
p ()

URL: http://www.elsevier.nl/locate/entcs/volume82.html 13 pages

Dynamic aspects of visual modelling
languages ?

Paolo Bottoni
a

a Dipartimento di Informatica - Universit�a di Roma \La Sapienza" - Italy

Abstract

A large class of diagrammatic languages falls under the broad de�nition of \exe-

cutable graphics", meaning that some transformational semantics can be devised

for them. On the other hand, the de�nition of static aspects of visual languages

often relies on some form of parsing or constructive process. We propose here an

approach to the de�nition of visual languages syntax and semantics based on a

notion of transition as production/consumption of resources. Transitions can be

represented in forms which are intrinsic to the diagrams or external to them. A

collection of abstract metamodels is presented to discuss the approach.

1 Introduction

The term \executable graphics" was introduced by Lakin [?], to emphasise

that a graphical sentence can be considered as an executable speci�cation of

some process, if a suitable interpreter is provided. This de�nition was con-

trasted to that of visual programming languages, which was only focused on

the purpose of the speci�cation, i.e. program de�nition rather than communi-

cation in general. Such a notion lies today behind most visual modeling lan-

guages. In more general terms, independently of the purpose of the execution,

we are interested in the existence of transformational semantics associated

with graphical speci�cations, as is typical for visual modeling languages.

Transformational processes related to visual sentences can indeed be de-

�ned even for modelling languages not intended to specify processes but struc-

tures and con�gurations. The formal de�nition of diagrammatic languages is,

in fact, often based on some intrinsic notion of process. In particular, syntactic

de�nitions based on rewriting systems rely on some interpreter able to check

the correctness of a visual sentence, or to generate correct visual sentences,

with respect to the language speci�cation. In the �rst case, we have a parsing

?
Partially supported by the EC under Research and Training Network SeGraVis and by

Italian Ministry of Education.

c2003 Published by Elsevier Science B. V.

120

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Bottoni

process in which the rules in the language speci�cation de�ne which elements

have to be present and how to reduce them towards obtaining a language ax-

iom. In the second case, the interpreter executes the rules starting from some

axiom to obtain a sentence which is guaranteed to be correct at the end of the

generation process.

Examples of the �rst, analytical, approach are de�nitions through Con-

straint Multiset Grammars [?], Symbol-Relation Grammars [?], and Positional

Grammars [?]. In these approaches visual elements are �rst represented sym-

bolically and then the interpreter operates on these symbols, exploiting some

suitable encoding of geometrical and topological properties and relations of

the original visual elements. A survey of such approaches is in [?].

Examples of the second, constructive, approach are Shape Grammars [?],

and Visual Conditional Attributed Rewriting Systems [?]. In these cases, the

rules directly exploit the concrete visual elements, so that their application

results in the transformation of a visual sentence.

Graph Transformations share properties of both approaches. Although

originally employed to de�ne visual languages in an analytical way, they rely

on a mapping of the original sentence not into symbolic form, but into an

abstract graphical form, mostly that of typed and attributed graphs. Hence,

the analysis produces progressively simpler and more abstract graphs.

In many cases, diagrammatic languages are themselves speci�cations of

processes. Again, we can distinguish two cases. In the �rst case, that we

deem as representational, diagrams are used as an abstract representation

of some behaviour, which can concretely involve any type of element. The

process evolution may be mapped back to the animation of such diagrams.

In the second case, simulational, the domain model is represented by visual

elements whose visual behaviour is de�ned in visual terms (typically in the

form of before-after rules involving the concrete visual elements), and the

visual evolution is interpreted to portray aspects of the real evolution.

Examples of the representational approach are �nite state machines, Petri

nets, Statecharts. Examples of the simulational approach are Agentsheets [?],

KidSim/Cocoa [?], Altaira [?]. The two approaches can be merged to obtain

representational visual models specifying behaviours of simulational visual el-

ements, as for example in [?]. Visual rewriting systems can also be used to

specify visual behaviours. For example rewriting systems based on linear logic

have been used to express the transformations de�ning the behaviour of �nite

state automata, as well as transformations de�ning visual inference processes

[?,?]. Graph transformations are used in GenGEd to concurrently de�ne be-

haviours and their representations as animations of visual elements associated

with graph nodes [?]. General purpose visual programming languages, such

as Pictorial Janus [?] or Vex [?], are beyond the scope of this paper, but they

appear to share aspects of representational languages.

In general, con�gurations of (symbolic or visual, concrete or abstract) el-

ements are transformed into some other con�guration. The content of the

121

Bottoni

transformation is in turn often de�ned in visual terms, while its execution is

usually speci�ed by an abstract interpreter, often de�ned in algorithmic terms.

In this paper we aim at de�ning a general model of visual transformations as

based on an abstract notion of transition, seen as production/consumption of

resources, and on an abstract notion of transition step, as de�ned by some

application policy. In particular, whereas models of speci�cations of visual

transformations specify at the same time the form of the rules and the way in

which they have to be applied, we argue here that a separate de�nition of these

two aspects allow a greater exibility, and in particular reuse of speci�cations

under di�erent application policies.

The rest of the paper develops as follows. After revising some related

work in Section 2, we propose a metamodel for diagrammatic languages in

Section 3, regarding a visual modeling language as composed of visual ele-

ments in some signi�cant spatial relations. This metamodel is then related

to a metamodel for visual speci�cation of transitions, and to a more general

metamodel for transformations in Section 4. Finally, Section 5 discusses visual

representations of processes and the management of visual interaction, before

conclusions are given in Section 6.

2 Related work

Several authors have studied abstract de�nitions of visual languages as a basis

to de�ne formal semantics on them, or for the construction of visual tools.

Erwig introduced the notion of abstract syntax for visual languages, adopt-

ing a graph-based approach [?], in contrast with tree-based abstract syntaxes

typical of textual programming languages. The denotational semantics of a

diagram is then constructed from such a graph. In this paper, we are more

interested in the transformations which occur on the graphics, leaving their

mapping to some external semantics to a separate interpretation process.

On the other hand, approaches based on graph transformations usually

exploit a distinction between a low-level and a high-level interpretation, pos-

sibly occurring on distinct graphs [?]. In the approach proposed here, we

assume the existence of suitable realisations of geometry so that we can omit

considering the low-level interpretation, and we concentrate on the de�nition

of constraints relating the di�erent components of a visual sentence. A recent

proposal refers to category theory to characterise families of connection-based

languages in terms of morphisms among elements [?]. Category theory has

also been used to specify the semantics of component-based visual programs,

in which connections de�ne some communications among them [?]. Classes of

languages were de�ned according to an Entity-Relationship approach in [?].

Metamodel approaches are gaining interest in the visual language commu-

nity, following their success in de�ning the visual languages in UML. In par-

ticular, the UML approach combines diagrammatic sentences (usually class

diagrams) and textual constraints for the de�nition of the semantics of visual

122

Bottoni

languages. A metamodel approach is implicit in most generators of diagram-

matic editors, in which at least an abstract notion of graphical object has to be

de�ned. Most generators are based on the translation of some formal syntax

into a set of procedures controlling user interaction, and on constructing the

semantic interpretation of the diagram in a parsing process. Examples of such

tools, where the formal syntax is some variant of graph rewriting, are Diagen

[?] (based on hypergraph rewriting) and GenGEd [?] (in which constraints

are used to de�ne lexical elements, and two separate graph rewriting systems

are used, one to guide diagram construction, and one to de�ne the parsing

process). In MetaBuilder [?], a designer de�nes a new visual language by

drawing its metamodel class diagram, from which an editor is automatically

generated, but the diagram transformational semantics is not considered.

Moses [?] follows [?] in working on an abstract syntax description of

visual sentences through attributed graphs. From this speci�cation a syntax-

checker is de�ned. In the Moses environment a user can de�ne a sentence, with

the syntax-checker operating in the background. Semantics is dealt with by

producing speci�c interpreters in the form of Abstract State Machines for any

given visual language. We will see in Section 5 how modeling transformation

systems, visual or not, in terms of production and consumption of resources

can support the automatic generation of syntax-directed editors.

Metamodels are used in the AToM3 environment [?] as a general form of

abstract syntax. Meta-meta-models generate meta-models de�ning the type of

systems to be simulated. Finally, a model de�nes a speci�c instance of system.

All models are expressed in some visual formalism and model transformations

are de�ned through graph grammars. Component interconnection is solved

by mapping di�erent components to a common formalism.

The research described in this paper has important similarities with the

GRACE e�ort towards a uni�ed view of graph transformations [?]. GRACE

strives to achieve approach independence via an axiomatic de�nition of graph

transformation, so as to be able to combine the semantics of di�erent trans-

formation systems. Distributed systems are thus realised as composition of

modules via some import and export interfaces. In our approach, we regard

multiset, rather than graph, rewriting as the basis for modelling transfor-

mations, and we stress the possibility of having recon�gurable interpreters

managing exible policies for rule application.

The EU working group APPLIGRAPH is leading an e�ort to de�ne com-

mon exchange formats for graphs and graphs transformations [?]. In this case,

two logical models in the form of UML class diagrams are the basis for two

DTDs, so that XML can be used as an exchange format. We will discuss later

similarities and di�erences between our proposals and those in [?].

123

Bottoni

3 Visual sentences

We base our proposal on a view of of visual sentences as composed of visual

resources, expressable as terms of the form t(s; x1; : : : ; xn), where t is a type

symbol from an alphabet �, s is a graphical structure and each xi is the value

of some attribute. Each term type t is characterised by a graphical type of the

same name, to which the structure s can belong, and by a set of attributes.

We call K(�) the set of visual terms constructed from the elements of � and

D(K(�)) the set of diagrams constructed with terms from K(�).

In particular, re�ning the metamodel proposed in [?], we consider meta-

meta-models de�ning families of visual modelling languages, where each mod-

elling language provides a metamodel for the de�nition of models of systems.

For brevity, we will use the term metamodel in all cases. We do not discuss

here the structural aspects of the classi�ers in the class diagrams de�ning the

abstract syntax of each family, except for the presence of aggregations. Fig-

ure 1 shows the metamodel to which diagrammatic languages conform, meant

as languages whose interpretation depends on the identi�cation of signi�cant

SpatialRelations among Identi�ableElements. A set of elements can be in-

volved in more than one spatial relation. For example, if the relations leftOf

and above are each de�ned by partitioning the plane in two semiplanes based

on the position of the source element, then any two elements not exactly

aligned will participate in both relations. The attributes of a visual term are

de�ned by the corresponding identi�able element. An identi�able element is

associated with a ComplexGraphicalElement which manages its geometrical

aspects, thus de�ning the appearance of its graphical structure. A complex

graphic element can in turn be composed of several graphical elements at a

lower level of abstraction. For each graphical element a collection of Attach-

Zones is de�ned, whose concrete realisations are of type Area, Border, or Dot.

The existence of a spatial relation among elements must be decidable on the

basis of the de�nition of the isAttached operations in the attach zones of the

graphical elements.

Apart for the realisations of AttachZone, all classi�ers in Figure 1 represent

abstract classes except for the case of AttachZone, which is an interface, and

of Polyline and Icon, which are here concrete classes as de�ned in the UML

speci�cation document, while Shape is left abstract as is common in object-

oriented hierarchies for graphical toolkits.

An important family of diagrammatic languages is that of connection-based

languages, whose metamodel is presented in Figure 2. In this family, identi�-

able elements can be either ReferrableElements or Connections. The graphical

element associated with a connection is of type Polyline (this would be ex-

pressed by an OCL constraint), while Touches is the only type of signi�cant

spatial relation. According to the type of connection, i.e. if isDirected() or

isHyper() return true, the elements association end is specialised in source,

target, or members, with suitable multiplicities. Some connections may in

124

Bottoni

Fig. 1. The basic model for diagrammatic languages

turn be ReferrableConnections, while an Entity is a referrable element which

cannot act as a connection. This family can be further specialised. For ex-

ample, graph-like languages have graphical structures associated with entities

with their whole borders as attach zones, while in plex languages the graphi-

cal structures have a �xed set of attaching dots. The logical model for graphs

presented in [?] can be seen as a re�nement of the part of our abstract syntax

related to identi�able elements (i.e. entities and connections, there expressed

as nodes and edges), without considering the characteristics of graphical ele-

ments, which are therefore excluded from the XML documents.

4 Specifying execution

In general, the notion of transition is connected to the identi�cation of a notion

of system state, signi�cantly changed by the occurrence of the transition.

We restrict ourselves to considering identi�able elements in a Diagram

which are SemanticElements, i.e. those visual elements through which se-

mantics is de�ned, and will abstract from non signi�cant marks, noisy ele-

ments, or so on which may occasionally be present in a concrete diagram.

Some types of identi�able elements, such as annotations, borders, and so on,

are also present in a diagram and constitute the so-called ParatextElements,

useful for the comprehension of the overall meaning of the diagram, but not

involved in determining the characteristics of the transitions. For the case

of visual transformations, it is important to distinguish between what may

change and what has to remain constant along a transformation, or possibly

be subject to a restricted set of transformations. Typically, in [?] a frame has

been de�ned as that set of visual terms whose structures maintain the same

125

Bottoni

Fig. 2. The model for connection-based languages

geometrical properties along a transformation, in particular their coordinates,

possibly varying the colour of the pixels. Such semantic elements provide a

context in which an observer can understand the content of the transforma-

tion. Some elements, called ContextSupportElements are typically devoted to

this role. A VisualCon�guration is then a projection of a diagram, involv-

ing only those semantic elements which can be subject to change. We call

such elements Con�gurationSupportElements. We use the term con�guration,

instead of state, to underline its distributed aspect and the fact that the over-

all state descends also from the overall structure of the relations among the

elements. We can now explore some typical forms for specifying behaviours

through visual notations. It appears that three main types of speci�cation

can be identi�ed.

In a �rst case, diagrammatic notations are used to specify transformations

following some prototypical model such as �nite state automata, dataow di-

agrams and their derivations, or Petri nets. These models use a diagram to

implicitly de�ne the content of the transformation (which can be represented

as diagram animation), while adopting an explicit representation of the tran-

sition elements. The de�nition of the actual operational semantics for the

transition is delegated to an external de�nition, in the form of an algorithm

or of a rewriting relation. These models have canonical visual representations,

so that one can for example identify the mathematical de�nition of a �nite

state automaton with any one of the isomorphic state-arrow graph representa-

tions of the automaton. These visual representations constitute speci�c visual

126

Bottoni

languages, typically, in the family of connection-based languages. The explicit

representation of the transitions in the diagram is realised by the presence of

special types of semantic elements, called Transitions. As they remain con-

stant in these types of models, we consider them as special cases of context

support elements. The representation of the system dynamics is directly sup-

ported by some form of canonical animation. To this end, we consider a special

type of con�guration support elements, called Tokens, which may appear or

disappear, or move along the transition from a Holder to another. As holders

remain constant in the animation, and provide a basis for interpreting the

occurrence of a transition, we also consider them as context support elements.

A visual con�guration is actually determined by how tokens decorate holders.

Figure 3 shows the metamodel resulting from the analysis above, and de�nes

the family of visual languages using explicit representations of transitions and

supporting execution as animation of the speci�cation. The connection with

the concrete visual level (as described in the metamodel of Figure 1) is realised

by mapping semantic elements to identi�able elements or their properties. For

example, a token need not be a separate graphic element, but its presence or

absence can be represented by some special appearance of the graphic element

associated with a holder, e.g. colouring of a state node is often used to indicate

the current state. Conversely, the presence of a token in one of a given set

of holders could be represented by associating di�erent icons with the token.

While, as said before, the representation of transitions in this family of lan-

guages usually involves the use of connections (as in Finite State Automata),

it is also possible that transitions be represented by referrable elements as

happens in Petri nets. In any case, the Touches spatial relation is used to as-

sociate some pre- and post-conditions of a transition with the transition itself.

Moreover, attributes of con�guration support elements relevant to de�ning

their status are mapped into visual attributes of identi�able elements. The

same may happen for transitions, if one wants to represent some state the

transition can be in, or record the story of its activations. Such representa-

tions are in general used only for the animation, while the static de�nition of

the speci�cation does not usually resort to such artefacts.

The second family groups those visual speci�cations which express trans-

formations as before-after visual rules, following the pioneering works of BIT-

PICT [?], Agentsheets [?] or KidSim (today: Stagecast) [?]. These are

based on a simple operational semantics, which can be described as: "`re-

move a subdiagram L which is an occurrence of the left-hand side from

the current diagram and substitute it with a subdiagram R which is an in-

stance of the right-hand side generated on the basis of L". The mapping

f : D(K(�))! D(K(�)) such that R = f(L), can be de�ned in visual terms

or not. However, such languages do not need to have a canonical applica-

tion policy, even though implementations usually support simple policies, e.g.

sequential or concurrent.

Finally, visual rules can be associated with sophisticated application poli-

127

Bottoni

Fig. 3. The model for visual languages using explicit representations of transitions.

cies or embedding mechanisms, as in graph grammars (for a survey, see [?]).

In this case, however, rules operate on an abstract representation of the di-

agram, rather than on the actual diagram. Transformations can be mapped

back to the actual diagram, generally by way of programmed routines [?], or

layered transformations [?] (for a survey on applications see [?]).

In general, all families of visual speci�cations rely on a general abstract

model of what a visual transformation is. We consider that a RuleSet is

a collection of TransformationSpeci�cations, each composed of a set of Pre-

conditions and a Postcondition associated via some mapping. A transforma-

tion speci�cation can involve some additionalMetaConstraints, as for example

de�nition of priorities, or grouping of rules. The de�nition of pre- and post-

conditions can be reduced to the speci�cation of the Patterns for the Resources

which are needed in a pre-matched Con�guration for the transition to be ap-

plied and of those that are de�ned as present in the post-matched con�guration

after application. The Matching abstract class speci�es the characteristics of

the required matching (e.g. injective). Some preconditions of a rule (but not

all) may appear in negated form, implying that they must not be matched

by the con�guration for the transition to be applied. Some restriction can be

applied between the negative and the positive pre-conditions. The mapping

to the post conditions originates only from the positive preconditions. All

patterns are typed. A Type is associated, via lists, with the ordered sequence

of Attributes describing the features of the resource. These attributes can be

referred to in the pattern through variables and literals, or be left unmen-

tioned. In any case, the attributes considered in the pattern are a subset of

128

Bottoni

those de�ned by the type. Hence, a pattern actually de�nes a set of resources

complying with the values of the attributes instantiated in it. An Alphabet-

Symbol is a pattern which mentions all the attributes de�ned by the type as

variables. Each resource is an instance of an alphabet symbol with a literal

value for each attribute. The speci�cation can also require the performance of

some Activity, which may use as parameters the attributes mentioned in the

patterns in the pre- or post-conditions. Typically, activities in a pre-condition

are meant to evaluate constraints and to be free from side e�ects. Activities

in a post-condition are usually meant to produce values for instantiating the

patterns mentioned in the post-condition, but can also start some external

process, modifying the environment in which the system is immersed.

A TransformationStep applies some transformation speci�cation accord-

ing to some Policy, and transforms a source con�guration into a target one,

according to the meta constraints associated with the selected speci�cations.

The source con�guration must provide a pre-match for each transformation

speci�cation activated in the transformation speci�cation. In a similar way,

the target con�guration must provide a post-match for the same speci�cations,

where the pre and post-matches are consistent with the mapping between pre-

and post-conditions. The abstract syntax for the resulting metamodel is pre-

sented in Figure 4. Again, the model for graph transformation systems of [?]

can be seen as a specialisation to the case of graphs of this general model. In

particular, it makes the notion of embedding explicit, which can be expressed

in our model through pre- or post-conditions, constraints, or activities.

Fig. 4. A general model for speci�cations of transformation processes

5 Relating processes and visual representations

While the abstract syntax of Figure 4 provides a general model for any kind of

(discrete) transformation system, it can be immediately related with the meta-

model discussed with reference to Figure 3, with the needed simpli�cations in

the case that transitions are not explicitly mentioned. Hence, semantic ele-

129

Bottoni

ments can be seen as speci�c types of resources, so that we eventually employ

graphic elements or their properties to represent resources. Each transforma-

tion speci�cation must be expressed in terms of the e�ect it has on the graphic

elements present in a diagram. Hence, a general mechanism can be devised to

relate abstract and visual transformation processes. If we consider identi�able

elements as visual resources, we can provide a mapping between the alpha-

bet of resources in the modelling languages and the alphabet of identi�able

elements in their visual counterparts. It is then possible to de�ne arbitrary

chains of such mappings, so that even modelling languages with canonical

visual representations can be represented with any type of graphic elements.

Conversely, visual speci�cations can be transformed into abstract de�nitions

of transitions, provided one can map in a non ambiguous way the identi�able

elements in the visual speci�cation to resources of the model.

Transition speci�cations are here considered independent of the applica-

tion policy governing their concrete activation. In this way, even transition

speci�cations which have an associated canonical model of execution can be

applied with di�erent models. For example, one could use Petri nets with the

usual true concurrency semantics, or prescribe a sequential application policy

where only one transition per step can be applied. Note that this would re-

quire the transformation of the original Petri net into one with an additional

place which is a pre-condition for all the transitions in the net and in which

a token is forced to be put back by each transition. One can even prescribe a

maximally concurrent semantics, where all transitions that may occur with-

out conicts must occur. Such a type of behaviour would be modelled with

a Petri net of exponential complexity derived from the original one, as one

should take into account all possible simultaneous �rings.

The application policy can also accommodate particular forms of embed-

ding rules constraining the application of a transformation, or be based on

an interpreter for control expressions, possibly prescribing the transactional

application of rules, as occurs for transformation units in graph transforma-

tions [?]. For example, the request of the SPO approach, that edges connected

with removed nodes be removed as well, can be realised by transforming the

original SPO rule r : L ! R into a a transformation unit T (r) which de�nes

a step as resulting by a rule expression prescribing the following:

(i) mark the nodes and edges to be removed as prescribed in L (this rule

may use arbitrary matching);

(ii) as long as possible do remove an edge connected to a marked node;

(iii) remove the marked edges and the marked nodes if there is no edge at-

tached to any of them and insert the graph speci�ed in R, respecting the

mapping r.

The views presented so far are also relevant to the management of visual

interaction. In particular, interactive systems based on the paradigm of the

separation of concerns between model, view, and interaction control, can be

130

Bottoni

considered as the pairing of two dynamic systems through a causal connection.

The Control level system is de�ned by a transition system where, apart

from the resources de�ning its con�guration, additional resources can be in-

troduced by the user by performing speci�c well-de�ned types of action.

The Visual level system maintains a collection of (visual) resources which

de�ne its con�guration. Transformations in the con�guration occur according

to transition rules which can be �red by the control system, so as to reect

modi�cations in the underlying Model level system.

In particular, in the design of syntax-directed visual editors, visual rules

de�ning the valid sentences in the visual language can be considered as the

speci�cation of transformations in the visual con�guration corresponding to

the current state in the construction of the visual sentence. On the other hand,

according to the style of interaction, such rules de�ne standard sequences of

transformation steps in the control system to be performed in order for a

transformation at the visual level to occur. In [?,?] patterns for the auto-

matic construction of control systems for a family of visual rewriting systems

are presented. In [?], it is shown how the pair (Control level, Visual level) can

be automatically generated starting from such visual rewriting systems. A

syntax-directed editor results therefore from the pairing of two communicat-

ing transition machines. One machine exploits a sequential policy to realise

the control level in the form of transitions of a conditioned transition network,

where each state represents a selection of visual resources and identi�es two

sets of user actions: enabled and disabled ones [?]. The second machine man-

ages the evolution of the visual sentence according to the original set of rules.

In this case di�erent policies can be adopted, for instance if some sequence of

rule applications speci�ed by a transformation unit must occur. In any case,

transitions in this second machine are triggered by resources produced by the

control machine in correspondence of some well de�ned transitions. The com-

munication between the two machines is based on import/export declarations

of types of resources.

Figure 5 describes the conceptual architecture for a generator of syntax

directed editors. From a LanguageSpeci�cation composed of an Alphabet and

a RuleSet, a Translator creates two rule sets: a, de�ning the behaviour of a

control automaton governing the interaction with the user, and s, governing

the evolution of the diagram, i.e. the creation, deletion and modi�cation of the

identi�able elements in it. The two speci�cations de�ne the behaviours of the

aut and sent Machines, implementing the activation policies and maintaining

the con�gurations of the two systems. The user actions producing transitions

in aut are de�ned as selection, deselection, generation and deletion of

alphabet elements. The actual generation or deletion of a diagram element is

ultimately determined by the rules de�ning the transitions in sent. The causal

connection between the interactive level and the diagram level is managed by

an Executor, which guarantees the communication between the two machines.

Some Observers reect the evolution of the two machines back to the user

131

Bottoni

or communicate it to other components of an interactive system. The greyed

components in Figure 5 describe the �xed components of the architecture,

while the others depend on the speci�c transformation set.

Fig. 5. Syntax directed editors seen as paired dynamic systems

6 Conclusions

We have discussed a view of dynamics in visual sentences which regards dia-

gram transformations as production and consumption of identi�able elements

in a visual con�guration. Such elements are ultimately conceived as graphi-

cal resources. This approach relies on the availability of generic interpreters

for transformation speci�cations, which can be applied according to arbitrary

policies. The interpreters can thus be dynamically con�gured by changing

independently the rules to be applied or the application policies. This favours

the coordinated management of heterogeneous notations as well as the au-

tomatic generation of dynamic systems from speci�cations. The approach

can be uniformly applied to the management of transition systems de�ned by

visual speci�cations as well as to the generation of visual sentences via syntax-

directed editors, or to de�ne visualisations of parsing processes in which the

reduction actions are modelled as the substitution of groups of identi�able

elements with graphical representations of non terminals.

Acknowledgements

I thank the members of the Pictorial Computing Laboratory at the University

of Rome: S. Levialdi, M. De Marsico, D. Ventriglia, and P. Di Tommaso

for several valuable discussions, and the latter two for contributing to the

implementation. The anonymous UNIGRA referees are also thanked.

132

