1S experiment. (d) The 1S rank resulting using the median MR; as a
central tendency indicator.

10 images used in our tests are listed from 1 to 10 with
increasing value of visual complexity as obtained applying
the complexity index described in [32].

To better understand how the visual content influences
the psycho-visual data, we have collected the subjective

1 bi i 3
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Figure 6 Comparison 1S 2S. Comparison between R; values of the
1S experiment (red solid line) and the R; values of the 2S experiment
(blue dotted line).

score (Score;) for each of the (S = 10) test images and for
each of the (T = 9) demosaicing algorithms. Summing the
zDS;; of Equation 3 over the subjects j € / we obtain:

; Z ZDS,'j

jel

Score; (5)

withi =1,...,S x T. The Score; are reported for both 25
and 1S experiment in Figure 8, where the layout of Figure 4
is maintained.

Each subplot reports the experimental Score; corre-
sponding to the nine distortions applied to each image.
These scores are grouped into triplets with respect to the
CI method (bilinear + three AA, ST1 + three AA, and ST2
+ three AA).

We can notice that images with a comparable level of
details share common patterns in their scores. In particu-
lar, when the achromatic zipper (mainly produced by the
Freeman AA algorithm) is combined with middle-high
frequency content (roughly second and third column of
Figure 4), not only the contrast of the zipper highlights
the edges, but also the middle-high frequency content
masks the On—Off pattern. This combined effect results
in a sharper appearance of the image; this is more evident
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Figure 7 Example of demosaicing. Detail of an image rendered with different algorithms (a) Bilinear (Cl) (b) Bilinear (Cl) + Freeman (AA) (c) Bilinear
(Ch) + Lu (AA).

when the images are directly compared with the reference,  point of view of the algorithm ranks (Figure 8) these con-
as in the 2S test. This behavior is related to the texture  siderations are confirmed by the good performance on
masking effect of the human visual system [33]. From the  these images obtained using the Freeman AA with respect

image 1 image § image 8
2 --iS
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Figure 8 Subjective test data for each image. Subjective test data. Each subplot refers to the corresponding image of Figure 4. The scores are
grouped in triplets, corresponding to each of the three Cl methods coupled with the three different AA strategies. For instance, the first triplet
corresponds to algorithms 1,2 and 3, i.e. bilinear interpolation with no AA, Freeman AA and Lu AA respectively.
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to each triplets of CI algorithms (algorithms number 2, 5,
8). On the other hand, when the algorithms that produce
this achromatic distortion are applied to images with a low
frequency content (first column), the high contrast of the
zipper pattern and its On—Off structure remain visible. In
fact, the evaluation of the CI algorithms coupled with the
Freeman AA in the case of low frequency content is worse
than in the case of higher frequency contents, especially in
the case of the 1S experiment where the sharpness is less
perceived.

Images 9 and 10 are characterized by a texture with a
near-Nyquist frequency as shown in Figure 9, where the
distortions due to the aliasing are evident. These images
have suffered from very strong distortion after the CI
process and thus their subjective scores could have been
reduced by the near-Nyquist artifacts.

For what concerns the chromatic zipper, the behavior is
simpler. This artifact is more visible as the number of edge
pixels in the image increases, and it seems to be immune
to masking effects. For this reason we chose to discrimi-
nate between chromatic and achromatic distortion.

No-reference metric for demosaicing

The data analysis confirms that the perceptual quality of
demosaiced images depends on sharpness, and on chro-
matic and achromatic zipper. For this reason we have
decided to define our no-reference metric considering the
following three aspects separately:

Blur as index of lack of sharpness. The corresponding
measure is indicated as B in what follows.

Chromatic zipper distortion (measure indicated as
CD)

Achromatic zipper distortion (measure indicated as
AcD)

Thus, the demosaicing metric DM that we have devel-
oped is composed of three properly scaled terms, corre-
sponding to these three aspects:

DM = B+ CD + AcD (6)

Figure 9 Near Nyquist artifacts. Details of the images 9 and 10 of
Figure 8 with near-Nyquist frequency content.
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We chose a sum expression because when one of these
terms is significantly high, the others are less significant.
This consideration arises from the experimental evidence
of the behavior of different demosaicing algorithms. A
strong low pass filtering adopted to reduce the zips pro-
duces a blurred image, and thus in this case the blur
measure B is dominant with respect to the others. In case
of more conservative filtering, the image sharpness is pre-
served, but the zips still remain as a defect. Different CI
algorithms produce zips with different levels of saturation,
ranging from achromatic to highly saturated zips.

Blur

The blur in an image is due to the attenuation of the
high spatial frequencies. Blur is the typical artifact in
out-of-focus shots, but it may also be caused by the rel-
ative movement between camera and subject (motion
blur), and by the encoder (compression blur). In the con-
text of CI artifacts, blurriness is due to an excessive low
pass filtering of the AA algorithm. Marziliano et al. [7]
present a blind (no-reference) blur metric that is based
on measuring the average spread of the vertical edges.
They define the edge spread as the distance between the
local minima (p;) and the local maxima (py) nearest to
the edge along the gradient direction (Figure 10). The
edge spread was used to predict the quality of jpeg2000
compressed images and has shown to be consistent with
the observers’ ratings obtained in subjective experiments.
We use as blur indicator, the average edge spread of the
image Es, evaluated as follows:

1

Es =
s NEdge

Z dist4(p1, p2) 7)

ecEdge

where Edge is the set of edge pixels of the image and
NEdges is the number of these edge pixels. We chose to
estimate the edge spread by searching around the edge
in four directions (indicated with disty in 7): horizontal,
vertical, +45° and —45°.

Chromatic and achromatic zipper

The zipper pattern detection was carried out as follows.
On the gray-scale image, we computed the gradient mag-
nitude in both directions with the following convolution
kernels:

8)

The two gradient maps, G, and G, (horizontal and ver-
tical), are treated separately to detect zipper segments.
Working on the horizontal direction, we first compute the
gradient sign map by quantizing the gradient magnitude
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0

0 2 4 6 8 10

Figure 10 Edge spread measure. Edge spread defined as the distance between the local minima (p1) and the local maxima (p,) nearest to the edge.

12 14 16 18

as follows (the same process is extended to the vertical
direction):

if Gy(x,7) <0
if Gx(x,7) > 0 9)

SignMap,(x,y) = 1 1
0 ifGyx,y)=0

Thus, a zipper segment (which is an On—Off pattern) is
characterized in the sign map by a sequence of alternating
2s and 1s (see Figure 11). The number and the extension
of zips is not sufficient to quantify the perceived quality of
a Cl algorithm. In fact, some zipper pixels are more visible
than others (see Figure 11c).

To evaluate the visibility of the pixels belonging to
the zipper segments, we compute DL(x, y) and DC(x, y)
distances between adjacent pixels in zipper segments,
starting from the CIE-94 definitions [34]:

DL(x,y) = ((AL*(x, y))z)i (10)

DC(x,y) = ((AC*®3)/S)” + (A5, ) /)" )"
where!

AL*(x,y) =L*(x,y) — L*(x,y — 1) (11)

AC*(x,9) =((@* (%, )+ (5" (%, 7)) D) 2 — ((a* (x, y—1))>
+ (b (ey — 1P
AH*(x,) =((AE76(x, 9)* (AL*(%,9) = (AC* (x,%))).

We calculated the median of DL(x, y) with respect to
the whole set of zipper segments in both directions and
averaged them. We performed the same calculations for
DC(x,y), obtaining two indicators labeled as DL and DC

Figure 11 Zipper maps. (a) Detail of an image rendered with bilinear interpolation. (b) Horizontal zipper map. (c) The original image masked with

the horizontal zipper map.

c
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in what follows. These two indicators, together with the
average edge spread (Es) and the percentage of zipper
pixel in the image (ZpA), were used to calculate the overall
metric.

Metric parameter estimation

Starting from the the blur and zipper pattern analysis
described in the two previous subsections, our demosaic-
ing metric (6) can be rewritten as:

DM = wpxEsx +wexDC+wy x Pl PCx ZpA (12)

Algorithms that reduce aliasing tend also to desaturate
the zips, increasing the coherence between channels. This
effect produces achromatic zips, where DL exceeds DC.
wg, wc and wy are weights chosen using an exhaustive
search algorithm, so that our metric can fit as better as
possible the algorithms’ rank produced by the psycho-
visual experiments. To this end, we have applied the pro-
posed metric to the images in the Zipper Database, and
then we have calculated the average metric scores of the
nine algorithms. We have performed a regression analy-
sis to find the best fit between the average values given by
our measure and the average subjective responses R; for
both the 2S and 1S data. In Figure 12 we have reported
the logistic regressions that we have obtained respec-
tively for 1S (Figure 12a) and 2S (Figure 12b) experiments.
The weight sets we have found for both the experiments
are unique. In theory more weight sets could have the
same quality performance. In this case to choose the set
to be used we would follow the experimental procedure
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described in [27,28], to order the subjective importance of
visual attributes. We have also compared our metric with
the DIPSNR no-reference metric proposed by Liu et al.
[9]. Figure 13 reports the linear regressions that best fit
the DIPSNR values with the psycho-visual data for both
the experiments (1S, Figure 13a, 2S Figure 13b), while in
Figure 14 the corresponding logistic regressions are also
reported. In Table 2 our metric is compared with the DIP-
SNR in terms of the Pearson (prediction accuracy), the
Spearman (prediction monotonicity), the Kendall (rank
correlation) and the MAPE (mean absolute percentage
error of the prediction) coefficients.

The Pearson and Spearman coefficients above 0.98
indicate that our metric is highly accurate and mono-
tonic. The corresponding coefficients of the DIPSNR
metric are lower, as PSNR techniques are numerical mea-
sures that usually do not correlate well with perceived
distortions [26].

The contribution of each term adopted in our met-
ric, can be investigated by looking at the different values
assumed by the corresponding weights wg, wc and wy in
Equation 12. These values are reported in Table 3. The
main difference between 2S and 1S experiments is in the
contribution of the sharpness. In fact, in the case of 2S
experiment, where a reference image is shown, the differ-
ence in sharpness is more evident, thus the corresponding
weight wp is higher than in the 1S experiment.

Conclusions

In this work we have set up psycho-visual experiments
to analyze the subjective evaluation of the artifacts
introduced by the demosaicing process. To this end we

0.8
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Figure 12 Our metric regressions. Logistic regression of our metric values to fit the psycho-visual data. (a) Single Stimulus (19), (b) Double
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have generated a dataset of distorted images, applying
three CI algorithms combined with two AA algorithms
for a total of nine different methods. From the data anal-
ysis, it emerges that the perceptual quality of demosaiced
images mainly depends on perceived sharpness, and on
chromatic and achromatic zipper. The perception of the
defects is more evident when the rendered images are
compared with the reference one (the 2S experiment),

while they may be unnoticed when images are evalu-
ated alone (the 1S experiment). We have thus defined
a no-reference metric for demosaicing artifacts based
on measures of blurriness, chromatic and achromatic
distortions that is able to fit these experimental data for
both 1S and 2S experiments. Our metric can be applied
to evaluate other demosaicing methods. As a future work
we plan to perform further test sessions to acquire more
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Table 2 Statistic parameters

Our metric DIPSNR
Experiment 1S 2S 1S 2S
Regression logistic ~ logistic ~ linear  logistic ~ linear  logistic
Pearson 0.994 0.989 0.502 0.615 0.697 0.710
Spearman 0.983 0.983 0417 0433 0.602 0433
Kendall 0.944 0.944 0.287 0333 0458 0333
MAPE 0.321 0.269 1.270 1.265 1.125 0.986

Comparison of the performance of our metric and the DIPSNR in case of both 1S
and 2S experiments.

data to better analyze the cross-talk between distortion
perception and image frequency content.

Methods

Details of experimental sessions

In our experiments for the collection of subjective data, we
have performed different sessions of tests, with different
goals. The three main categories of sessions are:

e Tuning session
e Preliminary sessions
e Test sessions

The total number of subjects involved in our exper-
iments is 39, divided into three groups: (i) 9 subjects
involved in tuning experiments, (ii) 15 subjects involved
in the 1S experiments (both preliminary and test ses-
sions), (iii) 15 subjects involved in the 2S experiments
(both preliminary and test sessions).

Note that each subject only belongs to one group. Each
subject has been individually briefed about the modality
of the experiment in which he has been involved.

All the images utilized for the psycho-visual tests were
cropped to fit the dimension of the screen. In particular,
to avoid the undersampling of the images used in the 2S
tests, we have cropped all the images to fit a 600 x 600
box, producing respectively images of 600 x 512 or 512 x
600. The remaining part of the box has the same color of
the background (Figure 3). Each image has been cropped
manually to keep the relevant part of the scene centered,
to avoid interferences in the user’s judgment, due to a non
significant cropping.

Tuning session

Before starting the preliminary and test sessions, an initial
analysis of the test structure and organization was per-
formed to better tune the successive experiments. The 9
subjects participating in this session were not involved
in other experiments. During this tuning session we ver-
ified the test efficacy and the best way to perform the
experiments. In particular, we defined the best visualiza-
tion time for each image or pair of images on the screen,
and the maximum duration of the whole experiment for
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each participant. We have also collected the following
considerations:

e The subjects assume and maintain the correct
position and distance from the monitor for the
duration of the experiment.

¢ 30 min is the maximum duration of the test for each
subject. For longer periods attention decreases and
subjects tend to get tired.

¢ In the case of 2S test, where the two images are
compared, the sliders and the quality scales must
appear contemporarily on the screen.

Regarding comments and considerations of the sub-
jects involved in this tuning session, we have determined
the minimum time of image visualization that permits an
appropriate quality evaluation.

Preliminary session

During a preliminary test, each subject was implicitly
trained about the nature of the distortion he was going to
evaluate. In particular, he was trained about the range of
the distortion intensity. These preliminary sessions were
necessary to avoid this training phase during the effective
test, thus conditioning the experimental results. We had
preliminary sessions for all the subjects involved (except
for 9 subjects involved in the tuning phase) and for each
of the experiments (1S and 2S). Thus we had preliminary
sessions for all the subjects involved and for each of the
experiments: 2S and 1S. Four images were chosen from
the entire database. The demosaicing algorithms applied
to these images where the Bilinear and the ST proprietary.
We have decided to apply these two algorithms because
they were supposed to be the worst and the best ones.
In this way the subjects experience the entire distortion
range before starting the effective test.

Inversions

In analyzing distorted images supposed to be worse than
the original, we expect all the DS values (distance between
the scores of the original image and the rendered image)
to be positive. It happened sometimes in our experiments
that distorted images were judged better than the corre-
sponding original. This phenomenon is called inversion.
We define Just Noticeable Difference Threshold (JND)
the threshold under which differences between distorted

Table 3 Metric weights

Weights 2S 1S
wg 5.0 20
Wi 50 50
wc 15 12

Weights for the 1S and 2S test data.
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images and their original are not noticeable. Assuming
that this threshold exists, the inversions can be classified
into three categories:

JND inversions The subject is not able to distinguish
between the original and the distorted image. The
inversion is unintentional.

Preferential inversions The subject prefers the
elaborated image.

Error inversions The subject does not properly use
the interface and in particular, assigns a wrong value
in the quality scale.

As reported in [3], the inversions are usually handled,
following a standard procedure:

1. The JND threshold is estimated with a Pairwise
Comparison (PC) test [35];

2. Inversions that produce values under the JND
threshold (JND inversions) are taken into account in
the final analysis;

3. Inversions that produce values over the JND
threshold are considered as error inversions. Their
absolute values are taken into account in the final
analysis.

Preferential inversions

In [36], the authors report interesting considerations
about preferential inversions in case the of images pro-
cessed by demosaicing algorithms. They analyze the
results of a Pairwise Comparison test of images processed
by different demosaicing algorithms. This psycho-visual
experiment demonstrates that certain algorithms produce
distorted images judged better that the original. This pref-
erence is due to the apparent sharpness introduced by
these algorithms. It is well known that sharpness plays an
important role in the evaluation of apparent quality of dig-
ital images, [30,31]. Using a 2S method as the PC test,
the original image appears blurred in comparison with
the elaborated one. Not all the demosaicing algorithms
analyzed in our experiment show the same sharpening
behavior. As a consequence, the collected data are non-
homogeneous with respect to algorithms that present
different levels of preferential inversions. Applying the
standard procedure, preferential inversions are not explic-
itly considered. These Inversions fall both in the error
inversions and in the JND inversions. For this reason we
have decided to maintain all the inversions. This decision
requires the solution to two different problems:

e How to treat the error inversions?
The error inversions cannot be common to different
subjects. They are anomalous values with respect to
the score distribution of each algorithm. We are not
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interested in finding the error inversions; we just
would like to verify that they do not alter the data
analysis. To this end we have validated the final rank
of the algorithms (R; in Equation 3 (which is a mean
measure), also with the analysis of the median of the
Difference Score, which is a more robust measure
with respect to noise.

e How to treat the preferential inversions?
Maintaining the preferential inversions, the DS
measure cannot be further considered as a distance
between the reference image and the distorted one
with respect to the analyzed artifact (zipper artifact),
as we have previously discussed. The influence of
these inversions appears to be different in the case of
1S and 28 tests. In fact, the effect of the introduced
sharpness is lower in the case of the 1S test because
there is not a simultaneous comparison with the
original image. Thus, the analysis of the 1S test
results with respect to the 2S ones can be useful for
evaluating this phenomenon.

Endnote

IThe equations are reported only for the horizontal case.
In the calculation of the differences we excluded the
non-zipper pixels. AE7g is the standard Euclidean distance
between the L*a*b* coordinate of the adjacent pixels.
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