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Persistent currents and magnetic susceptibility of two-junction quantum interferometers are calculated
by means of perturbation analysis by solving, to second order in the SQUID parameter b, the coupled non-
linear differential equations governing the dynamics of this superconducting device in the absence of bias
current. Comparison is made with results obtained to first order in b.
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1. Introduction

The properties of Superconducting QUantum Interference De-
vices (SQUIDs) have been thoroughly studied in the literature by
means of the following well-known non-linear model [1]:

d/
ds
þ cospw sin / ¼ iB

2
: ð1aÞ

pdw
ds
þ cos / sin pwþ w

2b
¼ wex

2b
: ð1bÞ

In (1b), the parameter b is defined, for a symmetric SQUID, as
LIJ0/U0, L being the inductance of a single current branch of the de-
vice, IJ0 the maximum Josephson current of both junctions, and U0

the elementary flux quantum. The normalized time s is linked to
the laboratory time t by the following s = 2pRIJ0t/U0, R being resis-
tive parameter of both junctions. The variable / is the average va-
lue between the two superconducting phase differences, /1 and /2,
across the two identical junctions, and w is the flux number vari-
able, which represents the flux linked to the SQUID loop normal-
ized to U0. The forcing terms in the ordinary differential Eqs. (1a)
and (1b) are the normalized bias current iB and the normalized ap-
plied flux wex.

Most descriptions of the characteristic features of the model
rely either on a fully numerical analysis [2] or, by assuming the
characteristic parameter b could be taken to be approximately
equal to zero [3,4], on a simplified – though fully analytic – ap-
proach. In the latter case, however, one should postulate absence
of the persistent current iS. In fact, we define, for finite b values,
the persistent current as

iS ¼
w� wex

b
: ð2Þ

In the case b = 0, one can show that w = wex, so that Eq. (2) does
not result to be a well-defined ratio. Therefore, at least a perturbed
first-order solution to Eq. (1b) is needed, in order to correctly de-
fine iS. Semi-analytical description of SQUIDs and more complex
systems in the case of non-zero inductances has already been given
in the literature [5–7], given the usefulness of these devices in the
present days. In fact, apart from the extensive use of SQUIDs in the
realm of applied science research and related fields [8], SQUID-
based systems have been proposed as qubits in quantum comput-
ing [9–13]. Therefore, due to the necessity of describing the basic
properties of the non-linear dynamical model for finite values of
the parameter b, De Luca and Romeo [6] have considered a sin-
gle-junction effective model for SQUID systems.

In the present work a second-order perturbation analysis of the
dynamic model (1a) and (1b) is proposed as an extension of the
analysis done in Ref. [6]. In the following section we derive a sin-
gle-junction effective model (SJEM) by which the dimensionality
of the system of coupled non-linear ordinary differential Eqs. (1a)
and (1b) is reduced from two to one by eliminating the flux num-
ber variable w. In Section 3, the proposed second-order perturba-
tion solution to the problem is used to derive the persistent
current expression to first order one in b and the magnetic suscep-
tibility to second order in b. It is concluded that, though the present
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analysis is similar to what is done in Ref. [6], it allows knowledge of
the expression of iS and of the magnetic susceptibility v to higher
order in b. It is noted that, by comparing the analytic expressions of
iS and v with respect to the corresponding numerically evaluated
expressions, obtained by solving Eqs. (1a) and (1b) with computer
assisted means, the second-order approximation, as expected, fits
the numerical values better than the first-order solution obtained
in Ref. [6].

2. Single-junction effective model

Let us consider the second ordinary differential equation in (1).
By setting

w ¼ wex þ bw1 þ b2w2 þ Oðb3Þ; ð3Þ

after having multiplied both sides of (1b) by b, we can collect terms
of equal power of b, obtaining the following:

w1 ¼ �2 sin pwex cos /; ð4aÞ

w2 ¼ �2
dw1

dt
� 2w1 cos pwex cos /: ð4bÞ

Therefore, the perturbed solution for w, to second order in the
parameter b, is the following:

w ¼ wex � 2b sin pwex cos /þ 2pb2½sin 2pwex � iB sinpwex

� sin /�: ð5Þ

We can now substitute Eq. (5) into Eq. (1a), obtaining

d/
ds
þ f ðwex;/Þ sin / ¼ iB

2
; ð6Þ

where

f ðwex;/Þ ¼ cospwex þ 2pb sin2 pwex cos /� 2p2b2

� sin2 pwex½cospwexð2þ cos2 /Þ � iB sin /�: ð7Þ

In this way, the effective CPR of the single-junction effective
model of the two-junction quantum interferometer is given by
the quantity f ðwex;/Þ sin /. One should here consider that this
unconventional CPR is not due to intrinsic properties of the Joseph-
son junction, but only to the particular form of the electromagnetic
coupling between the junctions dynamics, governed by Eq. (1a),
and of the flux time evolution coming from Eq. (1b). In the limit
of small values of the parameter b, the flux dynamics can be
approximated, to various orders in b, as shown in this section. In
this way, the superconducting phase dynamics can be described
by the single-junction effective model given in Eq. (6).
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Fig. 1. Phase space representation of the superconducting phase dynamics to
leading order in the parameter b. A graphical representation of the system behavior
is given for cospwex < 0 (full-line curve) and for cospwex > 0 (dotted curve). By this
analysis the stable fixed points are found to be /0 = 0 for cospwex > 0, and /0 = p for
3. Persistent currents and susceptibility at zero bias

Let us consider the persistent current for iB ¼ 0. In this case the
expression for iS is the following:

iS ¼ �2 sin pwex cos /þ 2pb sin 2pwex: ð8Þ

On the other hand, keeping in mind that the magnetic suscepti-
bility of the system can be defined as

v ¼ w� wex

wex
¼ biS

wex
; ð9Þ

we find

v ¼ �2pb
sinpwex

pwex
cos /þ ð2pbÞ2 sin 2pwex

2pwex
: ð10Þ
In Eqs. (8) and (10) we need to decide the value to give to /.
Therefore, we need to consider the fixed-point solutions of Eq.
(6). Because of (7), we only need to consider solutions to first order
in b. In this way, by setting

/ ¼ /0 þ b/1 þ Oðb2Þ; ð11Þ

we may obtain the following relations for /0 and /1:

d/0

ds
þ cos pwex sin /0 ¼

iB

2
; ð12aÞ

d/1

ds
þ /1 cos pwex cos /0 ¼ �p sin2 pwex sin 2/0: ð12bÞ

Eq. (12a) can be solved exactly for /0 [3]. By knowledge of /0, a
solution for /1 in Eq. (12b) can be found by standard application of
the theory of ordinary differential equations. We here omit details
on the closed solution to the problem, but make the following
important considerations. First, we notice that, being /1 defined
by means of /0, we only need to define the stable fixed points
for /0 in (12a). Second, for iB = 0, we see that fixed-point solutions
for /0 can be either /0 = 0 or /0 = p. We therefore need to choose
between these two solutions on the basis of stability, by means
of the phase-plane analysis shown in Fig. 1. We therefore argue
that, for cospwex > 0, we have a stable equilibrium point at /0 = 0.
On the other hand, for cospwex < 0, we have a stable equilibrium
point at /0 = p. Therefore, we have the following final expression
for iS:

iS ¼
�2 sin pwex þ 2pb sin 2pwex for cospwex > 0
þ2 sin pwex þ 2pb sin 2pwex for cospwex < 0

:

�
ð13Þ

For the magnetic susceptibility v, on the other hand, we may
write:

v ¼
�2pb sinpwex

pwex
þ ð2pbÞ2 sin 2pwex

2pwex
for cos pwex > 0

þ2pb sinpwex
pwex

þ ð2pbÞ2 sin 2pwex
2pwex

for cos pwex < 0
:

8<
: ð14Þ

In Fig. 2 and in Fig. 3, we show the curves obtained for the per-
sistent current and the magnetic susceptibility, respectively, as a
function of wex for b = 0.02. In particular, in Fig. 2 the red and green
curves represent the persistent currents iS calculated by means of
the first-order and second-order approximation of the solution of
w, respectively; the numerical integration is represented by empty
blue circles. It can be seen that, as expected, the second-order
approximation fits better the numerical solution. In Fig. 3, on the
other hand, the red and green curves represent the magnetic sus-
ceptibility v calculated by means of the first-order and second-or-
der approximation of the solution of w, respectively. As in Fig. 2,
cospwex < 0.
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Fig. 2. Persistent current iS as a function of the applied normalized flux wex for
b = 0.02. The red dashed-dotted line and the green dashed line represent the
persistent currents calculated by means of first-order and second-order approxi-
mation of the solution w, respectively; the numerical integration is represented by a
collection of empty blue circles. It can be noticed that the green curve fits the
numerical solution better than the red curve.
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Fig. 3. Magnetic susceptibility v as a function of the applied normalized flux wex for
b = 0.02. The red full line and the green dashed line represent the magnetic
susceptibility calculated by means of first-order and second-order approximation of
the solution w, respectively; the numerical integration is represented by a
collection of empty blue circles. It can be noticed that, in the wex-interval (�1/
2,1/2) the green curve fits the numerical solution much better than the red curve. A
similar behavior is shown in the insets for values of wex outside the interval (�1/2,1/
2).
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the empty blue circles give the outcome of the numerical integra-
tion of Eqs. (1a) and (1b). In Fig. 3 we finally notice that the evident
disagreement of the value of v calculated by means of the first-or-
der approximation of the solution of w in the wex -interval (�1/2,1/
2) disappears when the expression for v given in Eq. (12) is used.
The insets in Fig. 3 show that, as in Fig. 2, the agreement between
the numerically calculated expression for v and the analytic
expressions given in (12) is greater for the second-order approxi-
mation for v than for the first-order expression, as one would
expect.
4. Conclusions

Considering two-junction quantum interferometers, we have
found an approximate analytic expression for persistent currents
iS and magnetic susceptibility v as a function of the externally ap-
plied normalized magnetic flux wex. We have shown that the sec-
ond-order approximation in b of the dynamical variable w gives
a better fit, with respect to the first-order approximation, of the
numerically calculated values of iS and v. The advantage of finding
an analytic expression for these physical quantities resides on the
actual and future potential use that can be made of these supercon-
ducting systems both in applied science and quantum computing.
Furthermore, the model itself presents very challenging mathe-
matical aspects and deserves attention for its very interesting
intrinsic properties. In fact, these systems, though being made of
superconducting parts, can show alternating diamagnetic and
paramagnetic behavior, depending on the value of the normalized
applied flux. This characteristic response can also shed some light
on the controversial behavior denoted as ‘‘Paramagnetic Meissner
Effect’’ [14] in high-Tc granular superconductors. Finally, as further
developments of the present analysis, the quantum properties of a
single-junction effective model of a two-junction quantum inter-
ferometer built in nanoscale dimensions will be sought in the
future.
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