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Abstract: The large penetration of wind generators in existing electrical grids induces critical issues that are pushing the system
operators to improve several critical operation functions, such as the security analysis and the spinning reserve assessment,
with the purpose of mitigating the effects induced by the injected power profiles, which are ruled by the intermittent and not-
programmable wind dynamics. Although numerous forecasting tools have been proposed in the literature to predict the
generated power profiles in function of the estimated wind speed, further and more complex phenomena need to be
investigated in order to take into account the effects of the forecasting uncertainty on power system operation. In order to deal
with this issue, this paper proposes a probabilistic model based on Markov chains, which predicts the wind power profiles
injected into the grid, considering the real generator model and the effects of the power curtailments imposed by the grid
operator. Experimental results obtained on a real case study are presented and discussed in order to prove the effectiveness of
the proposed method.

1 Introduction
The deployment of renewable energies has undergone a dramatic
growth in the past 25 years, mainly induced by the need to
implement the decarbonisation process of power systems. In this
context, wind energy has been established as one of the most
promising zero-carbon emissions technologies. Regrettably, the
massive proliferation of this technology has also caused several
critical issues in existing electrical grids, which have pushed power
system operators to improve grid protection and control functions
in order to mitigate the effects induced by the intermittent and not
programmable nature of the wind [1].

Hence, with the purpose of promoting an effective integration
of wind generators in the current electric grids, several wind power
forecasting methods have been developed, outlining their role in
supporting wind power producers in mitigating the effects induced
by the wind uncertainty, reducing the imbalance charges, and
obtaining strategic information in day ahead and real time markets
trading [2–4].

Among the wind forecasting methods proposed in the literature,
which are based on both physics and statistical models, many of
them show adaptive features, in order to accurately describe the
time varying phenomena characterising the wind dynamics, and
require low computational resources, in order to satisfy the
technical constraints of the available energy management systems
[3].

Unfortunately, these forecasting methods do not allow
modelling complex phenomena, such as the effects of the power
curtailments imposed by the power system operator for mitigating
the effects of network congestion, and the impacts of generator
faults, which can influence the wind power production to a
considerable extent [2, 5].

To address these complex issues, the modern research trends are
oriented toward the conceptualisation of more sophisticated
forecasting methods aimed at modelling the wind generators by
probabilistic multi-state systems, where the state probabilities
correspond to the expected levels of produced energy [6–8]. In this
domain, the adoption of Markov chains-based models has been
revealed as one of the most promising research direction to
estimate the availability and reliability indexes characterising the
wind generators in function of the forecasting wind profiles [9, 10].

The main limitations of these approaches derive by the need of
discretising both the wind speed and the wind generator states in a

proper number of classes. Since this process strongly influences
both the accuracy and the complexity of the model, the selection of
the optimal discretisation level that solves this dichotomy is still an
open problem.

In order to deal with this issue, this paper proposes a
probabilistic model based on Markov chains, which predicts the
wind power profiles injected into the grid, considering the derating
generator states and the effects of the power curtailments imposed
by the grid operator. The insight principle is to estimate the
derating probability profiles in function of each wind speed span
by solving a multistate system, which describes the influence on
the grid of the wind power production over time. Furthermore, the
influence on the estimation of derating probabilities in function of
the wind forecasting error has been taken into account by
considering its real distribution. Experimental results obtained on a
real case study are presented and discussed in order to prove the
effectiveness of the proposed method.

2 Mathematical formalisation
This paper proposes a probabilistic model based on Markov Chains
to predict, one-day ahead, the value of the power curtailments in
derating conditions for each wind generator. To this aim, the
developed algorithm fuses the outputs provided by a hybrid
forecasting algorithm with an adaptive wind generator model,
which considers the derating operation states, and it is continuously
adjourned by real operation data.

The main idea is to estimate the probability density function of
the wind forecasting error, analysing its influence on the
probability to find a wind generator in a certain curtailed power
state for each computed wind speed tolerance bounds. To solve this
problem, the main steps described in the next Subsections have
been applied.

2.1 Wind forecasting model

The predicted power profiles for each wind generator have been
obtained by employing the adaptive algorithm proposed by the
Authors in [11], which amalgamates the forecasted wind profiles
supplied by a synoptic and local forecasting model by adopting a
supervised learning system, where the primitive equation
atmospheric general circulation model of the European Center for
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Medium-range Weather Forecast (ECMWF) [12] is the considered
synoptic model.

This allows to consider the physical interactions between
different several physical systems such as atmosphere, soil
wetness, ocean and snow covering, and its predictions are
successively corrected by adopting an adaptive learning algorithm
that uses experimental data for improving the wind forecasting
accuracy of the model. Hence, the effects of new operating
conditions have been considered by updating the model in light of
its adaptive features.

Hence, the authors have applied the described method in this
work by considering its effectiveness proved in several previous
works.

2.2 Generator reliability model

In order to be as more exhaustive as possible the generator
operation states that can be defined are:

1. Alarm: operation in the presence of anomalous working
conditions.

2. Derated: operation in the presence of an external reduction of
generated power.

3. Faulted: operation inhibited due to a failure condition.
4. Run: normal operation.

Nonetheless, in light of the described scenario, the aim of this
paper is to develop the model for describing the wind generator
behaviour in derating conditions, keeping low the required
computational burdens. Therefore, the wind generator has been
reduced to a binary model, while the wind speed, which is one of
the most influential variable ruling the generation state transitions,
is classified in the classes shown in Table 1, where w1, w2, w3 are
the cut-in, rated and cut-off speeds, respectively. 

2.3 Process of information fusion

To estimate the levels of power curtailments in derating conditions
for the wind generators over the time a probabilistic model based
on the Markov Chains has been adopted. The main idea is to start
from data-driven power curves for each wind generator, and once
knowing wz, which is the vector of the measured wind speed over
the time for the zth wind generator, the corresponding theoretical

power output Pthz = f (wz) is calculated for each generator over the
time. The experimental power curves have been calculated on the
base of the available SCADA data.

This vector has been used to compute ΔPz = Pthz − Pz, which is
the vector of the difference between the maximum power available
and the measured one Pz over the time and where the ΔPj are
fractions of the rated Power value PR, ∀j ∈ [1, 5] and that are
summarised in Table 2. 

Hence, the operation data stored in the SCADA event register
plays a strategic role in the development of this probabilistic model
because their adoption has allowed to determine the transition
probabilities by extracting the most relevant data and successively
organising them in a double column matrix Cz, which dimensions
are [M(z),2], with z ∈ [1,Nwg], where m ∈ [1,M(z)] and where the
second column contains the wind generator operation state for each
time sample as shown in Table 3. Furthermore, the matrix of
measurements set Dz has been introduced, which dimensions are
[H, V ] and where it contains the averaged measured data on ten
minutes, such as wz, Pz, Pthz and ΔPz, and the codes for wind speed
and derated power and the corresponding measurement time. 

Hence, the measurement set of Dz have been uniquely labelled
by following the code's list in Table 4, which has been developed
by taking into account alg. 1, by fusing the deriving information
from Cz, which assigns the g codes for each generator state
transition g1−g2 and vice versa, and from the couple of codes w
and d, which are stored for each element in Dz, allowing to
uniquely assign codes to each hth element of Dz. 

In according with the described assignment for each row of this
matrix will correspond an mth transition to a new state, the two
columns describe the transition between two different states
recorded time and the corresponding arrival state code,
respectively.

Hence, by using the described labelling tool the following
algorithm allows obtaining Oz, which contains for each element the
number of transitions from the state i-th to j-th one.

Where the number of total states is N, which is equal to 9 in the
above case. Then, the obtained Matrix Oz allows to compute the
transition probabilities as follows:

P( j∖i) = Oz(i, j)
∑ j = 1

N Oz(i, j) (1)

Then, by iterating the following set of linear equations the
generation state probabilities can be computed at each time class t
(Figs. 1 and 2):

pt = pt − 1P (2)

Hence, by solving the following equation system, the steady
state probabilities x can be computed as follows:

x1(P11 − 1) + x2P12 + . . . + xNP1N = 0
x1P21 + x2(P21 − 1) + . . . + xNP2N = 0

. . . = 0
x1 + x2 + . . . + xN = 1

(3)

where the above relation can be written by using a matrix-based
formalism, as:

xP ∗ = γ (4)

where P* is the modified transition matrices. Hence, the previous
equations show the ability to forecast on the behaviour of a certain
system by only starting from an initial conditions set and the
knowledge of the probabilities to change state over the time.
Therefore, the authors aims to predict the evolution of a wind
energy system by supplying the following reliability indexes in
terms of probabilities as it will be shown in the next subsection.

Table 1 Wind speed states that are defined by classifying
each hth element of wz ∀h ∈ [1,H] and ∀z ∈ [1,Nwg]
class bounds
w1 wz(h) < w1
w2 w1 ≥ wz(h) < w2
w3 w2 ≥ wz(h) < w3
w4 wz(h) ≥ w3
 

Table 2 Derated power states that are defined by
classifying each hth element of ΔPz ∀h ∈ [1,H] and ∀z ∈
[1,Nwg]
class bounds
d1 ΔPz(h) < 0
d2 0 ≤ ΔPz(h) < ΔP1
d3 ΔP2 ≤ ΔPz(h) < ΔP3
d4 ΔP3 ≤ ΔPz(h) < ΔP4
d5 ΔP4 ≤ ΔPz(h) < PR

 

Table 3 Defined wind generator operator states
class label
g1 Derated
g2 Not Derated

 

4962 J. Eng., 2019, Vol. 2019 Iss. 18, pp. 4961-4964
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



2.4 Evaluation of the effects related to the wind forecasting
error

The described process for the information fusion allows to relate
the wind speed with both the generator operation state and the
quantity of power derating induced by the transmission system
operator in order to mitigate the power lines congestion. Then, this
can be strategic in the research of the most critical wind farms for a
certain area going to evaluate the effects of the wind forecasting
error. Hence, in order to quantify the effects on the estimation of
the derating probabilities for each wind generator the total
probability law has been applied as follows:

P(Δxz(t)) = ∑
k = 1

N
P(xkz(t) wk(t) ≤ wz(t) + e(wz(t)) < wk + 1)

⋅ P wk(t) ≤ wz(t) + e wz(t) < wk + 1

(5)

where P(Δxz(t)) is the total derating probabilities of the zth wind
generator at time t when the probability of being in a certain wind
generator derated state is P x(t)kz  and the forecasted wind speed
wz(t) + e(wz(t)) is included in kth wind speed class where e(wz(t)) is
the wind forecasting error that is has been computed by knowing
its probability distribution on a real case study.

3 Case study
The proposed methodology has been applied to a real case study
based on a wind farm located in the south of Italy, which is
characterised by a rated power of 36 MV A shared among 18 wind
generators. In order to accurately describe the effect of wind
behaviour on the power curtailments, in this study the number of
wind speed classes has been increased compared with the system
shown in Fig. 3. 

The steady state probabilities for each derated power and wind
speed bins have been computed by solving the equation system
shown in 4, where the results have been summarised in Fig. 4 for
each machine of the wind farm object of study. These data
represent the probability distribution of the actual derating
probabilities over the defined wind speed bins, and allow to
highlight the most critical conditions for which the highest power
curtailments are caused. 

In particular the described frequency distributions highlight the
different behaviour of the wind turbines in function of both the
wind and network conditions, because the frequency distribution
has proved to be not homogeneous for all system states. Then, in
light of this, the next objective will be the identification of the
causes that have provoked this different spreads (Fig. 5). 

Starting from these results, the derating probabilities shown in
Fig. 4 have been processed in order to estimate the derating
operation for each wind generator by considering also the effects of
the wind forecasting error. This process has been implemented by
estimating the probability distribution function of the wind
forecasting error, and by performing a sensitive analysis aimed at
changing the amplitudes of the wind forecasting error, which are
shown in Table 5. The obtained profiles have been benchmarked
with the corresponding theoretical power profiles (blue), which
have been obtained by setting to zero the wind forecasting error.
The wind forecasting problem has been computed for a time
horizon of 24 h by setting an initial state the real generator
operation condition at time h − 1, (Table 5) 

Table 4 Obtained states for the final model
w1 w2 w3 w4

g2 9 9 9 9
g1 d1 9 9 9 9

d2 9 1 5 9
d3 9 2 6 9
d4 9 3 7 9
d5 9 4 8 9

 

Fig. 1  Algorithm 1 labelling: ∀z ∈ [1,Nwg]
 

Fig. 2  Algorithm 2 transitions counting: ∀z ∈ [1,Nwg]
 

Fig. 3  Graph of the Markov Chain model proposed in this study
 

Fig. 4  Wind generators distribution for each defined operation state. The
quantities are expressed in p.u. where the rated wind speed and power
values are 11 m/s and 2000 kW, respectively
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Hence, by observing the following figures, it is possible to note
the great influence of the wind forecasting error on the estimation
of the wind power curtailment, which demonstrates the importance
of quantifying the impacts of the occurrence probabilities on the
generator operation state.

In particular, it is worth noting that the employed wind
forecasting error algorithm tends to underestimate the real power
profile, hence underestimating the derating probabilities profiles.
Obliviously, this behaviour influences the dynamic of the proposed
model, which has not been able to predict the true derating
probability profiles.

Consequently, the obtained low probabilities values have been
induced by the limited operation of the analysed wind generators in
derating condition compared with the overall observed time period,
which has been based on a 1 year time window. Therefore, the
reduction of the wind forecasting error allows to reduce the certain
wrong evaluation of wind generator operation states as it has
proved in this figure other than increase the reactivity of the model.

Analysing this figure, it is also very clear how a large error
could determine large deflections, which do not allow taking into
the account the changing of the wind condition and its influence on
the power grid. These issues could induce notable effects on the
power system operation policies.

4 Conclusions
The effective integration of wind power generators in the existing
electric networks requires adequate procedures aimed at reliable
estimating the energy profiles available over the time, by taking
into account the actual power system state, and managing the
effects related to not programmable and stochastic generation
profiles. In the light of this need, this paper proposed a
probabilistic model based on Markov chains, which allows system
operators to reliably predict the available generated profiles by
taking in account the uncertainty of the wind forecasting methods,
the derating operation states, and the probability of power
curtailments imposed by the power system operator. The
experimental results obtained on a real case study confirmed the

effectiveness of the proposed method in describing the multiple
effects of the wind power uncertainty on both the generation
operation and real power production.
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Fig. 5  Lower figure shows the curtailed power probability profiles, which are obtained by changing the maximum amplitude of the wind forecasting error as
shown in the upper figure. The blue profiles in the both figures are the wind speed and derated power benchmark profiles, respectively

 
Table 5 Maximum amplitude of the wind forecasting error compared with the measured value
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