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Abstract
Aim: Estimating species richness from a series of samples is an important and widely 
debated issue in ecology and biodiversity conservation. Numerous tests of respec-
tive richness estimators gave insights into the precision, the limitations and the pit-
falls of richness forecasting. However, few benchmark tests used almost complete 
empiric census data obtained at those spatial scales where richness estimation is 
most useful for conservation management.
Location: Japan.
Methods: We use an extraordinary dataset on the spatial distribution of Japanese 
plants containing complete information on the occurrence of each Japanese plant 
species at the 10 × 10 km2 grid cell level. We link the estimates of four estimators 
representing different theoretical approaches, Chao2, rarefaction, species–area re-
lationships (SAR) and species abundance distributions (SAD), to environmental data 
using a fully nested sampling design.
Results: Chao2 and rarefaction behaved very similar in all tests and significantly un-
derestimated true richness below 40% sampling fraction. SAR and SAD were less 
precise than Chao2 and rarefaction at higher sampling fraction but also less affected 
by low sample size. In general, SAD provided robust estimates over the whole range 
of sampling fraction and 67.4% of estimates ranged within the 10% error level. Higher 
species spatial turnover increased and high evenness in occurrence decreased the 
precision of the SAD estimator. Precision of the four estimators was largely unaf-
fected by environmental variability but increased with increasing latitude.
Main conclusions: Our results strongly indicate that the pattern of Japanese plant 
species spatial distribution is sufficiently scale invariant for richness estimators to 
provide precise forecasting results at the country level. The simplest process to gen-
erate such a spatial distribution is ecological drift.
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1  | INTRODUC TION

Estimating species richness from series of samples is an important 
and widely debated issue in ecology and biodiversity conservation 
(Chao & Chiu, 2016; Hortal, Borges, & Gaspar, 2006; Kunin et al., 
2018; Magurran, 2004; Magurran & McGill, 2011). Numerous para-
metric or nonparametric richness estimators, based on either abun-
dance or incidence data, have been developed and tested (reviewed 
in Chao & Chiu, 2015, 2016; Hortal et al., 2006; Walther & Moore, 
2005).

Estimators of species richness can be classified into four groups 
(Chao & Chiu, 2016). First, nonparametric asymptotic estimators are 
often based on random sampling assuming a Poisson species spa-
tial distribution (Chao, Colwell, Lin, & Gotelli, 2009). Second, para-
metric non-asymptotic rarefaction estimators extrapolate species 
richness of standardized samples within a common finite sample size 
towards larger sample sizes (Colwell, Chao, & Gotelli, 2012). Third, 
species accumulation curves and species distribution models ex-
trapolate richness data for observed samples or areas towards the 
focal sample size or area (Scheiner, 2003; Shen & He, 2008; Ugland, 
Gray, & Ellingsen, 2003). These approaches also include spatially ex-
plicit ecological drift (Hubbell, 2001) and maximum entropy models 
(Harte & Newman, 2014). Fourth, Dewdney (1998) and Ulrich and 
Ollik (2005) have advocated the use of species–abundance or spe-
cies–occupancy distributions (below abbreviated as SAD) obtained 
from finite samples to estimate richness of larger samples.

Tests of richness estimators were mainly based on simulation 
studies where samples were taken from idealized communities 
spread over many sample sites (e.g. Chao & Chiu, 2015). These 
tests provided insights into the behaviour of estimators, returned 
recommendations for estimator choice (Kunin et al., 2018; Walther 
& Moore, 2005) and demonstrated the comparable behaviour of 
different estimators that are based on the same theoretical as-
sumptions (Chao & Chiu, 2015; Gwinn, Allen, Bonvechio, Hoyer, & 
Beesley, 2016). They also pointed to possible pitfalls. Particularly, 
Gwinn et al. (2016) demonstrated the sensitivity of all available non-
parametric estimators to sample size and the shape of the underlying 
specie abundance distributions.

Tests of estimators with empirical data compared the species 
richness in a fully censused survey (often an area) with estimates 
obtained from series of samples (e.g. Palmer, 1990, 1991; Chiarucci, 
Enright, Perry, Miller, & Lamont, 2003; Herzog, Kessler, & Cahill, 
2002; De Thoisy, Brosse, & Dubois, 2008; Walther & Moore, 2005). 
These tests, however, have been performed on small communities 
with low total species richness and their results cannot be extended 
in a straightforward way to systems with large spatial extent and 
with a large number of species. It is also not clear whether methods 
proposed for local scale sampling are also applicable at regional or 
even global scales (Fattorini, 2013). However, most environmental 
studies and also conservation planning use sample plots to predict 
ecological patterns at larger areas or even globally (Chao, Colwell, 
Gotelli, & Thorn, 2019; Chiarucci, Bacaro, & Scheiner, 2011). An ex-
ception is the recent comparative study by Kunin et al. (2018), who 

used fully censused plant records from Southern England to evalu-
ate whether richness estimators based on extrapolation techniques 
(species–area relationships and species occupancy distributions) and 
species distribution modelling (maximum entropy and ecological 
drift) are able to forecast the true regional plant richness and the 
respective species accumulation with increasing space. However, all 
the methods tested by Kunin et al. (2018) required information on 
either small-scale species accumulation curves or species occupancy 
distributions that are not available in most ecological and conser-
vation studies. Consequently, these latter studies still rely on tradi-
tional parametric and nonparametric estimators based on specific 
probability distributions (reviewed in Chao & Chiu, 2016). These es-
timators still have to be tested with large-scale empirical data.

Common richness estimators rely on the assumption that the 
distribution of abundances and the pattern of species spatial dis-
tribution are sufficiently scale invariant to meet the assumptions 
of the underlying model (Brose, Martinez, & Williams, 2003). For 
instance, fractal spatial species distributions would generate rich-
ness accumulation curves that follow a power function (Šizling & 
Storch, 2004), thus allowing its use for precise richness estimation. 
However, many studies revealed that patterns of species spatial ag-
gregation (e.g. Kunin, 1998; Lennon, Koleff, Greenwood, & Gaston, 
2001) and community evenness (e.g. Brose et al., 2003) change with 
increasing sample area. These changes appeared to be taxon and bi-
ome-specific, making it challenging to apply universal correctors for 
richness estimators.

Without knowledge of the scaling of species spatial distributions, 
extrapolations of species richness become increasingly uncertain, 
especially when based on very small sample sizes (Chiarucci et al., 
2003). The scaling of the spatial distribution of species and their 
abundances is highly dependent on environmental factors (Mertes & 
Jetz, 2018). Consequently, we might expect that the performance of 
richness estimators is also influenced by these factors. A possible yet 
largely unexplored way to improve richness estimators would be to 
use environmental characteristics that determine community com-
position (defined by species identities) in a predictable way. Often, 
environmental variables are easier to assess than community pat-
terns. However, respective studies on environmental constraints on 
richness estimation are largely missing. For instance, Beukema and 
Dekker (2012) found that species accumulation curves changed in 
shape along environmental gradients from near-shore to off-shore 
intertidal areas due to shifts in the relative abundances of rare and 
common species, allowing reliable richness estimates only for large 
aggregated samples.

Here, we try to fill this gap in our knowledge using the distribu-
tional data (presence–absence) of Japanese plant species as a model 
system. This dataset contains complete information on the occur-
rence of each Japanese plant species at the 10 × 10 km grid cell level 
(Kusumoto, Villalobos, Shiono, & Kubota, 2019). Thus, our data do 
not rely on samples, but on complete censuses. Using a fully nested 
sampling of these cells, we link the precision and the relative error 
of four common richness estimators to geographical position, cli-
mate and geographical variability, as well as to the pattern of species 
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spatial turnover and evenness. We ask whether and how (a) geo-
graphical position and altitude influence the accuracy of richness es-
timation, (b) the variability in climate variables, elevation and forest 
cover affects estimator performance and (c) evenness in occurrence 
and the spatial species turnover among cells influence estimation 
accuracy. For each of the four categories of estimators cited above 
(i.e. nonparametric asymptotic, parametric non-asymptotic rarefac-
tion, species accumulation and SAD-based models), we selected that 
estimator known to perform best. We test them against our data to 
infer which estimator is best suited in a given large-scale, empirical 
situation.

2  | METHODS

2.1 | Study area

The East Asian islands mainly including the Japanese and Ryukyu 
archipelagos are located off the eastern coast of the Eurasian con-
tinent. The mean annual temperature ranges from −5.3 to 24.2°C. 
The annual precipitation ranges from 650 to 4,538 mm. Such a wide 
range of climate form diverse biomes across hemiboreal, temperate 
and subtropical vegetation.

2.2 | Species distribution data

Occurrence records for vascular plant species across Japan were 
compiled by searching the botanical literature on the flora of Japan 
(Kubota, Kusumoto, Shiono, & Tanaka, 2017; Kubota, Shiono, & 
Kusumoto, 2015). Most of the references were based on speci-
men records, local species checklists, expert species range maps 
and vegetation census records (phytosociological tables). We then 
georeferenced occurrences to latitudinal and longitudinal coordi-
nates. Based on the resulting set of species occurrence data, we 
built a geographical distribution database for 5,614 species at the 
10 × 10 km2 grid cell level (4,852 cells). Therefore, our study is 
based on almost complete species census data at the grid level 
minimizing both commission (false presence) and omission (false 
absence) errors. Species names followed the Japanese Scientific 
Names Index (Yonekura & Kajita, 2003). In this analysis, exotic 
species including planted species were excluded from the dataset 
(Kusumoto et al., 2019). Kubota et al. (2015), Kubota et al. (2017) 
provided a more detailed description of how this dataset was 
created.

2.3 | Environmental data

For each of the 4,852 Japanese grid cells, we compiled an environ-
mental dataset including temperature and precipitation seasonality 
(i.e. the difference between the annual maximum and minimum val-
ues), forest area (km2), land and forest area, and the variability in 

forest cover and elevation within each grid cell. Temperature and 
precipitation data refer to the period between 1971 and 2000, and 
were extracted from the 1-km gridded data in the Mesh Climate 
Data 2000 (Okada, Iizumi, Nishimori, & Yokozawa, 2008).

We split the 4,852 grid cells into 46 windows of 100 geographi-
cally adjacent cells each (excluding cells that covered more than 50% 
sea area). We excluded another 252 cells that were either isolated 
(violating the nested design) or lacked plant records (inflating zero 
counts). We calculated for each of these windows four estimators 
described below based on 10, 20, 30, … 90, 99 cells (in a fully nested 
design) resulting in a total of 460 estimates.

2.4 | Statistical analysis

Here, we use one well-performing estimator of each of the estimator 
groups mentioned in the introduction: the Chao2 (Chao, 1987), rar-
efaction (Chao et al., 2009; Chiarucci, Bacaro, Rocchini, & Fattorini, 
2008), power function SAR (Kunin et al., 2018; Rosenzweig, 1995) 
and the SAD estimator of Ulrich and Ollik (2005).

The Chao2 estimator is given by.

where Sobs is the observed richness, N the number of sample units, and 
Q1 and Q2 are the numbers of species that occurred exactly in one and 
in two of the sample units (Chao & Chiu, 2016).

The rarefaction estimate (Chao & Chiu, 2016; Chiarucci et al., 
2008) comes from

where K is the total number of sample units (Chao & Chiu, 2016).
Among various species accumulation models, species–area rela-

tionships (SARs) are most often applied in ecology and biodiversity 
conservation. There is a long-standing debate whether and in which 
situation SARs are better described by the power function or other 
models, such as the logarithmic function (e.g. Connor & McCoy, 
1979; Triantis, Guilhaumon, & Whittaker, 2012). Most work favoured 
power functions (Rosenzweig, 1995; Dengler et al., 2020). Both the 
power function and the logarithmic model might be able to provide 
upper and lower limits of richness, but the logarithmic function fre-
quently underestimates richness when extrapolated to larger areas 
(Dengler, 2009). The estimate based on the power function species–
area relationship (Rosenzweig, 1995) is given by
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where S0, the richness at unit area, and z, the slope value, are the pa-
rameters inferred from the observed range of area. Here, we extrapo-
lated eq. 4 using its linearized version

Accordingly, extrapolations from the logarithmic SAR were 
based on

where both estimates for the intercept S0 and the slope z came from 
ordinary least squares regressions for the richness data within the ob-
served range of areas.

Recent meta-analyses (Ulrich, Nakadai, Matthews, & Kubota, 
2018; Ulrich, Ollik, & Ugland, 2010) and estimator comparisons (Kunin 
et al., 2018) have corroborated the view that the vast majority of ob-
served species abundances distributions fall within boundaries set by 
the log-series (Fisher, Corbet, & Williams, 1943) and the lognormal dis-
tribution (Preston, 1948). When applied to a finite area both distribu-
tions allow for an assessment of total richness. Therefore, we used the 
method of Ulrich and Ollik (2005) to obtain an estimate of the upper 
limit of species richness from the observed distribution of species oc-
currences (cf. Kunin et al., 2018). Under the assumption that the ob-
served species rank occurrence distribution follows a log-series, the 
upper limit of expected richness SLS is given by

The lower limit of richness comes from the assumption that the 
SAD follows a lognormal distribution

where Int is the intercept and slope the slope of the linear regression for 
the observed log-occurrence—species rank order distribution (SAD). 
Nobs and Ntotal are the observed number of sample plots used for con-
structing the SAD and the total number of plots, respectively.

We assessed the relative error (relative bias) and the precision 
from

and

where Sest and Stotal are the estimated and total richness, respectively.
We assessed the dependence of relative bias on sampling frac-

tion (the proportion of cells sampled) by the coefficient of correla-
tion rbias between relative bias and ln-transformed sampling fraction. 
Below, species coverage refers to the proportion of species sampled 
with respect to the total (the empirical) number in the focal window.

For each sample, we assessed the total area sampled, the pro-
portions of area sampled (the sampling fraction) and of forest cover, 
and the averaged values of the aforementioned variability in forest 
cover, elevation, precipitation and temperature. Additionally, we cal-
culated for each window the degree of species spatial segregation 
from the C-score (Stone & Roberts, 1990), which is a normalized 
count of the number of pairwise checkerboard occurrences summed 
over all species pairs. As raw metrics of co-occurrences are biased by 
matrix size and fill (Ulrich et al., 2018), we use a null model approach 
and compared observed scores with those obtained from an 
equiprobable reshuffling of the occurrences of each species among 
the cells of each window. This null model retained for each window 
the observed species composition but randomized the occurrences 
of each species among the samples. The motivation behind this ran-
dom assumption was that there is no a priori reason to constrain the 
occurrences of a focal species towards certain cells within a window 
of generally similar climatic conditions. We used standardized effect 

sizes (SES= CSobs−CSexp

σexp
; where CSobs is the observed score and CSexp 

and σexp are the mean and the standard deviation of the null distribu-
tion, respectively) to relate the degree of spatial segregation to the 
error in richness estimation. High values of CSobs and SES point to 
significant species spatial turnover among cells. Finally, we calcu-
lated for each window and each sample the degree of evenness in 
the number of occurrences from E= H

lnStotal
; where H denotes the 

Shannon diversity and ln Stotal the log-transformed total number of 
species in the focal window (sample).

We used a general linear model (GLM) to link the relative bias for 
each sample size and window to environmental variables, the de-
gree of species spatial segregation and evenness. We note that this 
nested sampling design caused spatial non-independence of single 
samples (10 to 99 grid cells) that might affect significance testing. To 
account for this non-independence, we added the dominant eigen-
vector (PCA1) of the geographical Euclidean distance matrix of the 
single cells as a covariate in the GLM (reviewed by Hawkins, 2012). 
Additionally, we the log-transformed sampling fraction entered the 
models. Coverage increased in a nested manner and accounted for 
the richness increase from the area effect only. Prior to analyses, we 
calculated pairwise Pearson's correlations between predictor vari-
ables. These were at most moderately correlated (r < .40) except for 
PCA1 and temperature seasonality (r = .88). Excluding PCA1 from 
the analysis did not change the remaining results qualitatively.

3  | RESULTS

Japan shows a strong latitudinal gradient in species richness above 
35° north (Figure 1a). The proportion of species detected increased 
logarithmically with the proportion of area sampled (the sampling 
fraction, Figure 1b). However, this proportion–area relationship was 
independent from total richness (Figure 1c).
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When more than 40% of area was sampled, 93.1% of the Chao2 and 
94.1% of the rarefaction estimates had errors of <10% (Figure 2a,b), 
with a tendency of richness underestimation. Chao2 and rarefaction 
behaved very similar in all comparisons (Figure 2, Tables 1 and 2) and 
significantly underestimated true richness below 40% sampling frac-
tion (rbias = .84). The power function SAR approach (powSAR) tended to 
overestimate richness at lower sampling fraction (rbias = .81, Figure 2c) 
and was generally less precise than Chao2 and rarefaction but also less 
affected by sampling fraction (Figure 2c). Only 53.3% of the powSAR 
estimates were within the 10% error level. In turn, the logarithmic 
SAR (logSAR) estimates were always below those of the powSAR and 
tended to underestimate true richness below 40% sampling fraction 
(rbias = −0.39, Figure 2c). 76.3% of the logSAR estimates were within 
the 10% error level without a stronger relative at lower sampling 

fraction (rbias = .22). The SAD approach also provides upper and lower 
limits in richness. Indeed, the SLS estimator consistently overestimated 
observed richness and behaved similarly to the powSAR approach 
(Figure 2d). Only 30.9% of the estimates were within the 10% error 
level (Figure 2d). The SLN provided robust estimates over the whole 
range of sampling fraction (rbias = .04), with 67.4% of estimates ranging 
within the 10% error boundaries (Figure 2d). SLN behaved similar to the 
logSAR approach (Figure 2c,d) and was slightly positively biased at low 
sampling fraction (rbias = .13).

Because the SAR and the SAD estimators were designed to pro-
vide lower and upper limits to richness, average values might reduce 
the relative bias and consequently the precision of the estimates 
(Figure 2e, f). This was indeed the case although the SAD approach 
still tended to overestimate richness irrespective of sampling fraction 

F I G U R E  1   (a) Above 35°N, Japanese tree species richness strongly declines with increasing latitude. Data from the 46 grid windows only. 
(b) The species coverage (pS = observed richness/total richness) in dependence on the sampling fraction (pA). Data from 4,600 10 × 10 km2 
grid cells. The increase in sampling fraction is well described by a logarithmic function: fra = 0.15 ln(pA) + 1; OLS fit: r2 = .84). (c) The increase 
in sampling fraction with increasing area was independent from total richness in each window (r2 < .01)
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(Figure 2f). 66.1% of the averaged SAR and 48.5% of the averaged 
SAD estimates were within the 10% error level. Both, SAR and SAD, 
performed as well as the Chao2 and rarefaction approaches when 
relaxing the error level to 20% (86.5% and 83.0%, respectively, of es-
timates within the 20% error level) but were not significantly biased 
by sampling fraction (Figure 2, Table 1).

We found a weak increase in precision of the studied estimators 
(except of powSAR with increasing latitude (Table 1), which explained 
between 3% and 7% of the variance in precision, respectively. 
Further, the pattern of tree species co-occurrences, as quantified 
by the degree of species spatial segregation, did not markedly affect 
the Chao2, the rarefaction and both SAR estimators (Table 1). Higher 
species spatial turnover (positive SESCS) increased the precision of 
SLS and SLN. Evenness did not affect the precision of the Chao2, the 
rarefaction and the SAR estimators, while high evenness negatively 
affected the precision of SLS and SLN (Table 1). In turn, SLS and SLN 
were least influenced by the proportion of area sampled (Table 1) and 
provided unbiased estimated even at low cell coverage (Figure 2d).

Relative bias and precision of the four estimators were largely 
unaffected by environmental variability (Table 2, Figure 3). After 
accounting for cell coverage and spatial distribution, elevation 

variability, precipitation and temperature seasonality, the variability 
in forest cover explained at most 3% of the variance in the Chao2, 
rarefaction, and the SAR estimators (Table 2). Exception were the SLS 
and SLN estimators that turned out to be the least biased at interme-
diate levels of variability in elevation (Table 2, Figure 3d) and forest 
cover (Table 2, Figure 3l).

4  | DISCUSSION

Our study focused on two important aspects of species richness fore-
casting. First, we tested the performance of four types of estimators 
against empirical large spatial scale data. Second, we assessed how pre-
cision and relative bias of these estimators were influenced by environ-
mental variables and community composition. Importantly, our study is 
the first that uses almost complete census data on species occurrences 
at a large spatial scale. These data enable a precise analysis of the be-
haviour of each estimator at different fractions of area covered.

Our first task largely confirmed prior tests based on simulation 
studies (e.g. Chao & Chiu, 2015) and empirical data at small and 
regional scale (Herzog et al., 2002; Walther & Moore, 2005). The 

TA B L E  1   General linear models of richness coverage (= observed richness/ total richness) and precision in richness estimation in relation 
to longitude, latitude, the standardized effect sizes of species co-occurrences (SESCS), and the degree of evenness

Variable Richness coverage

Precision

Chao2 Rarefaction powSAR logSAR SLS SLN

Longitude (–) <0.01 (–) 0.02 (–) 0.02 (–) <0.01 (–) 0.06 (–) 0.01 (–) 0.01

Latitude 0.03 0.05 0.07 (–) <0.01 0.13 0.03 0.06

SESCS 0.01 0.01 0.02 <0.01 0.02 0.09 0.09

Evenness 0.07 0.01 0.01 (–) <0.01 0.09 (–) 0.19 (–) 0.05

ln sampling fraction 0.85 0.60 0.72 0.31 0.31 0.04 0.14

r2 .86*** .62*** .74*** .31*** .42*** .27*** .26***

Note: Log-transformed percentages of forest cover served as covariate. N = 460. Given are partial η2-values and the coefficients of determination (r2) 
of the whole model. Negative signs of the regression parameters are given in brackets.
***Parametric significances of r2 and p < .001. 

TA B L E  2   General linear modelling of richness coverage (= observed richness/ total richness) and precision in richness estimation in 
relation to climate, elevation, and forest cover variability

Variable Richness coverage

Precision

Chao2 Rarefaction powSAR logSAR SLS SLN

Elevation variability 0.02 0.01 0.02 (–) 0.02 <0.01 (–) 0.08 (–) 0.02

Precipitation seasonality 0.03 <0.01 0.03 (–) 0.02 (–) <0.01 (–) <0.01 <0.01

Temperature seasonality (–) <0.01 <0.01 <0.01 0.02 0.10 0.05 0.03

Variability in forest area 0.01 0.02 0.03 (–) <0.01 <0.01 <0.01 <0.01

ln sampling fraction 0.81 0.51 0.65 0.29 0.27 0.02 0.10

PCA1 (–) 0.02 (–) <0.01 (–) 0.01 0.03 0.03 0.02 <0.01

r2 .62*** .62*** .75*** .32*** .45*** .14*** .20***

Note: Log-transformed sampling fraction and the dominant eigenvector (PCA1) of the geographical distance matrix served as covariates. N = 460. 
Given are partial η2-values and the coefficients of determination (r2) of the whole model. Negative signs of the regression parameters are given in 
brackets.
***Parametric significances: p < .001. 
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nonparametric Chao2 estimator and rarefaction performed well only 
at high sampling fraction (Figure 2), being negatively biased at low 
sample sizes. At higher sampling fraction (say above 40%), rarefac-
tion was superior to Chao2 because all estimates ranged within the 
10% error boundary (Figure 2b) without overestimating richness. At 
lower coverage, Chao2 and rarefaction performed nearly identical 
and underestimated true richness (even by 60%). Nevertheless, even 
at low sampling fraction both estimators performed not worse or 
even better than the parametric SAR and SAD estimators (Figure 2). 
This is a promising result obtained from large-scale empirical data 
meaning that we have very different approaches to diversity fore-
casting that provide reliable results independent of the available 
data structure. For instance, in many cases available data contain 
only species lists or information on total abundances and do not 
allow for the construction of rarefaction or species accumulation 
curves, while Chao2 or SAD provides alternatives.

The SAR and SAD estimators were designed to assess lower and 
upper limits of richness. Indeed, both estimators performed well 
with this task (Figure 2) although tending to overestimate richness 
irrespective of sampling fraction. With respect to the SAD estima-
tors, this result confirms the findings of Kunin et al. (2018) based 
on British vascular plants. The behaviour of the SAD estimator al-
lows some conclusions about the underlying occupancy—rank order 
distribution. The log-series assumption caused overestimation of 

richness (Figure 2). The log-series is a sample distribution (Fisher 
et al., 1943) and implies fairly constant proportions of species along 
the occupancy axis. This distribution is predicted from ecologi-
cal drift (Hubbell, 2001) and a variety of niche-based SAD models 
(Tokeshi, 1998). In turn, recent meta-analyses on global plant species 
abundance distributions pointed to a higher proportion of lognormal 
type SADs with a lot of rare species (Ulrich et al., 2016a; Ulrich et al., 
2016, Ulrich et al., 2018). Importantly, Ulrich et al. (2016a), Ulrich, 
Soliveres, et al. (2016) revealed a latitudinal gradient in SAD shape 
with a preponderance of lognormal distributions at higher latitudes. 
This is in line with the present findings from the Japanese flora. The 
fact that the lognormal based SAD constantly performed better than 
the log-series based estimator (Figure 2) is a strong corroboration 
for the prevalence of lognormal types SADs in vascular plants. Of 
course, our results regard regional (large-scale) abundance distribu-
tions, whereas the surveys of Ulrich et al. (2016a), Ulrich et al. (2016), 
Ulrich et al. (2018) focused on local communities. However, sampling 
theory (Green & Plotkin, 2007) predicts local log-series sample dis-
tributions to scale up to the regional scale, while local lognormal 
distributions behave scale invariant only if the constituent species 
are not dispersal limited (Green & Plotkin, 2007; Hubbell, 2001). 
Therefore, our finding of a better fit of regional lognormal abun-
dance distributions corroborates the view that local plant communi-
ties at least at higher latitudes are dispersal limited and lognormally 

F I G U R E  3   Relative bias in richness estimation of the Chao2 (a, e, i), rarefaction (b, f, j), species –area relationship (c, g, k: black dots: 
power function, red dots: logarithmic function), and SAD estimators (d, h, l: black dots: log-series, red dots: lognormal) in relation to the 
precipitation and temperature variability, and the variability in forest cover among grid cells of each study area. Data from 460 Japanese 
areas of 100 contiguous grid cells each. Coefficients of determination refer to ordinary least square linear regressions (in d to a third order 
polynomial regression)
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distributed. Respective studies for lower latitudinal, tropical commu-
nities are missing.

With respect to the SAR estimators, we found a consistently 
better estimate of the logarithmic SAR (Figure 2). The power func-
tion SAR constantly tended to overestimate richness, which indi-
cates deviations from the power function species accumulation 
irrespective of spatial scale (Figure 2). This finding stands in certain 
contrast to recent analyses of richness patterns that clearly pointed 
to a prevalence of power function SARs at local (Dengler et al., 
2020) and regional scales (Dengler, 2009). However, direct com-
parisons of SAR model fits do not exclude spatial scale dependent 
deviations from the model. With respect to extrapolations, even 
small (and possibly statistically insignificant) deviations might cause 
imprecise richness estimates. Therefore, observed positive relative 
biases in richness estimation demonstrate that the accumulation of 
species richness in natural systems at regional scales occurs slower 
than predicted by a power function. In this respect, Dengler (2009) 
and Dengler et al. (2020) reported that the power function SAR re-
liably predicts the increase in terrestrial vegetation over ten orders 
of magnitude while logarithmic SAR models proved inappropriate. 
However, the data of Dengler et al. (2020) covered local samples 
of continuous vegetation. Rosindell and Cornell (2007) and Storch 
(2016) demonstrated that SARs can be triphasic with shallower 
slopes at regional scales. Consequently, extrapolating across the 
local–regional border would cause either an over- or an underes-
timation of richness depending on the proportion of data points 
from local and regional samples used to construct the SAR. This 
is the pattern reported here. In this respect, Storch, Keil, and Jetz 
(2012) found that local to continental SARs collapse into one com-
mon power function after area was rescaled by mean species range 
sizes. Unfortunately, for most datasets (including the present) such 
data are unavailable.

Regarding our second main task, we first asked whether and how 
geographical and climate variability influences the accuracy of rich-
ness estimation. This was indeed the case. Although weak, we found 
positive latitudinal gradients in the precision of all estimators with 
the exception of powSAR (Table 1). This trend was apparent even 
after correcting for sampling fraction. Latitude is only a surrogate 
variable. We hypothesize that this latitudinal gradient is caused by re-
spective latitudinal changes in community composition. Surprisingly, 
we found an increase in relatively infrequent species (those that oc-
curred only in one or in two grid cells) at higher latitudes (Figure 4a), 

while the proportion of frequent species (occurring in all cells) did 
not show any significant latitudinal gradient (Figure 4b). Particularly, 
the southernmost Japanese islands of the Ryukyus archipelago with 
subtropical climate had the lowest proportions of infrequent species 
(Figure 4a). The pattern on the Ryukyus islands (<30 degree south) 
might be explained by the comparatively homogeneous vegetation 
across the archipelago (Kubota, unpublished) and lack of higher 
mountains. Species composition of small islands is basically a subset 
of the larger island (i.e. nested), and the former do not have own en-
demic species. Such a pattern naturally results in a low proportion of 
infrequent species. In turn, the middle part of Japan (30–40 degrees 
south) is characterized by higher mountains and many regionally 
endemic species or disjunctive distributed species in their summits. 
Consequently, the proportion of rare species is relatively high.

We also asked whether the variability in environmental variables 
affects estimator performance. This was only marginally the case 
(Table 2, Figure 3). After correcting for covariates (Table 2), only 
temperature variability appeared to markedly influence estimator 
performance (Table 2) explaining between 3% and 10% of variability 
in logSAR and the SAD estimators. Importantly, most robust were 
Chao2 and rarefaction indicating that the underlying theoretical 
models are indeed sufficiently independent of environmental co-
variates. Again, environmental variability might only indirectly in-
fluence estimator performance via respective changes in the spatial 
distribution of species and/or the distribution of abundances. Both 
distributions are known to change along gradients of environmental 
variability (Ackerly, Knight, Weiss, Barton, & Starmer, 2002; Pottier 
et al., 2013). The fact that this did not significantly influence esti-
mator performance is an important and a strong argument in favour 
of the underlying theoretical assumptions of scale invariant species 
spatial distribution patterns.

Finally, we asked whether and how evenness in species inci-
dence and the spatial species turnover among grid cells influence 
estimation accuracy. To our surprise, higher spatial species turn-
over was positively related only to the performance of the SAD 
estimators. We expected to see a signal for SAR as the SAR slope 
is directly linked to the decay in compositional similarity among 
communities (Soininen, McDonald, & Hillebrand, 2007). Low spa-
tial species turnover might decrease the proportion of infrequent 
species in dispersal limited communities as predicted by neutral 
theory (Hubbell, 2001). Low proportions of infrequent species are 
equivalent to a higher evenness in species incidence. If evenness 

F I G U R E  4   Proportions of (a) 
infrequent (species with only single or 
double incidence among the 100 cell of 
each window) and (b) frequent (species 
occurring in all grid cells of each window) 
in dependence of latitude. Coefficients 
of determination refer to ordinary least 
squares linear regressions. Significance of 
the regression in (a) p(F1,458) < .0010
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were higher than predicted by the log-series distribution, both 
SAD estimators would perform weak as species richness is also 
higher than the predicted upper limit estimated by the SLS esti-
mator (Ulrich & Ollik, 2005). This is the pattern observed here 
(Table 2).

ACKNOWLEDG MENTS
W.U. was supported by the Polish National Science Centre (UMO-
2017/27/B/NZ8/00316). B.K and Y.K is supported by the Program 
for Advancing Strategic International Networks to Accelerate 
the Circulation of Talented Researchers, the Japan Society for 
the Promotion of Science and the Environment Research and 
Technology Development Fund (4-1501 and 4-1802) of the Ministry 
of the Environment, Japan.

DATA AVAIL ABILIT Y S TATEMENT
The raw data used in the present publication have been published by 
Kubota et al. (2015) and Kusumoto et al. (2015).

ORCID
Werner Ulrich  https://orcid.org/0000-0002-8715-6619 
Buntarou Kusumoto  https://orcid.org/0000-0002-5091-3575 

R E FE R E N C E S
Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., & Starmer, K. P. 

(2002). Leaf size, specific leaf area and microhabitat distribution of 
chaparral woody plants: Contrasting patterns in species level and 
community level analyses. Oecologia, 130, 449–457. https://doi.
org/10.1007/s0044 20100805

Beukema, J. J., & Dekker, R. (2012). Estimating macrozoobenthic spe-
cies richness along an environmental gradient: Sample size mat-
ters. Estuarine, Coastal and Shelf Science, 111, 67–74. https://doi.
org/10.1016/j.ecss.2012.06.013

Brose, U., Martinez, N. D., & Williams, R. J. (2003). Estimating spe-
cies richness: Sensitivity to sample coverage and insensitiv-
ity to spatial patterns. Ecology, 84, 2364–2377. https://doi.
org/10.1890/02-0558

Chao, A. (1987). Estimating the population size for capture-recapture 
data with unequal catchability. Biometrics, 43, 783–791. https://doi.
org/10.2307/2531532

Chao, A., & Chiu, C. H. (2015). Nonparametric estimation and comparison 
of species richness. In: eLS. Chichester: John Wiley & Sons Ltd.

Chao, A., & Chiu, C. H. (2016). Species richness: estimation and compari-
son. Wiley Stats Ref: Statistics Reference Online, 1-26.

Chao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sam-
pling for asymptotic minimum species richness estimators. Ecology, 
90, 1125–1133. https://doi.org/10.1890/07-2147.1

Chao, A., Colwell, R. K., Gotelli, N. J., & Thorn, W. (2019). Proportional 
mixture of two rarefaction/extrapolation curves to forecast biodi-
versity changes under landscape transformation. Ecology Letters, 
22(11), 1913–1922. https://doi.org/10.1111/ele.13322

Chiarucci, A., Bacaro, G., & Scheiner, S. M. (2011). Old and new challenges 
in using species diversity for assessing biodiversity. Philosophical 
Transactions of the Royal Society B, 366, 2426–2437. https://doi.
org/10.1098/rstb.2011.0065

Chiarucci, A., Bacaro, G., Rocchini, D., & Fattorini, L. (2008). Discovering 
and rediscovering the sample-based rarefaction formula in the 
ecological literature. Community Ecology, 9, 121–123. https://doi.
org/10.1556/ComEc.9.2008.1.14

Chiarucci, A., Enright, N. J., Perry, G. L. W., Miller, B. P., & Lamont, B. 
B. (2003). Performance of non-parametric species richness estima-
tors in a high diversity plant community. Diversity and Distributions, 9, 
283–295. https://doi.org/10.1046/j.1472-4642.2003.00027.x

Colwell, R. K., Chao, A., Gotelli, N., Lin, S. Y., Mao, C. X., Chazdon, R. L., & 
Longino, J. T. (2012). Models and estimators linking individual-based 
and sample-based rarefaction, extrapolation, and comparison of as-
semblage. Journal of Plant Ecology, 5, 3–21.

Connor, E. F., & McCoy, E. D. (1979). The statistics and biology of the spe-
cies–area relationship. American Naturalist, 113, 791–833. https://
doi.org/10.1086/283438

Dengler, J., Matthews, T. J., Steinbauer, M. J., Boch, S., Chiarucci, A., 
Conradi, T., Biurrun, I. (2020). Species-area relationships in contin-
uous vegetation: evidence from Palaearctic Grasslands. Journal of 
Biogeography 47, 72–86.

Dengler, J. (2009). Which function describes the species-area relation-
ship best? A review and empirical evaluation. Journal of Biogeography, 
36, 728–744. https://doi.org/10.1111/j.1365-2699.2008.02038.x

De Thoisy, B., Brosse, S., & Dubois, M. A. (2008). Assessment of large-ver-
tebrate species richness and relative abundance in Neotropical 
forest using line-transect censuses: What is the minimal effort re-
quired? Biodiversity and Conservation, 17, 2627–2644. https://doi.
org/10.1007/s10531-008-9337-0

Dewdney, A. K. (1998). A general theory of the sampling process with ap-
plication to the “veil line”. Theoretical Population Biology, 54, 294–302.

Fattorini, S. (2013). Regional insect inventories require long time, exten-
sive spatial sampling and good will. PLoS One, 8(4), e62118. https://
doi.org/10.1371/journ al.pone.0062118

Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relation between 
the number of species and the number of individuals in a random 
sample of an animal population. Journal of Animal Ecology, 12, 42–58. 
https://doi.org/10.2307/1411

Green, J. L., & Plotkin, J. B. (2007). A statistical theory for sampling 
species abundances. Ecology Letters, 10, 1037–1045. https://doi.
org/10.1111/j.1461-0248.2007.01101.x

Gwinn, D. C., Allen, M. S., Bonvechio, K. I., Hoyer, M. V., & Beesley, L. S. 
(2016). Evaluating estimators of species richness: The importance of 
considering statistical error rates. Methods in Ecology and Evolution, 7, 
294–302. https://doi.org/10.1111/2041-210X.12462

Hawkins, B. A. (2012). Eight (and a half) deadly sins of spa-
tial analysis. Journal of Biogeography, 39, 1–9. https://doi.
org/10.1111/j.1365-2699.2011.02637.x

Harte, J., & Newman, E. A. (2014). Maximum information entropy: A 
foundation for ecological theory. Trends in Ecology and Evolution, 29, 
384–389. https://doi.org/10.1016/j.tree.2014.04.009

Herzog, S. K., Kessler, M., & Cahill, T. M. (2002). Estimating species rich-
ness of tropical bird communities from rapid assessment data. The 
Auk, 119, 749–769.

Hortal, J., Borges, P. A. V., & Gaspar, C. (2006). Evaluating the per-
formance of species richness estimators: Sensitivity to sample 
grain size. Journal of Animal Ecology, 75, 274–287. https://doi.
org/10.1111/j.1365-2656.2006.01048.x

Hubbell, S. P. (2001). The unified theory of biogeography and biodiversity. 
Princeton, NJ: Princeton University Press.

Kubota, Y., Kusumoto, B., Shiono, T., & Tanaka, T. (2017). Phylogenetic 
properties of Tertiary relict flora in the east Asian continental is-
lands: Imprint of climatic niche conservatism and in situ diversifica-
tion. Ecography, 40, 436–447. https://doi.org/10.1111/ecog.02033

Kubota, Y., Shiono, T., & Kusumoto, B. (2015). Role of climate and geohis-
torical factors in driving plant richness patterns and endemicity on 
the east Asian continental islands. Ecography, 38, 639–648. https://
doi.org/10.1111/ecog.00981

Kunin, W. E. (1998). Extrapolating species abundance across spatial 
scales. Science, 281, 1513–1515. https://doi.org/10.1126/scien 
ce.281.5382.1513

https://orcid.org/0000-0002-8715-6619
https://orcid.org/0000-0002-8715-6619
https://orcid.org/0000-0002-5091-3575
https://orcid.org/0000-0002-5091-3575
https://doi.org/10.1007/s004420100805
https://doi.org/10.1007/s004420100805
https://doi.org/10.1016/j.ecss.2012.06.013
https://doi.org/10.1016/j.ecss.2012.06.013
https://doi.org/10.1890/02-0558
https://doi.org/10.1890/02-0558
https://doi.org/10.2307/2531532
https://doi.org/10.2307/2531532
https://doi.org/10.1890/07-2147.1
https://doi.org/10.1111/ele.13322
https://doi.org/10.1098/rstb.2011.0065
https://doi.org/10.1098/rstb.2011.0065
https://doi.org/10.1556/ComEc.9.2008.1.14
https://doi.org/10.1556/ComEc.9.2008.1.14
https://doi.org/10.1046/j.1472-4642.2003.00027.x
https://doi.org/10.1086/283438
https://doi.org/10.1086/283438
https://doi.org/10.1111/j.1365-2699.2008.02038.x
https://doi.org/10.1007/s10531-008-9337-0
https://doi.org/10.1007/s10531-008-9337-0
https://doi.org/10.1371/journal.pone.0062118
https://doi.org/10.1371/journal.pone.0062118
https://doi.org/10.2307/1411
https://doi.org/10.1111/j.1461-0248.2007.01101.x
https://doi.org/10.1111/j.1461-0248.2007.01101.x
https://doi.org/10.1111/2041-210X.12462
https://doi.org/10.1111/j.1365-2699.2011.02637.x
https://doi.org/10.1111/j.1365-2699.2011.02637.x
https://doi.org/10.1016/j.tree.2014.04.009
https://doi.org/10.1111/j.1365-2656.2006.01048.x
https://doi.org/10.1111/j.1365-2656.2006.01048.x
https://doi.org/10.1111/ecog.02033
https://doi.org/10.1111/ecog.00981
https://doi.org/10.1111/ecog.00981
https://doi.org/10.1126/science.281.5382.1513
https://doi.org/10.1126/science.281.5382.1513


778  |     ULRICH et aL.

Kunin, W. E., Harte, J., He, F., Hui, C., Jobe, R. T., Ostling, A., … Varma, V. 
(2018). Upscaling biodiversity: Estimating the species-area relation-
ship from small samples. Ecological Monographs, 88, 170–187.

Kusumoto, B., Villalobos, F., Shiono, T., & Kubota, Y. (2019). Reconciling 
Darwin’s naturalization and pre-adaptation hypotheses: An infer-
ence from phylogenetic fields of exotic plants in Japan. Journal of 
Biogeography, 46(11), 2597–2608. https://doi.org/10.1111/jbi.13683

Lennon, J. J., Koleff, P., Greenwood, J. J. D., & Gaston, K. J. (2001). The 
geographical structure of British bird distributions: Diversity, spatial 
turnover and scale. Journal of Animal Ecology, 70, 966–979. https://
doi.org/10.1046/j.0021-8790.2001.00563.x

Magurran, A. E. (2004). Measuring biological diversity. Oxford, UK: 
Blackwell.

Magurran, A. E., & McGill, B. J. (2011). Biological diversity: frontiers in mea-
surement and assessment. Oxford, UK: Oxford University Press.

Mertes, K., & Jetz, W. (2018). Disentangling scale dependencies in species 
environmental niches and distributions. Ecography, 41, 1604–1615.

Okada, M., Iizumi, T., Nishimori, M., & Yokozawa, M. (2008). Mesh climate 
change data of Japan Vers. 2 for climate change impact assessments 
under IPCC SRSS A1B and A2. Journal of Agricultural Meteorology, 65, 
97–109.

Palmer, M. W. (1990). The estimation of species richness by extrapola-
tion. Ecology, 71, 1195–1198. https://doi.org/10.2307/1937387

Palmer, M. W. (1991). Estimating species richness: The second order 
jackknife reconsidered. Ecology, 72, 1512–1513. https://doi.
org/10.2307/1941127

Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C. 
F., … Guisan, A. (2013). The accuracy of plant assemblage predic-
tion from species distribution models varies along environmental 
gradients. Global Ecology and Biogeography, 22, 52–63. https://doi.
org/10.1111/j.1466-8238.2012.00790.x

Preston, F. W. (1948). The commonness, and rarity of species. Ecology, 29, 
254–283. https://doi.org/10.2307/1930989

Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, 
UK: Cambridge University Press.

Rosindell, J., & Cornell, S. J. (2007). Species–area relationships from a spa-
tially explicit neutral model in an infinite landscape. Ecology Letters, 
10, 586–595. https://doi.org/10.1111/j.1461-0248.2007.01050.x

Scheiner, S. M. (2003). Six types of species–area curves. 
Global Ecology and Biogeography, 12, 441–447. https://doi.
org/10.1046/j.1466-822X.2003.00061.x

Shen, T. J., & He, F. L. (2008). An incidence-based richness estimator for 
quadrats sampled without replacement. Ecology, 89, 2052–2060. 
https://doi.org/10.1890/07-1526.1

Šizling, A., & Storch, D. (2004). Power-law species–area relationships and 
self-similar species distributions within finite areas. Ecology Letters, 7, 
60–68. https://doi.org/10.1046/j.1461-0248.2003.00549.x

Soininen, J., McDonald, R., & Hillebrand, H. (2007). The distance decay 
of similarity in ecological communities. Ecography, 30, 3–12. https://
doi.org/10.1111/j.0906-7590.2007.04817.x

Stone, L., & Roberts, A. (1990). The checkerboard score and species 
distributions. Oecologia, 85, 74–79. https://doi.org/10.1007/BF003 
17345

Storch, D., Keil, P., & Jetz, W. (2012). Universal species–area and en-
demics–area relationships at continental scales. Nature, 488, 78–81. 
https://doi.org/10.1038/natur e11226

Storch, D. (2016). The theory of the nested species–area relationship: 
Geometric foundations of biodiversity scaling. Journal of Vegetation 
Science, 27, 880–891. https://doi.org/10.1111/jvs.12428

Tokeshi, M. (1998). Species coexistence: Ecological and evolutionary per-
spectives. Oxford, UK: Blackwell.

Triantis, K. A., Guilhaumon, F., & Whittaker, R. J. (2012). The island spe-
cies–area relationship: Biology and statistics. Journal of Biogeography, 
39, 215–231. https://doi.org/10.1111/j.1365-2699.2011.02652.x

Ugland, K. I., Gray, J., & Ellingsen, K. E. (2003). The species accumulation 
curve and estimation of species richness. Journal of Animal Ecology, 
72, 888–897. https://doi.org/10.1046/j.1365-2656.2003.00748.x

Ulrich, W., Kusumoto, B., Shiono, T., & Kubota, Y. (2016a). Climatic and 
geographical correlates of global forest tree species abundance dis-
tributions and community evenness. Journal of Vegetation Science, 27, 
295–305.

Ulrich, W., Soliveres, S., Thomas, A. D., Dougill, A. J., & Maestre, F. T. 
(2016). Environmental correlates of species rank – abundance 
distributions in global drylands. Perspectives in Plant Ecology, 
Evolution and Systematics, 20, 56–64. https://doi.org/10.1016/j.
ppees.2016.04.004

Ulrich, W., Nakadai, R., Matthews, T., & Kubota, Y. (2018). The two-pa-
rameter Weibull distribution as a universal tool to model the varia-
tion in species relative abundances. Ecological Complexity, 36, 110–
116. https://doi.org/10.1016/j.ecocom.2018.07.002

Ulrich, W., & Ollik, M. (2005). Limits to the estimation of species richness: 
The use of relative abundance distributions. Diversity and Distributions, 
11, 265–273. https://doi.org/10.1111/j.1366-9516.2005.00127.x

Ulrich, W., Ollik, M., & Ugland, K. I. (2010). A meta-analysis of spe-
cies - abundance distributions. Oikos, 119, 1149–1155. https://doi.
org/10.1111/j.1600-0706.2009.18236.x

Walther, B. A., & Moore, J. L. (2005). The concepts of bias, preci-
sion, and accuracy, and their use in testing the performance 
of species richness estimators, with a literature review of es-
timator performance. Ecography, 28, 815–829. https://doi.
org/10.1111/j.2005.0906-7590.04112.x

Yonekura, K., & Kajita, T. (2003). BG plants Japanese name – scientific 
names index (YList). Retrieved from http://bean.bio.chiba-u.jp/bgpla 
nts/ylist_main.html

BIOSKE TCH
Authors are macroecologists with a focus on bioconservation, 
the dynamics of local community assembly and large-scale dis-
tributions of species within an evolutionary and environmental 
context. They use local and large-scale biogeographical datasets, 
simulation studies and matrix-based analytical tools to infer the 
patterns and processes of species co-existence, abundances and 
meta-community dynamics.

Author contributions: WU designed the study, analysed the data 
and wrote the first draft. B.K. and Y.K. provided the data and 
drafted parts of the text. S.F. gave input to the concept, intro-
duction and discussion. All authors contributed to the final text 
version.

How to cite this article: Ulrich W, Kusumoto B, Fattorini S, 
Kubota Y. Factors influencing the precision of species 
richness estimation in Japanese vascular plants. Divers Distrib. 
2020;26:769–778. https://doi.org/10.1111/ddi.13049

https://doi.org/10.1111/jbi.13683
https://doi.org/10.1046/j.0021-8790.2001.00563.x
https://doi.org/10.1046/j.0021-8790.2001.00563.x
https://doi.org/10.2307/1937387
https://doi.org/10.2307/1941127
https://doi.org/10.2307/1941127
https://doi.org/10.1111/j.1466-8238.2012.00790.x
https://doi.org/10.1111/j.1466-8238.2012.00790.x
https://doi.org/10.2307/1930989
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1046/j.1466-822X.2003.00061.x
https://doi.org/10.1046/j.1466-822X.2003.00061.x
https://doi.org/10.1890/07-1526.1
https://doi.org/10.1046/j.1461-0248.2003.00549.x
https://doi.org/10.1111/j.0906-7590.2007.04817.x
https://doi.org/10.1111/j.0906-7590.2007.04817.x
https://doi.org/10.1007/BF00317345
https://doi.org/10.1007/BF00317345
https://doi.org/10.1038/nature11226
https://doi.org/10.1111/jvs.12428
https://doi.org/10.1111/j.1365-2699.2011.02652.x
https://doi.org/10.1046/j.1365-2656.2003.00748.x
https://doi.org/10.1016/j.ppees.2016.04.004
https://doi.org/10.1016/j.ppees.2016.04.004
https://doi.org/10.1016/j.ecocom.2018.07.002
https://doi.org/10.1111/j.1366-9516.2005.00127.x
https://doi.org/10.1111/j.1600-0706.2009.18236.x
https://doi.org/10.1111/j.1600-0706.2009.18236.x
https://doi.org/10.1111/j.2005.0906-7590.04112.x
https://doi.org/10.1111/j.2005.0906-7590.04112.x
http://bean.bio.chiba-u.jp/bgplants/ylist_main.html
http://bean.bio.chiba-u.jp/bgplants/ylist_main.html
https://doi.org/10.1111/ddi.13049

