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1 Introduction

With the recent discovery of the Higgs boson the last missing piece of the Standard Model

(SM) has been unveiled and all the parameters of the theory measured. The success of

the Standard Model in describing all the measured observables at colliders contrasts with

the failure of the theory to explain some non-collider observations, such as Dark Matter,

matter-antimatter asymmetry, etc.

Among the various completions of the Standard Model proposed so far, supersymmetric

(SUSY) theories remain the most attractive option. Not only they screen the electroweak

(EW) scale from ultraviolet (UV) sensitivity to new physics thresholds but they successfully

predict the unification of gauge couplings and may provide with a natural WIMP dark

matter candidate.

On the other hand, indirect hints for a small hierarchy between the scales of electroweak

and supersymmetry restoration (e.g. flavor observables, searches for EDMs, LEP bounds

on the Higgs mass), have found stronger support from the recent discovery of a moderately
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heavy SM-like Higgs [1, 2] and from the absence of any evidence of superpartners in the

first LHC runs at 7 and 8 TeV (see e.g. [3, 4]).

While the scale of supersymmetry may still be low (there are still various arguments in

favor of this scenario), hopefully within the reach of the next LHC run, it is fair to say that

our confidence in predicting the new physics scale based on naturalness arguments weakened

substantially [5, 6]. The suspicion that other mechanisms may explain the strength of

the weak interactions is becoming stronger and alternative scenarios to low energy SUSY

already exist [7, 8]. It is thus useful to look for different (more-experimentally-driven)

methods to infer the scale of the superpartners. One natural candidate is the value of the

Higgs mass, which in supersymmetry is calculable in terms of the couplings and the soft

SUSY breaking parameters.

In particular, in the Minimal Supersymmetric Standard Model (MSSM) the tree-level

Higgs mass is predicted to lie below the Z-boson mass up to quantum corrections logarith-

mically sensitive to the SUSY breaking scale. Therefore the measured value of the Higgs

mass gives non-trivial constraints on the spectrum and couplings of the MSSM, allowing

to shrink the allowed energy range for the superpartners.

Given the logarithmic (in)sensitivity of the Higgs mass value to the SUSY scale, high

precision is required in such calculation to reliably determine the allowed parameter space

of the theory. Besides, the experimental value is now known with per mille accuracy

mh = 125.09(24) GeV [9]. The effort in the Higgs mass calculation has been remarkable,

reaching the two-loop and in some cases the three-loop level, with different techniques and

schemes, see e.g. [10–26]. Some of the computations, however, are only valid for small

SUSY breaking scales, where log-corrections do not need resummations; in fact currently

available computer codes have a very limited range of applicability compared to the al-

lowed parameter space. Moreover, different computations and/or computer codes disagree

among themselves, in some cases substantially more than the expected/claimed level of

uncertainties.

Given the important role played by the Higgs mass in constraining supersymmetric

models, the limitations of the existing codes and the disagreements in the literature, we

felt the need to revisit the computation. We put special emphasis on the relevant parameter

space to reproduce the experimental value of the Higgs mass, on the study of the uncer-

tainties and on the possible origin of the differences with other methods. In this paper we

recompute the Higgs mass in the MSSM using the effective field theory (EFT) approach,

which allows to systematically resum large logarithms and to have arbitrary big hierarchies

in the spectrum, exploiting the mass gap hinted by the largish value of the Higgs mass and

the absence of new physics at the LHC.

Our computation follows very closely the ones in [7, 8, 10, 23–26], providing indepen-

dent checks of such computations. We improved them in various ways. We added all the

dominant SUSY threshold corrections including the contributions from bottom and tau

sectors, which become important at large tan β. In this way we provide the state of the

art in the EFT calculation of the Higgs mass. We performed the computation in both the

DR and the on-shell (OS) schemes, the latter has the advantages of ensuring the correct

decoupling limits and keeping the theoretical errors under control in the whole parameter
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space. We point out that large logarithms arising from splitting the fermions from the

scalar superpartners in split SUSY scenarios do not need resummation in the whole region

of parameters space relevant for the observed Higgs mass. We also find that mh = 125 GeV

may not necessarily bound the SUSY scale to lie below 1010 GeV (and much below at large

tanβ), but it might extend at arbitrarily high scales. Another outcome of our computation

is that, even at maximal stop mixing, the average stop mass is required to be above the

TeV scale in order to reproduce the correct Higgs mass in the MSSM. We also performed a

study of the various possible uncertainties, showing that for most of the parameter space we

are dominated by the experimental ones. We identified some of the sources of disagreement

between existing computations/codes.

We implemented the computation in a new computer code, SusyHD, which we make

public [27] and which allows to reliably compute the MSSM Higgs mass (and its uncer-

tainties) even when big hierarchies are present in the spectrum. Avoiding slow numerical

integrations, the code is fast enough to be used to set the experimental value of the Higgs

mass as a constraint on any other SUSY parameter.

Finally we also explore the implications of the Higgs mass on two of the simplest

SUSY scenarios: minimal gauge mediation (MGM) and anomaly mediation. In particular

in the first case we show how the value of the Higgs mass allows to determine the complete

spectrum of the superpartners.

The paper is organized as follows. In section 2 we describe our computation of the

Higgs mass in the effective field theory approach, we study the theoretical uncertainties

and we compare our results with the existing ones. In section 3 we present the implications

of our computation for the SUSY spectrum in different regimes, in particular we show

the constraints from the Higgs mass in the parameter range relevant for SUSY searches

at hadron colliders, we explored the region of very large tan β and we comment on the

(non) importance of extra log resummation when the SUSY spectrum is split. In section 4

we briefly introduce SusyHD, a new code to compute the Higgs mass using the EFT

technique. In section 5 we apply our results to two of the simplest SUSY models: minimal

gauge mediation and anomaly mediation. We summarize the most significant results in

the conclusions in section 6. Finally, in appendix A, we provide the explicit expressions for

some of the SUSY thresholds computed in this work and more details about the conventions

used in the text. The reader not interested in the technical details of the computation can

look directly at sections 3 and 5.

2 The computation

2.1 The Effective Field Theory technique

Whenever a theory presents a gap in its energy spectrum effective field theory techniques

become a very powerful tool. They exploit the hierarchy of scales to allow a perturbative

expansion in powers of the energy gap. This simplifies the theory getting rid of irrelevant

degrees of freedom and couplings.

Applied to supersymmetry, as the scale of the superpartners is raised, the Standard

Model becomes a better and better EFT, with corrections from higher dimensional opera-
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tors decoupling fast, as powers of v/mSUSY, the ratio between the EW and the SUSY scale.

At leading order in this expansion the presence of supersymmetry at low energy reduces

to a boundary condition for the SM couplings evolved at the SUSY scale, where they have

to match with the full supersymmetric theory.

From the bottom up the technique reduces to taking the measured SM couplings

at low energy, evolving them up to the superpartner scale and matching them to the full

supersymmetric theory living at high scales. The non-trivial relations between the couplings

in the supersymmetric theory (in particular between the Higgs quartic, the gauge-Yukawa

couplings and the soft terms) translates into a non-trivial condition on the soft SUSY

parameters. Equivalently one can leave the physical Higgs mass as a free parameter to be

determined as a function of the UV SUSY parameters. Imposing the physical value for the

Higgs mass then gives the constraint.

The use of this technique in the computation of the Higgs mass in the MSSM is

quite old [10], however its utility in natural SUSY spectra was limited since corrections

from higher dimensional operators could not be neglected in that case. These techniques

became more popular with the advent of Split SUSY scenarios [7, 8] and the recent LHC

results [24–26, 28, 29].

In the rest of the paper, unless specified otherwise, the gauge couplings g1,2,3, the

Yukawa couplings yt,b,τ and the Higgs quartic coupling λ are assumed to be the SM ones

in the MS scheme while the soft parameters (masses and trilinear couplings) are in the

DR or OS schemes. In particular when we refer to our DR or OS results it means that

the soft masses are DR or OS while the couplings are always taken to be the SM ones in

the MS scheme.

Our computation is organized as follows:

• The SM couplings (gauge, Yukawa and quartic) in the MS scheme are extracted from

the corresponding physical quantities at the EW scale at full two-loop level [30]. In

particular the matching between the top mass1 and the top Yukawa coupling is done

using full two-loop thresholds plus the leading three-loop QCD one2 from [32].

• The couplings are then evolved from the weak scale to the superpartner scale using

the full three-loop renormalization group equations (RGE) for these couplings3 [30].

• At the SUSY scale the SM couplings are matched to those of the SUSY theory

(converted from either DR or OS to the MS scheme) using the full one loop thresholds

(from [26] and the O(αb,τ ) corrections from appendix A) plus the leading two-loop

thresholds O(αsαt) and O(α2
t ). The former is computed for generic SUSY spectra

while the latter (which is generically smaller) is only computed for degenerate scalars.

1As usual we interpreted the experimental value mt = 173.34 ± 0.76 [31] as the pole mass, systematic

uncertainties coming from this choice can be estimated by rescaling the experimental error on the top mass.
2Since we do not perform a complete N3LO computation this last correction is also used to evaluate the

uncertainties from higher order terms.
3As for the three-loop top Yukawa threshold, the four-loop QCD corrections [33, 34] to the strong

coupling RGE has been used to estimate the uncertainties.
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The final expression for the Higgs mass can thus be written as

m2
h = v2[λ(mt) + δλ(mt)] , (2.1)

where v = 246.22 GeV and δλ(mt) are the SM threshold corrections (here computed up

to two loops) to match the Higgs pole mass to the MS running quartic coupling. The

coupling λ(mt) is derived using the RGE and the boundary conditions at the SUSY scale

(see below). The RGE for the Higgs quartic coupling are solved together with gauge and

Yukawa couplings at three loops, in particular the top Yukawa yt is extracted from

mt =
v√
2

(yt(mt) + δyt(mt)) , (2.2)

where δyt(mt) is the SM threshold correction matching the top pole mass with the MS top

Yukawa coupling and here computed at NNLO, and N3LO in the strong coupling. The

matching at the SUSY scale Q is instead given by

λ(Q) =
g2(Q) + g′2(Q)

4
cos2 2β + ∆λ(1) + ∆λ(2)αtαs + ∆λ

(2)

α2
t
, (2.3)

where ∆λ(1) contains the 1-loop thresholds matching the Higgs quartic coupling λ(Q) in

the MS-scheme with the one computed in full SUSY in terms of soft terms and couplings,

in the DR or OS schemes. ∆λ
(2)
i are the leading two loop threshold corrections further

discussed below.

If some of the superpartners are light compared to the rest of the SUSY spectrum,

as in the case of Split SUSY, a new mass threshold develops. In this case two matchings

are in order, the first at the Split scale between the SM and the Split SUSY theory, and

the second at the SUSY scale, between the Split theory and the MSSM. The evolution

up to the Split scale is the same as in the previous case. We then used 1-loop thresholds

to do the matchings and 2-loop RGEs to run the Split-SUSY theory [8, 23]. We will

show in section 3.4 that the simplest approach also works in the Split case, i.e. the effect

coming from the splitting of the fermions from the scalar superpartners do not need RGE

resummation in the parameter region relevant for the observed Higgs mass.

Our computation is very close to the one in [26], in particular we added the contribu-

tions from the bottom and tau Yukawas, relevant at large values of tan β, we recomputed

the two-loop thresholds O(αtαs) using the effective potential in [35], and we also included

O(α2
t ) corrections computed for degenerate scalar masses.

The general expression for the two-loop O(αtαs) corrections is too long to be reported

here, but can be accessed through the computer code SusyHD provided in [27] for DR and

OS schemes. Our computation in the DR scheme agrees4 with the one of [26]. In the limit

mQ3 = mU3 = mt̃ and vanishing gluino mass the OS expression takes the simple form

∆λ(2)αtαs = − y
4
t g

2
3

16π4

[
5

2
− 1

2
X̂2
t −

(
2− 3X̂2

t

)
ln
m2
t̃

Q2
+ 3 ln2

m2
t̃

Q2

]
, (2.4)

4We thank the authors of [26] for providing the explicit expression of their result for the cross-check.
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while for M3 = mQ3 = mU3 = mt̃

∆λ(2)αtαs = − y
4
t g

2
3

16π4

[
4− 6X̂t − 4X̂2

t +
3

4
X̂4
t −

(
2− 3X̂2

t

)
ln
m2
t̃

Q2
+ 3 ln2

m2
t̃

Q2

]
, (2.5)

where X̂t = Xt/mt̃, Xt = At − µ/ tanβ and Q is the renormalization scale. The definition

we used for Xt in the OS scheme is given in eq. (A.17) in appendix A.

The two-loop O(α2
t ) supersymmetric threshold correction to the quartic coupling can

be derived from the corresponding correction to the Higgs mass. We derived it under the

simplifying assumption of degenerate scalars while the µ parameter and the renormalization

scale are left free. We used the results in ref. [15] for the O(α2
t ) correction to the Higgs

mass calculated using the effective potential technique in DR. Converting in the one-loop

O(αt) correction the DR superpotential top Yukawa coupling and MSSM Higgs vev into

the MS SM top Yukawa and EW vev will produce an additional shift contribution at two

loops. Analogously for the OS computation there is an extra shift from converting the

stop masses and mixings in the one-loop corrections. We subtract the O(α2
t ) top-quark

contribution because it already appears in the matching at the EW scale. Finally, it is

important to notice that there is also a contribution to the matching of the Higgs mass

(and the quartic coupling) at the SUSY scale induced by the one-loop contribution of the

stops to the wave-function renormalization of the Higgs field, which is instead absent in

the O(αtαs) corrections. The complete expression with the details of the calculation can

be found in appendix A, a simplified expression in the OS scheme for the case µ = mt̃ and

large tan β reads

∆λ
(2)

α2
t

=
9 y6t

(4π)4

[
3 +

26

3
X̂2
t −

11

6
X̂4
t +

1

6
X̂6
t −

(
10

3
−X̂2

t

)
ln
m2
t̃

Q2
+ ln2

m2
t̃

Q2

]
+O

(
tan−2 β

)
.

(2.6)

As a cross check we verified analytically that the two-loop O(αtαs) and O(α2
t ) threshold

corrections to the quartic coupling (under the assumption of degenerate scalars) cancel the

dependence on the renormalization scale of the Higgs mass at the same order.

Finally we also included the 1-loop threshold corrections from the bottom (and tau)

sector, which are relevant in the large tan β region. The explicit expressions can be found

in the appendix A. At large tan β, depending on the size and sign of other parameters,

such as the µ term and the gaugino masses, the net effect is that of reducing the value of

the Higgs mass. This effect may even cancel the tree-level contribution and allow for larger

SUSY scales (see section 3.3).

The relevance of the supersymmetric thresholds decreases as the SUSY scale increases

because of the evolution of the SM running couplings. Among the missing SUSY threshold

corrections the most important are the two-loop O(α2
t ) when the scalars are not degenerate,

the two-loop O(αtα, αsα) proportional to the electroweak gauge couplings and the three-

loop O(αtα
2
s). In the case of large tan β and sizable µ parameter, the two-loop corrections

proportional to the bottom Yukawa can also be relevant, they include the O(αbαs, αbαt, α
2
b)

corrections. The contribution of the missing SUSY thresholds to the Higgs mass is esti-

mated to be below 1 GeV even for a spectrum of superparticles as low as 1 TeV, see the

next section.
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Figure 1. Breakdown of the uncertainties for a 125 GeV Higgs mass as a function of the (degener-

ate) superparticle masses mSUSY. The Higgs mass has been kept fixed at 125 GeV by varying either

the stop mixing (with fixed tan β = 20 for mSUSY < 20 TeV, left panel of the plot) or tan β (with

vanishing stop mixing for mSUSY > 20 TeV, right panel of the plot. Note that for mSUSY < 2 TeV

(the gray region) the 125 GeV value for the Higgs mass cannot be reproduced anymore but is within

the theoretical uncertainties. The black “total” line is the linear sum of the theoretical uncertainties

from SM, SUSY and EFT corrections (in dashed lines). The dotted line ∆exp
mt

corresponds to the

2σ experimental uncertainty on the top mass.

2.2 Estimate of the uncertainties

In the EFT approach to the calculation of the Higgs mass in SUSY, the uncertainties can

be recast into three different groups:

1. SM uncertainties : from the missing higher order corrections in the matching of SM

couplings at the EW scale and their RG evolution;

2. SUSY uncertainties : from missing higher order corrections in the matching with the

SUSY theory at the high scale;

3. EFT uncertainties : from missing higher order corrections from higher dimensional

operators in the SM EFT and other EW suppressed corrections O(v2/m2
SUSY).

Figure 1 summarizes the importance of the individual sources of uncertainty as a function

of the SUSY scale. For definiteness we took the superpartners to be degenerate with mass

mSUSY, the Higgs mass has been kept fixed at 125 GeV by varying either the stop mixing

(with fixed tan β = 20 for mSUSY < 20 TeV) or tan β (with vanishing stop mixing for

mSUSY > 20 TeV). We will now discuss these uncertainties individually.

SM uncertainties. As described in the previous section, in our computation we em-

ployed full SM three-loop RGE and two-loop matching conditions at the EW scale to

relate the pole masses mh and mt and the gauge couplings to the MS running couplings

at the high scale. We also included the 3-loop O(α3
s) corrections to the top mass match-

ing. This is expected to be the leading higher-order correction and the missing 3-loop

– 7 –
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Figure 2. The uncanceled scale dependence from higher order corrections is largest at maximal

stop mixing and small stop masses (here taken 1 TeV). Including only 1-loop SUSY threshold it

amounts to up to a 3 GeV shift of the Higgs mass, when the scale is changed by a factor of 2. It

reduces to below 1 GeV when the leading 2-loop O(αtαs) and O(α2
t ) corrections are included.

matching and 4-loop running corrections are not expected to give larger effects. Still, we

conservatively used the 3-loop O(α3
s) corrections to estimate the SM uncertainties from the

higher-order missing corrections, although the latter are probably smaller.5

The full SM uncertainty in figure 1 has been computed by summing the effects from

O(α3
s) corrections to the top mass and the ∼0.15 GeV estimate [30] of the 3 loop corrections

to m2
h. While the latter corrections would be formally of the same order as the corrections

induced by the 2-loop SM corrections to the matching of the top Yukawa in a fixed order

computation, in the EFT approach they are actually subleading because the 2-loop cor-

rections from the top sector get RG enhanced. The net effect from these SM corrections

amount to a shift to the Higgs mass of order 0.5÷1 GeV for mSUSY ∼ 1 ÷ 107 TeV. The

uncertainty slowly increases with the SUSY scale as a result of the longer RGE running.

SUSY uncertainties. The matching between the SUSY soft parameters and the SM

couplings includes full one-loop threshold corrections (including also bottom and tau

Yukawa corrections) plus the leading two-loop corrections O(αtαs) and O(α2
t ) (the lat-

ter only in the simplified case of degenerate scalar masses). While O(αtαs) can give

large effects, the corrections from O(α2
t ) are substantially smaller and other missing 2-

loop thresholds are expected to be even smaller. Since a missing threshold produces an

uncanceled renormalization scale dependence in the final Higgs mass, such dependence can

be used to estimate the missing corrections. In the worst case (maximal stop mixing and

small SUSY scale) the uncanceled scale dependence from the 1-loop thresholds may shift

the Higgs mass by roughly 3 GeV when the renormalization scale is changed by a factor of 2.

O(αtαs) reduce the shift6 to 1 GeV and O(α2
t ) further down below 1 GeV, see figure 2.

5For this reason our theoretical uncertainty from the SM calculation is somewhat larger than the one

quoted for example in [30], which uses the same precision for the computation of the stability of the SM

Higgs potential.
6In the right plot of figure 2 the scale dependence left after the inclusion of the O(αtαs) corrections

seems to be smaller because of an accidental cancellation for those particular values of the parameters.
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The uncertainty from SUSY thresholds in figure 1 has been estimated by taking the

maximum of the shifts induced by varying the SUSY matching scale by a factor of 2 or

1/2 with respect to mSUSY. The impact on the uncertainties from missing SUSY threshold

corrections greatly reduces away from maximal stop mixing and when the stop masses

are increased, the latter effects due to the reduction of the SM couplings from the RGE

evolution. This fact is manifest in the EFT approach, less so in others, which require a

careful resummation of logs.

EFT uncertainties. The last source of uncertainties is intrinsic to the EFT approach

and comes from neglecting higher dimensional operators below the SUSY scale. Such

corrections decouple fast, as powers of the EW scale over the SUSY scale, however they

could become important for light SUSY scale. Given the relatively high value of the Higgs

mass and the bounds from the LHC, superpartners are expected to lie above the TeV

scale, reducing the relevance of these corrections only to very particular corners of the

parameter space.

At tree level the only source of power corrections comes from the heavy Higgs states —

if mA is close to the EW scale the mixing effects may become important and the tree-level

expression in (2.3) gets corrections of order

δEFTλ = −λ
m2
Z

m2
A

sin2(2β) + . . . . (2.7)

Such contributions become important only when mA is particularly light (mA . 200 GeV),

in a region of the parameter space which is already disfavored by indirect bounds on the

Higgs couplings [36].

Corrections from higher dimensional operators induced by the other superpartners

enter only at one loop (such as the other scalars and the EWinos) or at two loops (gluino).

The most dangerous corrections are thus expected to come from the stops, they are of

O(αtm
2
t /m

2
t̃
) and can get enhanced at large stop mixing. We estimated such corrections

by multiplying the one-loop corrections by v2/m2
SUSY. Numerically, for stops above 1 TeV,

even at maximal mixing, these corrections are below 1 GeV and rapidly decouple for heavier

stop masses, see figure 1. Having lighter stops may require to take such corrections into

account, although they start being too light to accommodate the observed value of the

Higgs mass (see section 3.2). Consistently with such approximation we also neglected EW

corrections to the sparticle spectrum.

The total EFT uncertainty in figure 1 has been estimated by taking the sum of the

single contributions to ∆λ from each SUSY particle with mass mi multiplied by the corre-

sponding factor v2/m2
i .

In conclusion, for stops above the TeV scale power corrections are small, justifying the

use of the EFT.

Combined uncertainties. Figure 1 summarizes the impact of the various uncertainties

to the determination of the Higgs mass as a function of the SUSY scale, tan β and the

stop mixing, in the relevant region of parameters that reproduces the measured value

of the Higgs mass. For definiteness we took a degenerate spectrum of superpartners, we

– 9 –
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checked that the size of the uncertainties remains of the same order when this assumption is

relaxed. The dominant source of error comes from higher order corrections in the matching

and running of the SM couplings. SUSY thresholds are only important for low SUSY scale

and large stop mixing, while power corrections are negligible throughout the parameter

space unless some of the sparticles are very close to the EW scale.

It is fair to say that, for most part of the relevant parameter space, the Higgs mass

in the MSSM has reached the same level of accuracy as the determination of the Higgs

potential in the SM. Further improvements from the theory side can be achieved by

extending the SM calculations at higher orders. The size of the uncertainties remains

practically unchanged in the split scenario, where the fermions are parametrically lighter

than the scalar superpartners.

The total theoretical uncertainty (computed here conservatively as the linear sum of

the three sources of errors discussed above) is of order 1 GeV or below for most of the

relevant parameter space (i.e. the parameter space that reproduces mh = 125 GeV, see

figure 1). It is thus below the error induced by the experimental uncertainty in the value of

the top mass. Indeed, the latter produces a shift in the Higgs mass of order 1.5÷2.5 GeV

depending on mSUSY, when the top mass value is changed by 2σ = 1.5 GeV. The error

increases with mSUSY due to RGE effects.

As usual, estimates of theoretical errors provide only for the order of magnitude of the

expected corrections and must be taken with a grain of salt. However since for most of

the parameter space the error is dominated by the SM uncertainties, where we have been

rather conservative, the estimate of figure 1 should represent a fair assessment, at least

away from the lower end.

2.3 Comparison with existing computations

Our EFT computation agrees within the uncertainties with all the others which use the

same technique. As already noticed in [26], however, the EFT computation seems to

give a smaller Higgs mass with respect to other approaches, such as those based on full

diagrammatic and effective potential computations such as [37–40]. In some cases the

disagreement amounts to up to ∼10 GeV, well beyond the expected quoted uncertainties,

even in regions of parameter space where both approaches are expected to hold.

A comparison between the EFT computation and some of the available computer codes

is shown in figure 3. The disagreement is around 3 GeV for mSUSY > TeV at large tanβ

and zero stop mixing and increases up to 9 GeV for maximal mixing and mSUSY = 2 TeV.

The large disagreement with the FeynHiggs 2.10.1 code can mostly be understood

as follows. The computation in [41] included full 1-loop plus the leading 2-loop SUSY

corrections of the Higgs mass with partial 2-loop RGE improvements. Consistently with

this however, they did not include 2-loop corrections to the matching of the top Yukawa

coupling. Instead, the use of the N3LO formula shifts the top mass by roughly 4 GeV.

Hence, the bulk of the disagreement seems due to the missing 2-loop corrections in the

top mass.7 Note that, as discussed in the previous section, the uncertainty in the EFT

7It was brought to our attention that a similar observation was also made in [42].
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Figure 3. Comparison between the EFT computation (lower blue band) and two existing codes:

FeynHiggs [41] and Suspect [39]. We used a degenerate SUSY spectrum with mass mSUSY in the

DR-scheme with tan β = 20. The plot on the left is mh vs. mSUSY for vanishing stop mixing. The

plot on the right is mh vs. Xt/mSUSY for mSUSY = 2 TeV. Since the FeynHiggs code works in the

OS scheme, we converted the DR parameters to OS-scheme using the 1-loop formulae in [15] as

input for the FeynHiggs code. On the left plot the instability of the non-EFT codes at large mSUSY

is visible.

approach is dominated by the 3-loop top matching conditions, the 2-loop ones are thus

mandatory in any precision computation of the Higgs mass. We checked that after their

inclusion, the FeynHiggs code would perfectly agree with the EFT computation at zero

squark mixing. At maximal mixing the disagreement would be reduced to 4 GeV, which

should be within the expected theoretical uncertainties of the diagrammatic computation.

For comparison, in figure 3 we also show the results obtained with a different code

(Suspect [39]) which uses a diagrammatic approach. Unlike FeynHiggs, Suspect includes

theO(α2
s) threshold corrections to the top Yukawa matching condition but does not perform

RGE improvement and its applicability becomes questionable for mSUSY in the multi TeV

region. The disagreement with Suspect ranges from 2-3 GeV at zero stop mixing to roughly

4 GeV at maximal mixing (see figure 3).

3 Results

After having seen that the EFT computation is reliable for most of the relevant parameter

space we present here some of the implications for the supersymmetric spectrum. Given

the generic agreement with previous computations using the same approach, we tried to

be as complementary as possible in the presentation of our results, putting emphasis on

the improvements of our computation and novel analysis in the EFT approach.

3.1 Where is SUSY?

Figure 4 represents the parameter space compatible with the experimental value of the

Higgs mass in the plane of (m1/2,m0) for zero (blue) and increasing values (red) of the

stop mixing. For simplicity we took degenerate scalar masses m0 as well as degenerate

– 11 –
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Figure 4. Higgs mass constraint on the value of scalar (m0) and fermionic (m1/2) superpartners

(taken degenerate). The upper blue region refer to zero mixing, the lower red to increasing values

of the stop mixing. The lighter bands corresponds to the uncertainty from the top mass. The

gray shaded region corresponds to tachyonic on-shell masses for the squarks. The non-vertical thin

dashed lines correspond to on-shell values for the squark masses: when m1/2 grows the DR mass m0

must be increased to keep the on-shell mass constant. The thick dashed burgundy lines correspond

roughly to the expected reach of LHC14 and of an hypothetical 100 TeV machine.

fermion masses m1/2 = M1,2,3 = µ. All SUSY parameters of this plot are in the DR

scheme.8 The figure highlights a number of features:

• The main effect at small fermion masses is given by the scale of the scalars (in

particular the stops). The lower part of the allowed region corresponds to large

values of tan β & 10. Lowering tan β allows to access larger scalar masses (see also

figure 6 below).

• The dependence on the fermion masses can be understood as follows. For m1/2 . m0

the biggest contribution comes from the higgsino-wino loop in the running of the

Higgs quartic. It makes the quartic coupling run larger in the IR thus making the

Higgs heavier. This correction is only there when both wino and higgsino become

light. There is also a smaller 1-loop correction from the individual EWinos, which

affects the running of the EW gauge couplings. They make the gauge coupling run

bigger in the UV increasing the tree-level contribution to the Higgs quartic (2.3) and

8All DR parameters are computed at the scale Q =
√
mt̃L

mt̃R
unless specified otherwise.

– 12 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
9

thus its pole mass. Lowering the gluino mass decreases the Higgs mass but the effect

is two-loop suppressed and only non-negligible at large stop mixings. The region

m1/2 & 2m0 should be treated with care. In the DR scheme there are negative

quadratic corrections to the squark masses proportional to the gaugino masses [43]

m2
q̃
,OS = m2

q̃
,DR(m2

q̃)−
4αs
3π

M2
3

[
log

(
M2

3

m2
q̃

)
− 1

]
+ . . . . (3.1)

In particular when M3 becomes larger than roughly a factor of four with respect to the

squark masses the corresponding on-shell masses become tachyonic. Just before this

happens the on-shell masses (the dashed lines in the figure) start becoming smaller

and smaller with respect to the DR parameters, in this tuned region large corrections

make the DR computation unstable. This explains the strong apparent dependence

on m1/2 on the right-hand part of the plot, which would disappear if plotted in terms

of the on-shell masses. We decided to keep the plot in terms of the DR parameters

to highlight the tuning required to explore such region.

• Current LHC searches already probed squark and gluino masses up to 1.5 TeV

circa [44]. This corresponds to the very lowest part of the allowed parameter space,

where the stop mixing is maximal, tan β is large and fermions must be lighter than

scalars. This, of course, with the caveat that the strongest experimental bounds ap-

ply to first generation squarks and gluino while the Higgs mass mostly depend on

the stops and (somewhat weaklier) on EWino. With the same caveat LHC14 should

eventually be able to more confidently explore the same region (extending the squark-

gluino reach to 3 TeV, see e.g. [45]), while the small stop mixing region could only

be reached directly with a 100 TeV machine (capable of probing colored sparticles

of roughly 15 TeV masses, see e.g. [45]). Of course (mini-)Split scenarios where the

heavy scalars are responsible for the Higgs mass and the light fermions are within

reach at lower energies remain a valid possibility.

3.2 The EFT gets on-shell

Previous computations using the EFT approach have used the DR scheme for the SUSY

and the soft parameters. This scheme has the advantage of being the natural framework

for the computations of the soft parameters in theories of SUSY breaking. In some cases,

however, it results inadequate for the computation of the Higgs mass.

First of all, physical on-shell masses are needed to compare theoretical computation

with experiments. While the difference in the schemes is one-loop suppressed, there are

non-decoupling effects which require care. For example the difference between the on-

shell and the DR squared mass of the squarks receives an additive one-loop correction

proportional to the gluino mass squared, see eq. (3.1). Such correction is negative and big

— it is enough for the gluino mass to be a factor of four above the squark masses to drive

the corresponding on-shell mass tachyonic.

For similar reasons in the DR scheme the gluino contribution to the Higgs mass does

not decouple [16]. Another consequence is the instability of the Higgs mass with respect to
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Figure 5. Allowed values of the OS stop mass reproducing mh = 125 GeV as a function of the stop

mixing, with tan β = 20, µ = 300 GeV and all the other sparticles at 2 TeV. The band reproduce

the theoretical uncertainties while the dashed line the 2σ experimental uncertainty from the top

mass. The wiggle around the positive maximal mixing point is due to the physical threshold when

mt̃ crosses M3 +mt.

the renormalization scale — even if the on-shell squark masses are positive, the DR stop

mass becomes highly sensitive to the renormalization scale when the gluino is more than

a factor of 2÷3 above it, which results in an instability of the estimate of the Higgs mass.

What is happening is that the physical on-shell squark masses becomes tuned and highly

sensitive to the soft parameters. The situation is similar to trying to compute the Higgs

mass in terms of the soft parameter m2
Hu

instead of the on-shell (tuned) EW vev v.

All these problems disappear in the OS scheme, the gluino decouples up to a physical

log correction [16], there are no tachyons since the physical OS masses are given as input

and larger hierarchies can be introduced safely within the SUSY spectrum (with the usual

caveat that large logarithms may require resummation). Besides, the input masses are

directly the physical quantities to be compared with experiments.

For these reasons we also performed our computation in the OS scheme. Figure 5 shows

an application of such calculation. It corresponds to the region of allowed OS stop masses

(taken degenerate in this case) which reproduces the observed Higgs mass for different At-

terms. Our definition of At in the on-shell scheme, eq. (A.17), is different from the usual

one, this explains why the point of maximal mixing is not at Xt/mt̃ ' 2. In the spirit of

natural SUSY [46–48] we kept the higgsino light at 300 GeV while the gauginos and first

generation squarks safely above collider bounds at 2 TeV. The lightest stop masses allowed

in this case (for maximal stop mixing) are about 1.7±0.4 TeV, in the region where the EFT

approach should be reliable.
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Had we drawn the same plot in terms of the DR masses we would not be able to

draw the same conclusion — the error would blow up in the region where the stops are

sufficiently lighter than the gluino.

3.3 Large-tanβ High-Scale SUSY strikes back?

While for most values of tan β the contributions from the bottom and tau sector can be

neglected, at very large tan β the corresponding superpotential couplings become large and

their effects to the SUSY threshold can eventually dominate over the others. In particular

the one loop sbottom threshold to the Higgs quartic coupling at leading order in tan β and

degenerate sbottoms (mb̃) reads

∆λ
(1)

b̃
= −

ŷ4b
32π2

µ4

m4
b̃

, (3.2)

and analogously for the tau. At tree-level the superpotential Yukawa coupling ŷb is related

to the SM Yukawa yb by ŷb = yb/ cosβ. At large tan β, ŷb may become larger than one. In

this situation the negative threshold correction (3.2) may cancel or even overcome the tree-

level contribution, especially at high SUSY scale where the SM EW gauge couplings are

smaller. This effect may allow to maintain mh = 125 GeV and large tan β with arbitrary

heavy scalar fields, reopening the High Scale SUSY window above 1010 GeV, which was

thought to be excluded by the Higgs mass within the MSSM. As an example, we show

in figure 6 how the mSUSY-vs-tan β plot would look like at large tan β after including the

leading bottom (and tau) contributions. For the plot we chose degenerate spectrum with

mass mSUSY, negative µ = −mSUSY and At = mSUSY/2. The SUSY parameters are given

in the OS scheme. The behavior at small and moderately large tan β (tanβ . 40) is well-

known [23, 26, 28]. However further increasing tan β, the bottom coupling α̂b = ŷ2b/(4π)

grows, decreasing the Higgs mass [49]. For very large tan β the tree-level contribution to

the bottom mass is so suppressed that loop corrections cannot be neglected [50, 51]. In fact

the bottom mass receives corrections from SUSY breaking proportional to vu = v sinβ, i.e.

not tan β suppressed

yb = ŷb cosβ + ŷb sinβ

[
8

3

αs
4π

µM3

m2
b̃

F

(
M2

3

m2
b̃

)
+
αt
4π

1

sin2 β

µXt

m2
b̃

F

(
µ2

m2
b̃

)]
+ . . . (3.3)

where F (x) = (1 − x + x log x)/(1 − x)2 and we considered mQ3 = mU3 = mD3 ≡ mb̃.

The loop corrections are proportional to µ and a combination of gauginos and A-terms.

If the latter are small or have opposite sign with respect to µ (like in figure 6), ŷb will

become strong at large tan β in order to reproduce the observed bottom Yukawa (the red

region in the plot). Before that, ŷb is large enough to make the threshold (3.2) win over

the tree-level contribution and allow mSUSY > 1010 GeV at large tan β. For example the

observed Higgs mass can be reproduced for GUT scale SUSY with tan β ∼ 200. In this

case the bottom coupling α̂b ∼ 0.5, which is still perturbative but with a very close Landau

pole ΛLP ≈ 10mSUSY. The perturbativity of α̂b could be improved by choosing larger µ

terms, however this may become in tension with bounds from tunneling into charge/color
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Figure 6. Effects of the sbottom threshold at large tan β. The blue band corresponds to the mh =

125 GeV constraint (the width is given by the estimated theoretical uncertainties) for different values

of tanβ and the degenerate SUSY mass mSUSY. We fixed µ = −mSUSY and At = mSUSY/2. Dashed

and dot dashed lines correspond to different values of the bottom and tau couplings respectively.

The red region correspond to tachyonic Higgs and/or non-perturbative bottom Yukawa coupling.

breaking vacua [52, 53]. We do not know what are the corresponding bounds on the µ term

in this regime, this require a dedicated study which is beyond the scope of this work.

We thus find that the upper bound of 1010 GeV on the SUSY scale from the observed

Higgs mass may not apply for arbitrary values of tan β but only for small to moderately

large tan β. High scale SUSY at larger tan β, however, requires large µ terms, gauginos

may be lighter but not too much since they receive loop corrections. Therefore high scale

Split SUSY does not seem possible in this way.

If gaugino masses and/or A-terms are large and with the same sign as µ, the loop

corrections may saturate the full contribution to the physical fermion mass. If this hap-

pens, arbitrary large values of tan β can be reached without ever running into strong

coupling effects.

Finally for smaller µ (not shown in the plot) the bottom-tau sector remains decoupled

from the low energy Higgs, the threshold (3.2) is never important and mSUSY at large tan β

stays constant. The bottom and tau Yukawa couplings still become strongly coupled at

large tan β but the effect on the Higgs mass remain small. Of course the effect from the new

physics present at the strong coupling scale is model dependent and may be important.
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Figure 7. Constraints in the (m0,m1/2) plane from mh = 125± 1 GeV for different values on tan β

using the proper split-SUSY computation (dark yellow, dashed line) or the approximate high-scale

computation (red, continuous line) which does not resum the logs induced by the splitting of m1/2

from m0. The agreement is remarkable in the whole relevant parameter space.

3.4 Split vs. High-Scale SUSY computation

As mentioned before, in (mini)split-SUSY scenarios, where gauginos and possibly the hig-

gsinos are sensibly lighter than the scalar sector, a new mass scale is present and large

logarithms may require resummation. In this case the correct procedure would be: 1) to

interrupt the SM running at the split scale, where the light fermion superpartners are, 2)

to match to the split-SUSY effective theory, which includes SM particles and the fermion

superpartners, 3) to perform a second running within the new EFT and eventually 4) to

match to the full SUSY theory at the scalar mass scale. This procedure, which has been

employed since the birth of split SUSY, and became more popular recently after the Higgs

discovery, is more involved than the high-scale SUSY computation. Besides, the thresholds

and the RGE of the split EFT are only known at a lower order in perturbation theory.

Note however the following. The leading effect of resumming the logarithms generated

from splitting the fermion superpartners is to change the running of the Higgs quartic

and EW gauge couplings. Numerically the change in the running of the Higgs quartic

coupling is the leading contribution but it is only present when both higgsino and gauginos

are light. The effect from the change in the RGE of the EW gauge couplings is instead

smaller and it is further suppressed at small tan β, exactly when the logarithms are the

largest. Finally the effects from gluinos are negligible. Since they affect the running of the

strong coupling at one-loop and of the top Yukawa at two-loops, their effect is confined
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to scales much higher than their mass. On the other hand the Higgs quartic coupling is

mostly determined by the value of the SM couplings at low energies, which are fixed by

the experimental values.

The observed value of the Higgs mass is not very large and its value limits the SUSY

scale to roughly 1010 GeV. This scale gets further reduced to 107÷8 GeV if the SUSY

fermions are split, as an effect of the extra contribution to the running of the Higgs quartic.

This translates into an upper bound on how large the logarithmic thresholds from splitting

the fermions can grow.

It turns out that in the whole parameter space relevant for the observed value of the

Higgs mass, the effect of resumming the logs of the splitting between fermion and scalar

superpartners is negligible and the results obtained with the single-scale SUSY theory are

reliable. This is shown in figure 7 where we compare the computation made resumming the

logs of the split threshold, using an intermediate Split-SUSY EFT, with the one that does

not resum the logs, which uses one scale only and just the SM RGE up to the scalar masses.

The agreement between the two procedures is impressive. In the worst case (tan β = 1,

fermions at 200 GeV and scalars at 108 GeV) the mismatch is less than 1 GeV, well within

the estimated uncertainties. It can also be seen that the two procedures start deviating

exactly at that point. Indeed, had the SUSY scale and the splitting between fermions and

scalars been bigger, the two computations would start deviating sensibly, fortunately that

region is not relevant for mh = 125 GeV.

We conclude that for all the relevant parameter space the computation of the Higgs

mass can reliably be made using only the SM as EFT up to the scalar masses, independently

of the scale of the fermions,9 whose main effect is well approximated by the one-loop

thresholds at the SUSY scale.

4 The SusyHD code

The computation described in the previous sections has been implemented into a simple

Mathematica [56] package, SusyHD (SUperSYmmetric Higgs mass Determination), which

we made public [27]. The package provides two main functions that compute the Higgs

mass and its theoretical uncertainties from the input soft parameters, and an auxiliary

function to change the SM parameters (mt and αs).

The most time consuming part of the EFT calculation is the integration of the RGE.

The code avoids such step by using an interpolating formula for the solution of the RGE,

which is only function of the amount of running log(Q/mt) and the value of the Higgs

quartic coupling at the high scale λ(Q), set by the SUSY threshold corrections, eq. (2.3).

The interpolating formula only depends on the SM parameters, so the RGE integration

needs to be run only once, when the package is first called or if the SM parameters are

changed. The result is a very fast code which allows to effectively use the observed value

of the Higgs mass as a constraint for the SUSY parameter space. All plots of this paper

have been generated with SusyHD.

9The usual caveat from v/mSUSY corrections applies when the fermions are very close to the EW scale.

In this case the full contributions from the SM+fermion states [54, 55] should be used in the matching at

the low scale.
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The input SUSY parameters can be given in either DR or OS schemes and thanks to

the EFT approach they can be arbitrary heavy. The code also accepts simplified input

where not all the SUSY parameters needs to be specified. There are also extra options

which allow: 1) to switch off independently some of the higher order corrections, 2) to

change the matching scale Q, 3) to use the full numerical code, which integrates the RGE

numerically and 4) to use the Split SUSY code which integrates the RGE in two steps: SM

up to the fermion scale and Split-SUSY up to the scalars. The function that computes the

theoretical uncertainties accepts also the option to compute the individual uncertainties

coming from the SM corrections, the SUSY thresholds, and the EFT approximation.

All the necessary documentation can be downloaded with the code from [27].

5 Phenomenological applications

5.1 Predicting the spectrum of Minimal Gauge Mediation

Gauge mediated supersymmetry breaking (GMSB) [57–64] is among the simplest and most

elegant calculable mechanisms for generating the MSSM soft terms. A very special property

is the absence of dangerous FCNC, a very rare property in extensions of the SM Higgs

sector, supersymmetric and non.

However, using GMSB to implement a natural solution of the hierarchy problem has

always been hard. The main obstruction being the µ problem, viz. why the supersym-

metric higgsino mass happens to be at the same scale of the SUSY-breaking soft terms.

Solutions of the µ problem generically produce a µ/Bµ problem [65]: both µ and Bµ are

generated radiatively at the same order in perturbation theory, which produces an un-

wanted hierarchy, Bµ � µ2. Solutions to the µ/Bµ problem exist (see e.g. [64–66] and

references therein) but at the cost of an excessive model building.

All these problems arise when we try to obtain a natural SUSY spectrum — it is like

we are forcing the theory to do something it was not meant to. In line with what discussed

in the introduction, we are then going to relax this requirement and try to use experiments

instead of naturalness to infer the properties of new physics.

The apparent gap between the EW and the new physics scale motivates us to revisit

the simplest and more elegant GMSB model, minimal gauge mediation (MGM),10 without

the unnecessary baroque model building associated to the Higgs sector. Indeed, ignoring

the naturalness problem allows us to also ignore the µ-problem, as the two are closely

related. When µ is much larger than the soft masses EWSB is not possible, when µ is

much smaller, the EW scale v would be of order the soft masses. Therefore if the SUSY

scale is above v, µ must automatically be close to the SUSY scale in order for EWSB to

be tuned to its experimental value.

In MGM all soft masses are generated with the same order of magnitude by the gauge

mediated contribution, one gauge loop below the scale Λ = F/M (the ratio between the

effective scale of SUSY breaking F and the mass of the messengers). Besides Λ, the

10Here by MGM we really mean the most minimal realization, where the Higgs sector only receives the

standard gauge mediated contribution, µ is a free parameter and Bµ is generated radiatively in the IR.
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Figure 8. Prediction for the spectrum of MGM after imposing the constraint from the Higgs mass

(or better from the top mass). For each superpartner we plot the allowed range of masses (in TeV)

for four different combinations of N = 1(3) and M = 104(1011) TeV. For each mass the lowest

(highest) value corresponds to increasing (decreasing) the value of the top mass by 2σ with respect

to its experimental central value. The values of tan β at the bottom (top) side of each of the four

bands, from left to right, are 58 (42), 49 (45), 56 (29) and 44 (46) respectively. The three differently

shaded areas represent “pictorially” the existing LHC8 bounds and the expected reach at LHC14

and at a future 100 TeV collider, respectively from the bottom.

spectrum also depends, in a milder way, on the actual mass of the messengers M , which

determines the amount of running of the soft parameters, and the number of messengers

N (typically N = 1 or 3 for a vector like messenger in the 5 or 10 of SU(5) respectively).

As mentioned before, the µ-term, being supersymmetric, would be an independent

parameter, but its value is fixed by requiring (tuning) the correct EWSB. Finally the A-

terms and Bµ are generated radiatively from RGE effects. This fact has very interesting

consequences [67, 68]. First, being A and Bµ terms generated at the quantum level from

gaugino masses and µ-term implies that the corresponding CP phases vanish, avoiding

potentially dangerous bounds from EDMs. Second, small suppressed A-terms imply that

the stop mixing will never be large, while small Bµ implies large values of tan β. These

two predictions combined with the measured value of the Higgs mass allows to fix also the

overall scale Λ, which must then lie at around the PeV scale to produce the O(10) TeV

SUSY scale required by the Higgs mass. The only remaining free parameters are the

messenger mass scale M and their number N , which affect the properties of the spectrum

in a milder way.

Using our computation for the Higgs mass we can thus predict the spectrum of MGM

in terms of N and M , the result is shown in figure 8. Four different spectra are reported,

changing independently N (1 or 3) and the messenger scale M from M = 107 GeV (to

allow the use of leading O(F/M) formulae) to M = 1014 GeV (to avoid dangerous FCNC
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contributions from gravity mediated contributions). For each choice of N and M the

spectrum is not completely determined because of the uncertainty in the Higgs mass com-

putation. Indeed the effect of varying N and M is actually subleading with respect to

the Higgs mass uncertainty. In the relevant region of parameters (mSUSY ∼ 104 TeV and

small stop mixing) the Higgs mass determination is at its best (see figure 1). Theoretical

uncertainties are completely dominated by the SM ones, which are subleading with respect

to the experimental uncertainties in the top mass. In fact, what limits the prediction of

the MGM spectrum is not the Higgs mass, or its determination in SUSY, but our poor

knowledge of the top mass! Improvements in this quantity are required to further improve

the predictions of figure 8. The lowest (upper) bounds correspond to values of the top

mass 2σ above (below) its measured central value. The overall scale Λ results to be at the

PeV scale, in particular it varies roughly from 0.5 to 2.6 PeV for different choices of the

top mass, N and M . The values of tan β are typically around 45 but they can vary up to

60 and down to 30 in the corners of the parameter space, the corresponding values for the

supersymmetric bottom and tau Yukawa couplings are largish (typically around 0.5–0.7)

but remain always below the one of the top Yukawa. Similarly the stop mixing parameter

is always small X̂t < 1.

Except for the overall scale Λ, which is one order of magnitude larger than the one

usually considered in the literature, the rest of the spectrum has the typical GMSB form,

with bino or right-handed stau being the NLSP depending if N = 1 or 3 respectively.

On the experimental side, besides the simplified model and the generic SUSY searches,

ATLAS and CMS also performed a number of dedicated GMSB searches [69–76], which

exploits some of the most peculiar properties of its spectrum, such as photon and taus

in the final states. Of particular relevance for this scenario is the direct search for the

pseudoscalar Higgs boson A0, which, for the large values of tan β predicted here, bounds

mA & 800 GeV [76]. This channel appears to be the most powerful for MGM, with a

slightly better reach than the standard GMSB candles.

While a dedicated study is required, in figure 8 we also show “pictorially” the existing

experimental bounds and the expected reach at LHC14 and at an hypothetical 100 TeV

machine. The latter are obtained by rescaling the pdf on the existing bounds [77, 78] and

should serve only to guide the eye. However, given the expected scale of the spectrum we

can confidently say that this model is mostly out of the reach of existing collider machines,11

but could be seriously (if not completely) explored by a 100 TeV hadron collider. In fact,

MGM may well represent one of the strongest motivations for such machine.

We checked that, while the values of tan β in this model are large, bounds from the

rare decays Bd,s → µµ [79] are not strong enough to be sensitive to the spectrum in figure 8

yet. An improvement on the experimental bounds by a factor 3÷5 could be enough to start

probing the bottom part of the spectrum.

In conclusion, MGM represents probably the simplest and most predictive implemen-

tation of SUSY. The whole spectrum is almost completely determined just by experimental

data. In particular, the upper bound on the scale of the superpartners exists independently

11We would like to point out that in some corners of the allowed parameter space A0 may be light enough

to be within the reach of LHC14.
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Figure 9. Allowed parameter space of minimal anomaly mediation in the plane (m0, µ) for different

values of tan β, after imposing the constraint from the Higgs mass. According to AMSB gauginos

are one-loop lighter than the scalars, here taken with a common mass m0. The wiggle for negative

µ at small tan β is due to a cancellation in the one loop threshold correction from EWinos when

µ crosses the gaugino masses. Values of tan β & 3 are excluded by LHC bounds on Winos. The

horizontal red line corresponds to M2 ' 3 TeV.

from any naturalness consideration, in fact the value of the Higgs mass predicts a SUSY

scale not too far beyond our current reach. The model also makes other successful predic-

tions such as: gauge coupling unification, the absence of SUSY particles at current hadron

colliders, no EDMs and no deviation from any flavor observables. Gravitino may be dark

matter although this possibility is more model dependent.

5.2 Anomaly Mediation

Minimal anomaly mediated supersymmetry breaking (AMSB) models [80, 81] probably

provide for the simplest implementation of Mini Split supersymmetry. Scalars get their

mass from gravity mediation of order the gravitino mass, while fermions, protected by

R-symmetry, get one-loop suppressed soft masses from anomalies. The generation of the µ

and Bµ parameters require also the breaking of the PQ symmetry so that the higgsino mass

is practically a free parameter — it can be of order the gravitino mass or naturally smaller

if the PQ breaking is not efficient. The theory is thus defined by three main parameters:

the gravitino mass m3/2 setting the scale of scalars and gauginos, the higgsino mass µ and

tanβ which is determined by the details of the scalar masses and Bµ.

Unlike in MGM the details of the scalar spectrum are model dependent, however,

given the large scales involved in this scenario, threshold corrections at the SUSY scale

are almost irrelevant, for definiteness we fix all the scalars degenerate, m0 = m3/2. The

actual value of the Higgs mass gives a further constraint on these parameters. It can be

used, for example, to fix tan β in terms of the other two parameters. It is trivial to impose

such constraint using SusyHD, the result is shown in figure 9. Values of tan β larger than

3÷4 are already excluded, for they would require too low SUSY scale and the wino would
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lie below the LHC bounds [82]. Also a wino with mass ∼ 3 TeV, which would provide for

a good thermal dark matter candidate, corresponds to tan β ∼ 2 ÷ 3. Bounds on such

parameters from direct detection experiment can be found for instance in [78].

Since a LSP wino above ∼ 3 TeV would overclose the universe in the minimal AMSB

scenario, the allowed parameter space reduces to the “narrow” strip below the red line in

figure 9, and the one with |µ| . 1 TeV . M3 where the higgsino is the LSP. Most of this

parameter space could in principle be probed at a larger hadron collider and future dark

matter experiments [78, 83–87]. In this interesting region, tan β is constrained between 2

and 3; scalars are clearly out of reach, between 102 and 103 TeV, but not heavy enough to

guarantee the absence of FCNC [88]. Gauge coupling unification further prefers values of

µ below O(10) TeV [28].

6 Conclusions

We presented a calculation of the Higgs mass in the MSSM using the EFT approach, which

improves previous computations by including extra two-loop SUSY threshold corrections,

the contributions from the sbottom/stau sectors relevant at large tan β and the implemen-

tation of the OS scheme, the relevant formulae can be found in the appendix A and in [27].

We also performed a study of the theoretical uncertainties, showing that for most of

the relevant parameter space the error is sub-GeV and dominated by higher order SM

corrections. The result is summarized in figure 1.

The computation has been arranged into an efficient computer package which we made

publicly available [27]. The code exploits the power of the EFT approach, allowing to

compute the Higgs mass for arbitrary heavy sparticles, even when a large hierarchy be-

tween fermions and scalars is present. Analytic formulae for the solution of the RGE

make the code very fast, which allows to efficiently use the Higgs mass as a constraint on

the spectrum.

We then performed several studies on the implication of the Higgs mass constraint

on SUSY:

• In agreement with previous EFT computation we find that the SUSY spectrum needs

to be a little heavier than expected, in particular stops below 2 TeV are disfavored

(see figure 5).

• The upper bound on the SUSY spectrum, which is O(1010) GeV (O(104) GeV at

large tan β), can actually be relaxed without adding new degrees of freedom. At very

large tan β, if µ is not suppressed with respect to the scalar masses, sbottom/stau

contributions may reduce the Higgs mass, allowing larger values for the SUSY scale

(see figure 6).

• In mini-split SUSY, in the region of parameter space relevant for the Higgs mass,

the effect of the thresholds from splitting the fermions from the scalars is completely

captured by the leading fixed order one loop corrections (see figure 7). This allows

to use the SM as an effective field theory all the way up to the scalar mass scale,

avoiding the need of using an intermediate split SUSY effective theory.

– 23 –



J
H
E
P
0
7
(
2
0
1
5
)
1
5
9

• We point out that the value of the Higgs mass may be used to predict the spectrum

of minimal gauge mediation, the simplest calculable SUSY model, almost completely.

The spectrum of SUSY in this case can thus be bounded just by experimental data

alone without the need of arguments based on naturalness. Interestingly enough the

spectrum lies just above the expected reach of LHC14 (see figure 8), making it an

ideal target for a future 100 TeV hadron machine.

• Finally we discuss about the analogous implications for anomaly mediation models,

constraining the allowed values of tan β and the scale of SUSY (see figure 9).

For most of the allowed parameter space the Higgs mass computation is dominated

by the experimental uncertainty in the top mass. The theoretical uncertainties instead are

mostly dominated by the SM higher order corrections. Only for maximal stop mixing and

at the lightest possible stop masses uncertainties from SUSY corrections and from higher-

order terms in the EFT expansion may become important. Improvements in this region

can be achieved by including subleading two-loop threshold corrections neglected in this

work, such as O(ααs,t) or O(αtα
2
s), and the leading O(v2/m2

SUSY) corrections in the EFT

expansion.
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A SUSY thresholds

This appendix is dedicated to some analytical expressions of the threshold corrections from

integrating out supersymmetric particles that were not written in the body for the sake

of readability. We start summarizing our conventions. For the numerical part we used

the values mt = 173.34 GeV [31], αs(mZ) = 0.1185 [89], yb(mt) = 0.0156 and yτ (mt) =

0.0100 [25]. The MSSM Lagrangian is written with all the parameters in the DR scheme

(or the “OS” scheme described below), and is matched with the SM Lagrangian with all

couplings and masses in the MS scheme. For tan β we used the definition of [26]. As in

the rest of the paper, unless specified otherwise, all the formulae are written in terms of

the SM couplings (g1,2,3, yt,b,τ and λ, or αi ≡ g2i /(4π) and αt,b,τ ≡ y2t,b,τ/(4π)) in the MS

scheme and the soft parameters (masses and trilinear couplings) in the DR or OS schemes.

The SUSY-breaking masses for the scalars of the i-th generation are denoted by mQi ,

mUi , mDi , mLi and mEi , the soft SUSY-breaking Higgs-squarks cubic couplings are written

in terms of the superpotential Yukawas ŷt,b,τ as at ≡ ŷtAt, ab ≡ ŷbAb, ab ≡ ŷbAb for the

stops, sbottoms and staus respectively, while the relative signs of the µ parameter, gaugino

masses and A-terms are the same as in [90], so that the scalar mass mixings depend on

Xt = At − µ cotβ, Xb = Ab − µ tanβ and Xτ = Aτ − µ tanβ.
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In this work, we extended the one-loop threshold in eq. (10) of [26] to include also the

tanβ−enhanced contributions from integrating out sbottoms and staus:

(4π)2∆λ1`, φ= 3y2t

[
y2t +

1

2

(
g22 −

g21
5

)
cos 2β

]
ln
mQ2

3

m̃2
+ 3y2t

[
y2t +

2

5
g21 cos 2β

]
ln
m2
U3

m̃2

+
cos2 2β

300

3∑
i=1

[
3
(
g41 + 25g42

)
ln
m2
Qi

m̃2
+ 24g41 ln

m2
Ui

m̃2
+ 6g41 ln

m2
Di

m̃2

+
(
9g41 + 25g42

)
ln
m2
Li

m̃2
+ 18g41 ln

m2
Ei

m̃2

]

+
1

4800

[
261g41 + 630g21g

2
2 + 1325g42 − 4 cos 4β

(
9g41 + 90g21g

2
2 + 175g42

)
− 9 cos 8β

(
3g21 + 5g22

)2 ]
ln
m2
A

m̃2
− 3

16

(
3

5
g21 + g22

)2

sin2 4β

+
∑

φ=t,b,τ

{
2Nφ

c y
4
φr

4
φX̃φ

[
F̃1 (xφ)−

X̃φ

12
F̃2 (xφ)

]

+
Nφ
c

4
y2φr

2
φX̃φ cos 2β

[
9

10
g21QφF̃3 (xφ)+

(
2g22T

3
φL

+
3

5
g21

(
2T 3

φL
− 3

2
Qφ

))
F̃4 (xφ)

]
−
Nφ
C

12
y2φr

2
φX̃φ

(
3

5
g21 + g22

)
cos2 2β F̃5 (xφ)

}
. (A.1)

In the last three lines of the equation above we sum over the contributions of the

stops, sbottoms and staus, where T 3
φL

is the third component of weak isospin of the

left-handed chiral multiplet to which the sfermions belongs, Qφ is the electric charge,

X̃φ ≡ {X2
t /(mQ3mU3), X2

b /(mQ3mD3), X2
τ /(mL3mE3)}, Nφ

c ≡ {3, 3, 1} is the color factor,

xφ ≡ {mQ3/mU3 ,mQ3/mD3 ,mL3/mE3}, and rφ ≡ {1, ŷb cosβ/yb, ŷτ cosβ/yτ}. The latter

coefficients take into account the tan β enhanced corrections discussed in section 3.3 which

require resummation, the explicit expressions can be found e.g. in [25, 27]. The loop func-

tions F̃n are defined in appendix A of [26]. Because of the smallness of the bottom Yukawa

coupling, the one-loop O(αb) SUSY threshold corrections are only sizable for large tan β

and |µ| >∼
√
mQ3mD3 .

We obtained the two-loop O(α2
t ) SUSY threshold corrections to the quartic coupling

of the Higgs from the corresponding correction to the Higgs mass, under the simplifying

assumption of degenerate scalars (mQ3 = mU3 = mA = mt̃) while the µ parameter and the

renormalization scale are kept independent. The two-loop O(α2
t ) correction to the Higgs

mass from the matching between the MSSM and the SM in the EFT approach can be

written as the sum of various contributions:

m
2 (α2

t )
h = m

2 (α2
t , EP)

h +m
2 (α2

t , shift)
h +m

2 (α2
t , WFR)

h −m2 (α2
t , top EP)

h . (A.2)

The meaning of the various terms in this equation is explained below. The term m
2 (α2

t , EP)
h

is the contribution from the effective potential in the DR scheme, which was calculated by
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Espinosa and Zhang [15]:

m
2 (α2

t , EP)
h =

3y6t v
2

(4π)4s2β

{
9ln2

m2
t̃

Q2
− 6ln

m2
t

Q2
ln
m2
t̃

Q2
− 3 ln2 m

2
t

Q2
+ 2 [3f2(µ̂)−3f1(µ̂)−8] ln

m2
t̃

m2
t

+ 6µ̂2

(
1− ln

m2
t̃

Q2

)
− 2(4 + µ̂2)f1(µ̂) + 4f3(µ̂)− π2

3

+

[
(33 + 6µ̂2)ln

m2
t̃

Q2
− 10− 6µ̂2 − 4f2(µ̂) + (4− 6µ̂2)f1(µ̂)

]
X̂2
t

+

[
−4(7 + µ̂2)ln

m2
t̃

Q2
+ 23 + 4µ̂2 + 2f2(µ̂)− 2(1− 2µ̂2)f1(µ̂)

]
X̂4
t

4

+
1

2
s2βX̂

6
t

(
ln
m2
t̃

Q2
− 1

)
+ c2β

[
3 ln2

m2
t̃

m2
t

+ 7ln
m2
t̃

Q2
− 4ln

m2
t

Q2
− 3 + 60K +

4π2

3

+

(
12− 24K − 18ln

m2
t̃

Q2

)
X̂2
t −

(
3 + 16K − 3ln

m2
t̃

Q2

)(
4X̂tŶt + Ŷ 2

t

)
+

(
−6 +

11

2
ln
m2
t̃

Q2

)
X̂4
t +

(
4 + 16K − 2ln

m2
t̃

Q2

)
X̂3
t Ŷt

+

(
14

3
+ 24K − 3ln

m2
t̃

Q2

)
X̂2
t Ŷ

2
t −

(
19

12
+ 8K − 1

2
ln
m2
t̃

Q2

)
X̂4
t Ŷ

2
t

]}
, (A.3)

where Xt = At − µ cotβ, Yt = At + µ cotβ, cβ ≡ cosβ, sβ ≡ sinβ, we use the notation

ẑ ≡ z/mt̃ where z stands for any of the parameters µ, Xt or Yt, and the definitions

f1(µ̂) =
µ̂2

1− µ̂2
ln µ̂2, (A.4)

f2(µ̂) =
1

1− µ̂2

[
1 +

µ̂2

1− µ̂2
ln µ̂2

]
, (A.5)

f3(µ̂) =
(−1 + 2µ̂2 + 2µ̂4)

(1− µ̂2)2

[
ln µ̂2 ln(1− µ̂2) + Li2(µ̂

2)− π2

6
− µ̂2 ln µ̂2

]
, (A.6)

K = − 1√
3

∫ π/6

0
dx ln(2 cosx) ' −0.1953256. (A.7)

Here Li2(x) is the dilogarithm function. Below the SUSY scale we use the SM as an effective

field theory in the MS scheme. Then we need to write the MSSM top mass and the EW

vev (in the DR scheme) in terms of the SM ones in the MS scheme in the one-loop O(αt)

correction to the Higgs mass. Doing so will produce an additional (shift) contribution at

two loops

m
2 (α2

t , shift)
h =

3y6t v
2

(4π)4s2β

{(
−3

2
+ 3 ln

m2
t̃

Q2
− 6 ln

m2
t̃

m2
t

ln
m2
t̃

Q2
+ 3 ln

m2
t̃

m2
t

)
(1 + c2β) + 3µ̂2f2(µ̂)

− 6µ̂2f2(µ̂) ln
m2
t̃

m2
t

− X̂
6
t

12
s2β+X̂2

t

[(
3−6 ln

m2
t̃

Q2

)
(1+c2β)+s2β ln

m2
t̃

m2
t

− 6µ̂2f2(µ̂)

]

+ X̂4
t

[
3

4
− 5

4
c2β +

1

2
µ̂2f2(µ̂) +

1

2
(1 + c2β) ln

m2
t̃

Q2

]}
. (A.8)
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Unlike the two-loop O(αtαs) correction to the Higgs mass, the O(α2
t ) one receives a wave-

function renormalization contribution. It arises as a combination of the one-loop O(αt)

contribution of the stops to the wave-function renormalization of the Higgs field and the

one-loop correction to the Higgs mass from the matching at the SUSY scale. It reads:

m
2 (α2

t , WFR)
h = −3 y6t v

2

(4π)4
X̂2
t

(
ln
m2
t̃

m2
t

+ X̂2
t −

1

12
X̂4
t

)
. (A.9)

Finally, we need to subtract the O(α2
t ) corrections to the Higgs mass associated with the

contribution of the top-quark loops to the effective potential because it is already present

in the matching at the EW scale. The two-loop O(α2
t ) correction to the Higgs mass in

the SM from the matching at the top mass, which receives EP and WFR contributions, is

given in eq. (20) of [24]. We extract the EP piece which is given by

m
2 (α2

t , top EP)
h = −3 y6t v

2

(4π)4

(
2 +

π2

3
− 7 ln

m2
t

Q2
+ 3 ln2 m

2
t

Q2

)
. (A.10)

Evaluating eq. (A.2) we obtain for the Higgs quartic coupling

∆λ
(2)

α2
t

=
3 y6t

(4π)4s2β

{(
−4 ln

m2
t̃

Q2
+ 3 ln2

m2
t̃

Q2

)
s2β − 6µ̂2 ln

m2
t̃

Q2
+

1

2
+ 6µ̂2 − (8 + 2µ̂2)f1(µ̂)

+ 3µ̂2f2(µ̂) + 4f3(µ̂) + X̂6
t s

2
β

(
−1

2
+

1

2
ln
m2
t̃

Q2

)

+ X̂2
t

(
−7−6µ̂2+4f1(µ̂)−6µ̂2f1(µ̂)−4f2(µ̂)−6µ̂2f2(µ̂)+27 ln

m2
t̃

Q2
+6µ̂2 ln

m2
t̃

Q2

)

+
X̂4
t

2

(
11+2µ̂2−f1(µ̂)+2µ̂2f1(µ̂)+f2(µ̂)+µ̂2f2(µ̂)−13 ln

m2
t̃

Q2
−2µ̂2 ln

m2
t̃

Q2

)

+c2β

[
− 13

2
+60K+π2+9 ln

m2
t̃

Q2
+X̂2

t

(
15−24K−24 ln

m2
t̃

Q2

)
−X̂4

t

(
25

4
−6 ln

m2
t̃

Q2

)

− X̂tŶt

(
12+64K−12 ln

m2
t̃

Q2

)
+X̂3

t Ŷt

(
4+16K−2 ln

m2
t̃

Q2

)
−Ŷ 2

t

(
3+16K−3 ln

m2
t̃

Q2

)

+ X̂2
t Ŷ

2
t

(
14

3
+24K−3 ln

m2
t̃

Q2

)
+X̂4

t Ŷ
2
t

(
−19

12
−8K+

1

2
ln
m2
t̃

Q2

)]}
. (A.11)

After taking into account all the contributions in eq. (A.2), we checked that the logarithmic

dependence on the top mass of the SM quartic coupling is canceled, as it is shown in

eq. (A.11). We also verified analytically that the inclusion of the two-loop O(α2
t ) correction

in eq. (A.11) makes the result of the pole Higgs mass independent of the renormalization

scale at this order.

The two-loop O(αtαs) correction was also re-computed in this work. The explicit

expressions for the SUSY thresholds are too long to be reported here and can be found in

the SusyHD package [27].
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On-shell scheme. A change in the renormalization of the parameters entering in the

one-loop SUSY thresholds to λ will produce a two-loop (shift) contribution. We present

the relation between the MSSM parameters in the DR and OS schemes. In particular,

we need the relations for the stop masses and mixing at O(αs) and O(αt), the latter for

degenerate stops. This will determine the shift contributions to the two-loop O(αtαs) and

O(α2
t ) SUSY corrections in the OS scheme.

In the OS renormalization scheme the masses are defined as the poles of the propaga-

tors. The relation between the DR and OS masses for a scalar particle with squared mass

m2 is given by

m2 (OS) = m2 (DR)(Q)− δm2(Q) (A.12)

δm2(Q) ≡ Re Π̂(m2, Q), (A.13)

where m2 (DR)(Q) is the tree-level DR mass evaluated at the renormalization scale Q, and

Π̂(m2, Q) is the DR renormalized one-loop self-energy.

On the other hand, the OS renormalization for the mixing angle is more subtle. At

tree-level, the mixing angle of the stops is

sin 2θt̃ =
2mtXt

m2
t̃1
−m2

t̃2

. (A.14)

We use the symmmetric renormalization for the stop mixing angle (for a discussion on

possible renormalizations see [91] and references therein):

δθt̃ =
1

2

Π̂12

(
m2
t̃1

)
+ Π̂12

(
m2
t̃2

)
m2
t̃1
−m2

t̃2

, (A.15)

where Π̂12(p
2) is the off-diagonal self-energy of the stops. We define the OS combination

(mtXt)
OS from eqs. (A.14) and (A.15), which implies

δ(mtXt)

mtXt
=

(
δm2

t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

+
δ sin 2θt̃
sin 2θt̃

)
. (A.16)

In the usual definition for the stop mixing on-shell, XOS
t = (mtXt)

OS/mOS
t , terms propor-

tional to log(mt̃/mt) appear in the two loop thresholds. In the EFT approach these logs

are big and need resummation. Therefore we use a different definition for Xt which does

not produce such terms and is more suitable for the EFT computation:

Xt(Q) ≡ (mtXt)
OS

mMS
t (Q)

, (A.17)

where the numerator is computed from eq. (A.16) and we stress again that mMS
t (Q) is the

top mass in the SM as any other MS quantities in this paper. An analogous definition

applies for the sbottom and stau mixings. The decoupling of heavy particles like the gluino

is ensured in our on-shell renormalization scheme.
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For the squarks, the O(αs) shift (neglecting the quark masses) reads [43]:

δm2
q̃

m2
q̃

= − g23
6π2

[
1 + 3x+ (x− 1)2 ln |x− 1| − x2 lnx+ 2x ln

Q2

m2
q̃

]
, (A.18)

with x = M2
3 /m

2
q̃ . For the product (mtXt) we obtain

δ(mtXt) =
8

3

g23
(4π2)

mt

[
4M3 − (2M3 −Xt) log

M2
3

Q2
+M3F̃10

(
mQ3

M3

)
+M3F̃10

(
mU3

M3

)
+ XtF̃11

(
mQ3

M3
,
mU3

M3

)]
(A.19)

and for the shift between the DR top mass in the MSSM and the MS top mass in the SM

(which is also given in [26])

δmt

mt
= −4

3

g23
(4π)2

[
1+log

M2
3

Q2
+F̃6

(
mQ3

M3

)
+F̃6

(
mU3

M3

)
− Xt

M3
F̃9

(
mQ3

M3
,
mU3

M3

)]
. (A.20)

The functions F̃10 and F̃11 in eq. (A.19) are defined as:

F̃10(x) =
1− x2

x2
ln |1− x2| (A.21)

F̃11(x1, x2) = −2 +
2
(
x21 lnx21−x22 lnx22

)
x21−x22

+
x21(1−x22)2 ln |1−x22| − x22(1−x21)2 ln |1−x21|

x21x
2
2(x

2
1−x22)

.

(A.22)

Analogously for the O(α2
t ) corrections for degenerate scalars [15]

δm2
t̃

m2
t̃

=
3y2t

32π2s2β

[(
X̂2
t s

2
β + Ŷ 2

t c
2
β

)(
2− ln

m2
t̃

Q2

)
+ c2β

(
1− π√

3
Ŷ 2
t − ln

m2
t̃

Q2

)

+ µ̂4 ln µ̂2 + (1− µ̂2)

(
3− 2 ln

m2
t̃

Q2

)
− (1− µ̂2)2 ln(1− µ̂2)

]
, (A.23)

δ(mtXt) =
3y2t

(4π)2s2β
mt

{
(Xts

2
β + Ytc

2
β)

(
2− ln

m2
t̃

Q2

)
− π√

3
Ytc

2
β +Xt

(
1− 3

2
ln
m2
t̃

Q2

)

− 1

2

[
1− µ̂2 + µ̂4 ln µ̂2 + (1− µ̂4) ln(1− µ̂2)

]
Xt

}
, (A.24)

and the top mass shift is

δmt

mt
=

3

4

y2t
(4π)2s2β

[(
1 + c2β

)(1

2
− ln

m2
t̃

Q2

)
− µ̂2f2(µ̂)

]
. (A.25)

As it was discussed in section 3.2, in the DR scheme there are power-like corrections

from the gluino-stop loops to the Higgs quartic coupling which do not decouple in the limit

– 29 –
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of heavy gluino. We illustrate this effect for the simplified case of degenerate stops

∆λ(2,DR)
αtαs =

y4t g
2
3

96π4

[
12
M2

3

m2
t̃

(
1− ln

M2
3

Q2

)
− 15 + 4π2 + 12 ln

M2
3

Q2
− 18 ln2

m2
t̃

Q2

−42 ln
M2

3

m2
t̃

+ 12 ln2 M
2
3

m2
t̃

+O(M−13 )

]
. (A.26)

While our on-shell result, obtained from the DR one by shifting the parameters in the

one-loop O(αt) correction, guarantees the decoupling of heavy gluino

∆λ(2,OS)
αtαs =

y4t g
2
3

96π4

[
−30+4π2+12 ln

M2
3

Q2
−18 ln2

m2
t̃

Q2
−48 ln

M2
3

m2
t̃

+12 ln2 M
2
3

m2
t̃

+O(M−13 )

]
.

(A.27)

We also see that eq. (A.27) does not contain large logarithms lnmt̃/mt. At last, the

two-loop O(α2
t ) SUSY threshold in our on-shell scheme is given by

∆λ
(2)

α2
t

=
3y6t

(4π)4s2β

{(
−10 ln

m2
t̃

Q2
+3 ln2

m2
t̃

Q2

)
s2β+

19

2
−3µ̂2−(8+2µ̂2)f1(µ̂)+3µ̂2f2(µ̂)+4f3(µ̂)

+ 3µ̂4 ln µ̂4 − (3− 6µ̂2 + 3µ̂4) ln(1− µ̂2) + X̂6
t

1

2
s2β + X̂2

t

[
37

2
+ 3 ln

m2
t̃

Q2
+ 9µ̂2

+ (4− 6µ̂2)f1(µ̂)− 4f2(µ̂)− 3µ̂2f2(µ̂)− 9µ̂4 ln µ̂2 − (3 + 6µ̂2 − 9µ̂4) ln(1− µ̂4)

]

−X̂4
t

[
15

4
+

3

2
µ̂2+

(
1

2
−µ̂2

)
f1(µ̂)− 1

2
f2(µ̂)− 3

2
µ̂4 ln µ̂2−

(
1

2
+µ̂2− 3

2
µ̂4
)

ln(1−µ̂2)
]

+ c2β

[
− 7

2
+ 60K + π2 − X̂2

t

(
39

2
+ 24K + 3 ln

m2
t̃

Q2

)
+ X̂4

t

9

2

+ X̂tŶt

(
12−64K−4

√
3π
)

+Ŷ 2
t

(
3−16K−

√
3π

)
−X̂2

t Ŷ
2
t

(
4

3
−24K−

√
3π

)
+ X̂3

t Ŷt

(
16K +

2π√
3

)
− X̂4

t Ŷ
2
t

(
7

12
+ 8K +

π

2
√

3

)]}
. (A.28)
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