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1 Introduction

In the global computing scenario it is crucial to develop software exhibiting three
key properties:evolution, incompleteness, andsafety. In the context of the ob-
ject oriented paradigm the first two properties amount to have objects with method
and delegate overriding, addition, removing and which can delegate executions of
methods to other objects [Lie86], [ABC+92], [AD02].

A traditional approach for ensuring safety is typing. There is a large literature
about calculi of objects with types (see [AC96a], [Bru02], [Pie02], and their refer-
ences), where safety is interpreted mainly as the property that well typed programs
cannot go wrong, i.e. that nomessage not understoodexception can be thrown.
This is also the approach to program safety of the present paper, but whereas many
of the proposed type systems in the literature are for functional object calculi and
some of them are for imperative object calculi, we focus on an imperative ob-
ject calculus with method and delegate updating, removal and delegation. To our
knowledge no typing has been proposed for calculi with these features.

The aim of the present paper is then to partially fill the gap between the theory
of types and the imperative object calculi with delegation. This is achieved by
means of a simple idea: to adapt thealias typesapproach [SWM01], [WM01] to
the case of objects with delegation.

For low level code thealias typesmethodology has produced type systems
which are collections ofaliasing constraints. These constraints describe the shape
of the store and every function uses them to specify the store that it expects. The
pointers havesingleton typeswhich are the locations themselves.

Our proposal is to type objects with singleton types: the logical or physical
addresses of the objects. The environments are constraints on the (typed) sets of
methods and delegates of the objects. The satisfaction of such constraints guaran-
tees that a typable program can besafelyevaluated. A key choice in the system
is the typing of the method bodies: here the types give also complete information
about the environments in which the bodies need to be typed. To correctly type
a method call we require that the environment of the call represents (at least) the
constraints needed for the typing the method body.

As a test case we apply this approach toδ, a simple intuitive calculus for im-
perative object based delegation [AD02].

It is worth mentioning that recently the same approach has been applied to a
calculus for “environment-aware” computation [DG03].

The present paper is organized as follows: in Section2 we introduceδ following
[AD02]. Section3 presents the type assignment system: types, typing rules and
soundness proof.

2 The Calculus

We presentδ, a minimal imperative object based calculus with delegation. Delega-
tion has also been studied in [FM95] and its derivatives. Also in [AC96b] delega-
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Fig. 1. Point with delegation

tion is encoded into some of the variants of theς-calculus. However, because the
ς-calculus does not support the addition of methods and because the derivatives of
[FM95] model delegation through copying, neither adequately reflect the situation
where an objecto1 delegates to another objecto2, theno2’s method body form is
modified or added and subsequent method call ofm on o1 results in execution of
the modified method body rather than the original one.

With delegation we can represent a point bythree objects. One object that
knows how to print points:

ι1.print C PrintCode

Here we have used lazy update,C, to add the unevaluted code for printing
to ι1 with method identifierprint. We abbreviate the body of methodprint by
PrintCode. Similaly another object knows how to move objects:

ι2.move C (self.x J self.x + 1)

Again, lazy update is used to add methodmove to objectι2. The body of method
move uses eager update,J, to increment thex method of the receiver, identified by
self. Thus, self.x + 1 is evaulated and the result stored inself.x. Note that for
simplicity, we use the literals 1,2 ... as a shorthand for the object representations of
the corresponding numbers.

Finally we have an object containing thex andy co-ordinates:

((ι3.x J 5).y J 3)

We now link the objects together using delegate update,a@d J b:

ι3@d J ι2; ι2@d J ι1
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Figure1 shows the three objects representing a point at coordinates (3,5). The
objects are represented in two parts: the upper part contains the delegates and the
lower part contains the methods. Whenι3 receives amove message it delegates it to
ι2. Similarly, whenι3 receives aprint message it delegates it toι2 andι2 delegates
it to ι1. Thus, delegation allows sharing of methods between objects and thus the
objects may be defined in terms of each other. Any changes to methods will be
visible to both delegator and delegate. Hence, if we were to update the print code
of ι1 this would affect the behaviour of bothι2 andι3.

The following example shows the difference between eager and lazy updating.
The evaluation of the eager updatingι.m J (ι′.m′ C self) first evaluates the body
of the method, i.e.ι′.m′ C self, and then updates them method of the object atι
with the result of the body evaluation, i.e.ι′.

Then for all storesσ

ι.m J (ι′.m′ C self) ; ι′.m′, σ ;
δ
ι′, σ′

whereσ′ is obtained fromσ by updating the methodm in the object atι and the
methodm′ in the object atι′.

If in the previous expression we change the method updating from eager to lazy,
and the object atι′ and its delegates do not have the methodm′, we get astuckErr:

ι.m C (ι′.m′ C self) ; ι′.m′, σ ;
δ
stuckErr, σ′

whereσ′ is obtained fromσ by updating only the methodm in the object atι with
the (unevaluated) bodyι′.m′ C self.

Consider the following example which demonstrates an object with two dele-
gates:

ι@d1 J ι′; ι@d2 J ι′′; ι′.m C (ι′′.m′ J self); ι.m; ι.m′

We assume that in the initial state the objectι and its delegates do not have the
methodsm andm′. Firstly, ι′ andι′′ are made delegates ofι, followed by the lazy
addition of methodm to ι′. Whenι.m is executed,ι delegates execution ofm to ι′

which adds a new methodm′ to ι′′. Whenι.m′ is executedι delegates execution of
m′ to ι′′. If instead we had written:

ι@d1 J ι′; ι@d2 J ι′′; ι′.m C (ι′′.m J self); ι.m; ι.m

after the first call toι.m bothι′ andι′′ have a methodm. Therefore, the second call
to ι.m is ambiguous and execution will producestuckErr. However, we can write
ι@d2.m to executem in ι′′ with the receiver beingι.

Remark 2.1 In the previous examples we use parentheses which are not part of the
syntax to help reading.
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ι ∈ PhysAddress

m ∈ MethID

d ∈ DelID

MethID ∩ DelID= ∅

a, b ∈ Exp ::= ι physical address

a.m method invocation

a.m J b eager update

a.m C b lazy update

clone(a) clone (shallow)

self receiver

a@d.m delegate invocation

a@d J b delegate update

a B• m method remove

a B@ d delegate remove

a ; b composition

Fig. 2. Syntax ofδ

2.1 Syntax

The syntax (shown in figure2) defines ten kinds of expressions: physical addresses,
method invocation, lazy and eager update, clone,self, method removal, delegate
invocation, addition and removal, composition.PhysAddress is the set of physical
addresses: they play, in some sense, the role of variables. Method and delegate
identifiers are taken from the disjoint infinite sets of namesMethID and DelID
respectively. We convene thatn ∈ MethID ] DelID, where] denotes union of
disjoint sets.

We use (n=b) ∈ o as short for:
the objecto has

• the method identifiern with associated bodyb if n ∈ MethID or
• the delegate identifiern with associated physical addressb if n ∈ DelID.
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Look :: Store× Address× (MethID ] DelID) → Exp ] {Udf }

Look ′ :: Store× Address× (MethID ] DelID) → P(Exp× Address)

Look(σ, ι, n) =

 b if Look ′(σ, ι, n) = {(b, ι′)}

Udf otherwise

Look ′(σ, ι, n) =


{(b, ι)} if (n = b) ∈ σ(ι)

⋃
ι′∈I

Look ′(σ, ι′, n) otherwise

whereI = {ι′ | (d = ι′) ∈ σ(ι) for somed}

Fig. 3. TheLook andLook ′ Functions

2.2 Semantics

The operational semantics forδ is given in figure5, but for the rules of stuck error
propagation, which are standard. It rewrites pairs of expression and stores into pairs
of physical addresses orstuckErr and stores.

By⇀fin we denote finite mappings. The stores map physical addresses to objects
andself to a memory address. Objects are finite mappings from method names to
expressions and from delegate names to physical addresses.

;
δ

: Exp× Store ⇀finAddress× Store

Store = ({self} � Address) ∪ (Address ⇀finObj)

Obj = (MethID ⇀finExp) ∪ (DelID ⇀finAddress)

Let Udf denote undefined. The rewrite rules (Select) and (Delegate Select) use
lookup functionsLook andLook ′ shown in figure3. Look ′ returns the set of pairs
of addresses and bodies corresponding to a method identifier and an address in a
given store. Lookup starts in objectσ(ι), and if no method body is found, then the
search continues in the delegates. Note thatLook is defined only ifLook ′ finds
exactly one method or delegate body. So, if an object has several method bodies
in several different delegates, or if no method body can be found in the object or
its delegates, then evaluation produces a stuck error (rules (Stuck Select), (Stuck1
Delegate Select), and (Stuck2 Delegate Select)). If instead a unique method body
is found, this body is evaluated in the context of a store whereself is bound to the
address of the receiver. Finally,self is set back to the address it had before the
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σ{ι.n C+ b}(ι′)(n′) =


b if n′ = n, ι′ = ι andLook(σ, ι, n) = Udf

b if n = n′ andLook ′(σ, ι, n) = {(b′, ι′)}

σ(ι′)(n′) otherwise

σ{ι B n}(ι′)(n′) =

Udf if n′ = n andι′ = ι

σ(ι′)(n′) otherwise

Fig. 4. Delegate Store Update and Remove

method invocation.
There are two kinds of update: eager (Eager Update) and lazy (Lazy Update).

They differ in their treatment of the new bodyb. Lazy update replaces the method
body identified bym with the unevaluated bodyb. In eager update the bodyb is
evaluated before the update occurs. Hence, lazy update is like method update and
eager update is like field update. Both updates useLook andLook ′ to check if
there isexactlyone object containing the specified method or delegate, starting the
lookup from the object which receives the message. If such an object is found, the
update is realized by overwriting the body of the method (or the physical address of
the delegate). Otherwise the object which receives the message is extended by the
method (or the delegate). This is done by the store update,σ{ι.n C+ b} defined in
figure4. 8

Clone (Clone) evaluates the objecta then it allocates a new address and copies
the object to the new address and returns the new address. We define:

σ[ι 7→o](ι′) =

{
o if ι′ = ι,

σ(ι′) otherwise.

Delegate update (Delegate Update) adds or updates the delegate identified byd
in the receivera with the evaluated bodyb.

Delegate removal (Delegate Remove) and method removal (Method Remove)
first evaluate the receiver then return the receiver with the delegate or method re-
moved. The store removal,σ{ι B n}, is defined in figure4.

8 We slightly changed the original definition of storage update to avoid to have operations which
modify more than one object.
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(Self)

self, σ ;δ σ(self), σ

(Addr)

ι, σ ;δ ι, σ

(Select)

a, σ ;δ ι, σ′

Look(σ′, ι,m) = b

σ′′′ = σ′[self 7→ι]

b, σ′′′ ;δ ι′, σ′′

a.m, σ ;δ ι′, σ′′[self 7→σ(self)]

(Delegate Select)

a, σ ;δ ι, σ′

Look(σ′, ι, d) = ι′

Look(σ′, ι′,m) = b

σ′′′ = σ′[self 7→ι]

b, σ′′′ ;δ ι′, σ′′

a@d.m, σ ;δ ι′, σ′′[self 7→σ(self)]

(Lazy Update)

a, σ ;δ ι, σ′

a.m C b, σ ;δ ι, σ′{ι.m C+ b}

(Eager Update)
a, σ ;δ ι, σ′

b, σ′ ;δ ι′, σ′′

a.m J b, σ ;δ ι, σ′′{ι.m C+ ι′}

(Delegate Update)

a, σ ;δ ι, σ′

b, σ′ ;δ ι′, σ′′

a@d J b, σ ;δ ι, σ′′{ι.d C+ ι′}

(Clone)
a, σ ;δ ι, σ′

ι′ 6∈ dom(σ′)

σ′′ = σ′[ι′ 7→σ′(ι)]

clone(a), σ ;δ ι′, σ′′

(Method Remove)
a, σ ;δ ι, σ′

a B• m, σ ;δ ι, σ′{ι B m}

(Delegate Remove)

a, σ ;δ ι, σ′

a B@ d, σ ;δ ι, σ′{ι B d}

(Composition)
a, σ ;δ ι, σ′

b, σ′ ;δ ι′, σ′′

a ; b, σ ;δ ι′, σ′′

(Stuck Select)

a, σ ;δ ι, σ′

Look(σ′, ι,m) = Udf

a.m, σ ;δ stuckErr, σ′

(Stuck1 Delegate Select)

a, σ ;δ ι, σ′

Look(σ′, ι, d) = Udf

a@d.m, σ ;δ stuckErr, σ′

(Stuck2 Delegate Select)

a, σ ;δ ι, σ′

Look(σ′, ι, d) = ι′

Look(σ′, ι′,m) = Udf

a@d.m, σ ;δ stuckErr, σ′

Fig. 5. Operational Semantics ofδ
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3 The Type Assignment System

Looking at the operational semantics ofδ one easily sees that astuckErr is gener-
ated only when a method invocation or a delegate invocation does not find a method
or a delegate. To assure that well typed expressions cannot go wrong we need a type
system tracing for all objects how methods and delegates are added, updated and
removed. We get this simply by allowing types of objects to be their (logical or
physical) addresses. The typing judgements are of the shape:

Γ ` a : τ, ϕ

where:

• the environmentΓ gives informations about the types of delegates and methods
of objects at fixed addresses;

• the typeτ gives the address of the object, which is the value (if it exists) of the
expressiona;

• the effectϕ represents the changes of the environment due to the typing ofa in
Γ.

The intuition (which will be clarified discussing soundness) is that

• the environmentΓ represents the constraints the store must satisfy in order to
successfully evaluatea;

• the typeτ gives the address of the object to whicha may converge;
• the effectϕ represents the changes of the store due to the evaluation ofa in a

store satisfyingΓ.

In other words the evaluation ofa, whenever it does not produce an error, is guar-
anteed to produce an object of typeτ and a store satisfying the constraintsϕ(Γ), if
the evaluation starts with a store satisfyingΓ.

Typing a delegate update gives:

` ι@d J ι′ : Obj(ι), ϕ

where effectϕ = {[ι : 〈〈 〉〉 || 〈〈 〉〉]}◦{[ι′ : 〈〈 〉〉 || 〈〈 〉〉]}◦{{ι : 〈〈d : Obj(ι′)〉〉@}} says that
ι, ι′ are empty objects andι′ is the delegated atι. A more interesting example deals
with the eager and lazy method update:

` ι′.m C (ι′′.m′ J self) : Obj(ι′), ϕ′

whereϕ′ = {[ι′ : 〈〈 〉〉 || 〈〈 〉〉]}◦{{ι′ : 〈〈m : 〈∅,Obj(ι′), ϕ′′〉〉〉•}} andϕ′′ = {[ι′′ : 〈〈 〉〉 || 〈〈 〉〉]}◦
{{ι′′ : 〈〈m′ : Obj(ι′′)〉〉•}}.
We obtain an effect containing a type which, in turn, contains an effect.
The effectϕ′ says thatι′ is an empty object and the methodm is updated atι′ with
a body of type〈∅,Obj(ι′), ϕ′′〉. The effectϕ′′ inside the type of (the body of)m
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OBJECTTYPES : τ τ ::= Obj(ζ) whereζ ∈ PhysAddress ] LogAddress

METHOD TYPES : λ λ ::= τ | 〈Γ, τ, ϕ〉

METHOD ROWS : µ µ ::= 〈〈 〉〉 | 〈〈µ | m :λ〉〉 wherem ∈ MethID

DELEGATE ROWS : ν ν ::= 〈〈 〉〉 | 〈〈ν | d : τ〉〉 whered ∈ DelID

ROW TYPES : ρ ρ ::= ν || µ

ENVIRONMENTS : Γ Γ ::= { } | Γ ∪ {ζ : ρ}

ROW OPERATORS: ψ ψ := /•m | /@d | 〈〈m :λ〉〉• | 〈〈d : τ〉〉@
EFFECTS: ϕ ϕ ::= id|{[ζ : ρ]} | {{ζ :ψ}} | ϕ ◦ ϕ

Fig. 6. Types, Environments, Effects

takes into account that the evaluation of this body will assign the empty row toι′′

and will update the methodm′ at ι′′ with typeObj(ι′′).

3.1 Types, Environments, Effects, Judgments

To define types we need to consider, besides the set of physical addresses (PhysAddress,
ranged over byι, which are expressions), a set oflogical addresses(LogAddress).
The setLogAddress is a denumerable set and it contains the distinguished element
ιself . The elementιself represents the logical address of the current object (self).
The remaining elements ofLogAddress represent the logical addresses of clones:
ιc ranges over these elements. We useζ to denote an element ofPhysAddress
]LogAddress:

ζ ::= ι | ιself | ιc
Figure6 lists the definitions of types, environments, and effects.
An object typeis simply an address: the (physical or logical) address of an object
(the notationObj(ζ) is used to stress thatζ is looked at as a type of an object).
We have two kinds ofmethod types.
Methods added with eager update are fields containing objects: so they are assigned
object types.
Methods added with lazy update are methods whose bodies are unevaluated expres-
sions: we type them with triples of environments, object types and effects. These
triples give complete type informations about the typing of the bodies: ifb has type
〈Γ, τ, ϕ〉 then the judgmentΓ ` b : τ, ϕ can be derived.

Method rowsdenote partial mappings between method names and method types.
Delegate rowsdenote partial mappings between delegate names and delegate types.
Therefore the order in which methods (respectively delegates) occur in the corre-
sponding rows is irrelevant.
Row typesare pairs of method rows and delegate rows: they show the methods and
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/•m(ν || µ) = ν || 〈〈m′ :λ | m′ :λ ∈ µ & m′ 6= m〉〉 method deletion

/@d(ν || µ) = 〈〈d′ : τ | d′ : τ ∈ ν & d′ 6= d〉〉 || µ delegate deletion

〈〈m :λ〉〉•(ν || µ) = ν || 〈〈/•m(µ) | m :λ〉〉 method update

〈〈d : τ〉〉@(ν || µ) = 〈〈/@d(ν) | d : τ〉〉 || µ delegate update

Fig. 7. Row Operators

id(Γ) = Γ identity

{[ζ : ρ]}(Γ) =

(
Γ if ζ ∈ Γ & ζ 6= ιself
{ζ′ : ρ | ζ′ : ρ ∈ Γ & ζ′ 6= ζ} ∪ {ζ : ρ} otherwise

independent row updating

{{ζ :ψ}}(Γ) = {ζ′ : ρ | ζ′ : ρ ∈ Γ & ζ′ 6= ζ} ∪ {ζ :ψ(Γ(ζ))} dependent row overriding

ϕ ◦ ϕ′(Γ) = ϕ′(ϕ(Γ)) composition

Fig. 8. Effects

delegates of objects with their types.
Environmentsrepresent partial mappings between addresses and row types. They
can be essentially seen as predicates (constraints) on stores.
We useζ ∈ Γ as short for∃ρ.ζ : ρ ∈ Γ.
A row operatoris a total function from row types to row types as defined in figure
7. I.e. a row operator is one of the four operations: method deletion, delegate dele-
tion, method update, and delegate update.
Effectsdenote total functions from environments to environments: they update the
row types of addresses. This updating can be either an overriding or an addition,
according to the presence of the address in the environment. The overriding can be
dependent or independent from the actual row type of the current address. Depen-
dent overriding uses the row operators. The effects are built by composition out of
the three basic functions on environments: identity, independent row updating, de-
pendent row overriding (see figure8). The independent row updating{[ζ : ρ]} adds
the pairζ : ρ to the environment, possibly deleting a pair with first componentζ,
only whenζ is ιself . The dependent row overriding{{ζ :ψ}} must be applied to an
environment containing a pairζ : ρ: the resulting environment will contain the pair
ζ : ψ(ρ).

As we already said atyping judgmenthas the shape:

Γ ` a : τ, ϕ

whereΓ is an environment,τ is an object type andϕ is an effect.
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ι 6∈ Γ

(Ax-ι-init)
Γ ` ι : Obj(ι), {[ι : 〈〈 〉〉 || 〈〈 〉〉]}

ι ∈ Γ

(Ax-ι)
Γ ` ι : Obj(ι), id

ιself ∈ Γ

(Ax-self)
Γ ` self : Obj(ιself), id

Γ ` a : Obj(ζ), ϕ ϕ(Γ)(ζ) = ρ ιc 6∈ ϕ(Γ)

(R-clone)
Γ ` clone(a) : Obj(ιc), ϕ ◦ {[ιc : ρ]}

Γ ` a : τ ′, ϕ ϕ(Γ) ` b : τ, ϕ′

(R-comp)
Γ ` a ; b : τ, ϕ ◦ ϕ′

Γ ` a : Obj(ζ), ϕ

Lt(ϕ(Γ), ζ,m) = τ
(R-eager-sel)

Γ ` a.m : τ [ζ/ιself ], ϕ

Γ ` a : Obj(ζ), ϕ

Lt(ϕ(Γ), ζ, d) = Obj(ζ′)

Lt(ϕ(Γ), ζ′,m) = τ
(R-del-eager-sel)

Γ ` a@d.m : τ [ζ/ιself ], ϕ

Γ ` a : Obj(ζ), ϕ

Lt(ϕ(Γ), ζ,m) = 〈Γ′, τ, ϕ′〉

ϕ(Γ)(ζ) = ρ ϕ ◦ {[ιself : ρ]}(Γ) ≤ Γ′

{ιc | ιc ∈ ϕ′(Γ′) & ιc ∈ ϕ(Γ) & ιc 6∈ Γ′} = ∅
(R-lazy-sel)

Γ ` a.m : τ [ζ/ιself ], ϕ ◦ ϕ′[ζ/ιself ]

Γ ` a : Obj(ζ), ϕ

Lt(ϕ(Γ), ζ, d) = Obj(ζ′) Lt(ϕ(Γ), ζ′,m) = 〈Γ′, τ, ϕ′〉

ϕ(Γ)(ζ) = ρ ϕ ◦ {[ιself : ρ]}(Γ) ≤ Γ′

{ιc | ιc ∈ ϕ′(Γ′) & ιc ∈ ϕ(Γ) & ιc 6∈ Γ′} = ∅
(R-del-lazy-sel)

Γ ` a@d.m : τ [ζ/ιself ], ϕ ◦ ϕ′[ζ/ιself ]

Γ ` a : Obj(ζ), ϕ La(ϕ(Γ), ζ,m) = ζ′

ϕ(Γ)(ζ′) = ρ ϕ ◦ {[ιself : ρ]}(Γ) = Γ′ Γ′ ` b : τ, ϕ′

(R-eager-up)
Γ ` a.m J b : Obj(ζ), ϕ ◦ ϕ′ ◦ {{ζ′ : 〈〈m : τ〉〉•}}

Γ ` a : Obj(ζ), ϕ La(ϕ(Γ), ζ,m) = ζ′ Γ′ ` b : τ, ϕ′

(R-lazy-up)
Γ ` a.m C b : Obj(ζ), ϕ ◦ {{ζ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

Γ ` a : Obj(ζ), ϕ ϕ(Γ) ` b : Obj(ζ′), ϕ′

(R-del-up)
Γ ` a@d J b : Obj(ζ), ϕ ◦ ϕ′ ◦ {{ζ : 〈〈d : Obj(ζ′)〉〉@}}

Γ ` a : Obj(ζ), ϕ

(R-met-rem)
Γ ` a B• m : Obj(ζ), ϕ ◦ {{ζ : /•m}}

Γ ` a : Obj(ζ), ϕ

(R-del-rem)
Γ ` a B@ d : Obj(ζ), ϕ ◦ {{ζ : /@d}}

Fig. 9. Typing Rules
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3.2 Typing Rules

Figure9 lists the typing rules. We use the following notational convention:

〈〈n :λ〉〉 ∈ ρ ⇐⇒ ρ ≡ 〈〈n :λ〉〉 | ν ′ || µ or ρ ≡ ν || 〈〈n :λ〉〉 | µ′

The axioms (Ax-ι-init), (Ax-ι) and (Ax-self) give to a physical address and toself
the types representing them. The axiom (Ax-ι-init) add ι to the environment with
the empty row. The other two axioms do not change the environment, so their effect
is id.

Rule (R-clone) says thatclone(a) has a fresh logical address and the row type
of a. Notice that the row type ofa is taken from the environment obtained from the
initial one by applying the effect of the typing ofa.

The composition rule (R-comp) types the second expression in the environment
obtained from the initial one by applying the effect of the typing of the first expres-
sion.

L(Γ, ζ, n) =


{(λ, ζ)} if 〈〈n :λ〉〉 ∈ Γ(ζ)

⋃
ζ′∈IΓ(ζ) L(Γ, ζ ′, n) otherwise

whereIΓ(ζ)={ζ ′ | 〈〈d :Obj(ζ ′)〉〉 ∈ Γ(ζ)}

La(Γ, ζ, n) =


ζ ′ if L(Γ, ζ, n) = {(λ, ζ ′)}

ζ otherwise

Lt(Γ, ζ, n) =


λ if L(Γ, ζ, n) = {(λ, ζ ′)}

Udf otherwise

Fig. 10.TheL, La andLt Functions

The method selection rules (R-eager-sel) and (R-lazy-sel) look for the method
in the whole up hierarchy of the delegates of the object: the typing is successful
only when we find at most one occurrence of the method in the search procedure
for it (i.e. the functionL below produces a singleton). Such a look up procedure
is described by means of the functionLt which uses the functionL: both functions
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are defined in figure10. The current environment is obtained from the initial one
taking into account the changes due to the typing of the receiver.

If the resulting type is an object typeτ this means that the method was updated
in an eager way, i.e. the body of the method has been evaluated before the method
updating. Rule (R-eager-sel) gives to the expressiona.m the addressζ of the re-
ceivera in caseτ is the logical addressιself of self. We denote this type byτ [ζ/ιself ].
The final effect is the effect of the typing ofa.

Instead if the type of the method body is a triple〈Γ′, τ, ϕ′〉 then the method
was updated in a lazy way, i.e. the bodyb of the method has not been evaluated
before the method updating. We must then check thatb is well typed in the current
environment, i.e. in the environmentϕ(Γ) obtained from the initial one (Γ) by
applying the effectϕ of the typing ofa. We knowb is well typed in the environment
Γ′, so we have to check thatϕ(Γ) is as good asΓ′. To this aim we introduce a
partial order on environments. We say thatΓ is better thanΓ′ (notationΓ ≤ Γ′) iff
the binary functionLt(Γ, , ) is an extension ofLt(Γ′, , ), that is:

Γ ≤ Γ′ iff Lt(Γ′, ζ, n) 6= Udf =⇒ Lt(Γ′, ζ, n) = Lt(Γ, ζ, n)

We have also to take into account thata is the receiver of the method, so we modify
ϕ(Γ) by associating to the logical addressιself of self the row typeρ of the receiver
a (i.e. we consider the environmentϕ ◦ {[ιself : ρ]}(Γ)). To sum up we have to
compareϕ ◦ {[ιself : ρ]}(Γ) with Γ′: this gives the conditionϕ ◦ {[ιself : ρ]}(Γ) ≤ Γ′.
The remaining condition{ιc | ιc ∈ ϕ′(Γ′) & ιc ∈ ϕ(Γ) & ιc 6∈ Γ′} = ∅ assures
that there are no name clashes between the logical addresses of clones which are
created independently either typinga or typingb. The resulting type isτ [ζ/ιself ] as
in rule (R-eager-sel). The resulting effectϕ ◦ ϕ′[ζ/ιself ] is the composition of the
effectϕ of typinga with the effectϕ′ of typingb where the address ofself has been
replaced by the address ofa.

The rules for delegate selection (R-del-eager-sel) and (R-del-lazy-sel) differ
from the corresponding selection rules only in the way of looking for the method
type. These rules first look for the delegated in the upper hierarchy of the delegates
of the object. If the delegated is found the rules look for the method in the upper
hierarchy of the delegates ofd.

To type an eager or lazy method updating we have to look for the address of a
delegate containing the method in the whole upper hierarchy of the delegates of the
object. This is done in rules (R-eager-up) and (R-lazy-up) by means of the function
La which uses the functionL: both functions are defined in figure10. Notice that
if no delegate does contain the required method the functionLa returns the address
of the receiver and the updating extends the receiver: otherwise the updating is an
overriding.

In rule (R-eager-up) the new method body is typed in the environment obtained
from the initial one by applying the effect of the typing of the receiver and by
associating to the address ofself the row of the object at the addressζ ′ obtained
by La. The resulting type is the type of the receiver and the resulting effect is the
composition of the effectϕ of typing the receiver with the effectϕ′ of typing the
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method body and with the updating of the rowρ of the addressζ ′. This updating
amounts either to override the type of methodm in ρ by the typeτ of the new
body or to extendρ with m : τ . Using the notations of figures7 and8 the effect
representing this updating is{{ζ ′ : 〈〈m : τ〉〉•}}.

Rule (R-lazy-up) instead only requires that the new method bodyb be typable in
some environmentΓ′, which can have no relation with the environmentΓ in which
the receiver is typed. This is safe, since the type of the added method will recall
Γ′ and the typing rule for method call (R-lazy-sel) will check that the environment
in which the method call is typed will be better thanΓ′. If we can deriveΓ′ `
b : τ, ϕ′ then the methodm will get the type〈Γ′, τ, ϕ′〉; this type gives a complete
information about the typing ofb. The type ofa.m C b is the type of the receiver.
The resulting effect is the composition of the effectϕ of typing the receiver with the
updating of the rowρ of the addressζ ′ (value ofLa(ϕ(Γ), ζ,m)). This updating
amounts either to override the type of methodm in ρ by the type〈Γ′, τ, ϕ′〉 or
to extendρ with m : 〈Γ′, τ, ϕ′〉. Using the notations of figures7 and8 the effect
representing this updating is{{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}.

For typing a delegate updating rule (R-del-up) requires to deduce a type for the
new delegate in the environment obtained from the initial one by applying the effect
of the typing of the receiver. The resulting type is the type of the receiver and the
resulting effect is the composition of the effectϕ of typing the receiver with the
effectϕ′ of typing the body and with the updating of the rowρ of the receiver. This
updating amounts either to override the type of delegated in ρ by the typeObj(ζ ′)
of the new delegate or to extendρ with d : Obj(ζ ′). Using the notations of figures7
and8 the effect representing this updating is{{ζ : 〈〈d : Obj(ζ ′)〉〉@}} whereζ is the
address of the receiver.

Rules (R-met-rem) and (R-del-rem) type respectively method remove and del-
egate remove. Again the resulting type is the type of the receiver. The resulting
effect is the composition of the effectϕ of typing the receiver with the deletion
of the method (in rule (R-met-rem)) or with the deletion of the delegate (in rule
(R-del-rem)) in the row of the receiver. Using the notations of figure7 the effects
representing these deletions are respectively{{ζ : /•m}} and{{ζ : /@d}}, whereζ is
the address of the receiver.

3.3 Typing Example

We now give a detailed outline of the typing for theδ expression:

ι@d1 J ι′; ι@d2 J ι′′; ι′.m C (ι′′.m′ J self); ι.m; ι.m′

given in section2.
The overall typing is a series of applications of the rule (R-comp) (see figure11

whereτ ≡ Obj(ι′′) ). The typing of∅ ` ι@d1 J ι′ : Obj(ι), ϕ1 uses rule (R-del-up)
producing effect:

ϕ1 = {[ι : 〈〈 〉〉 || 〈〈 〉〉]} ◦ {[ι′ : 〈〈 〉〉 || 〈〈 〉〉]} ◦ {{ι : 〈〈d1 : Obj(ι′)〉〉@}}
15
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∅ ` ι@d1 J ι′ : Obj(ι), ϕ1

Γ1 ` ι@d2 J ι′′ : Obj(ι), ϕ2

Γ2 ` ι′.m C (ι′′.m′ J self) : Obj(ι′), ϕ3

Γ3 ` ι.m : τ, ϕ4 Γ4 ` ι.m′ : τ, id

Γ3 ` ι.m; ι.m′ : τ, ϕ4

Γ2 ` ι′.m C (ι′′.m′ J self); ι.m; ι.m′ : τ, ϕ3 ◦ ϕ4

Γ1 ` ι@d2 J ι′′; ι′.m C (ι′′.m′ J self); ι.m; ι.m′ : τ, ϕ2 ◦ ϕ3 ◦ ϕ4

∅ ` ι@d1 J ι′; ι@d2 J ι′′; ι′.m C (ι′′.m′ J self); ι.m; ι.m′ : τ, ϕ1 ◦ ϕ2 ◦ ϕ3 ◦ ϕ4

Fig. 11.Example of Typing

which states thatι and ι′ are empty object types, (produced by rule (Ax-ι-init)),
andι′ is the delegated1 of ι. Rule (R-comp) requires the effectϕ1 to be applied to
the empty environment to produce environment:

Γ1 = {ι : 〈〈d1 : Obj(ι′)〉〉 || 〈〈 〉〉, ι′ : 〈〈 〉〉 || 〈〈 〉〉}

Similarly in typingΓ1 ` ι@d2 J ι′′ : Obj(ι), ϕ2 we use (R-del-up) and obtain
effect:

ϕ2 = {[ι′′ : 〈〈 〉〉 || 〈〈 〉〉]} ◦ {{ι : 〈〈d2 : Obj(ι′′)〉〉@}}
Applyingϕ2 to environmentΓ1 we get:

Γ2 = {ι : 〈〈d1 : Obj(ι′) | d2 : Obj(ι′′)〉〉 || 〈〈 〉〉, ι′ : 〈〈 〉〉 || 〈〈 〉〉, ι′′ : 〈〈 〉〉 || 〈〈 〉〉}

The typing ofΓ2 ` ι′.m C (ι′′.m′ J self) : Obj(ι′), ϕ3 uses rule (R-lazy-up) and we
obtain effect:

ϕ3 = {{ι′ : 〈〈m : 〈∅,Obj(ι′′), ϕ4〉〉〉•}}
which states that methodm is updated atι′ with a body of type〈∅,Obj(ι′′), ϕ4〉.
Applyingϕ3 to environmentΓ2 we get:

Γ3 = {ι : 〈〈d1 :Obj(ι′) | d2 :Obj(ι′′)〉〉 || 〈〈 〉〉, ι′ : 〈〈 〉〉 || 〈〈m : 〈∅,Obj(ι′′), ϕ4〉〉〉, ι′′ : 〈〈 〉〉 || 〈〈 〉〉}

EnvironmentΓ3 now reflects the fact thatι′ has methodm with the type given
above. The typing ofΓ3 ` ι.m : Obj(ι′′), ϕ4 uses rule (R-lazy-sel) given thatm was
lazyly inserted intoι′. The resulting effect is:

ϕ4 = {{ι′′ : 〈〈m′ : Obj(ι′′)〉〉•}}

Applyingϕ4 to environmentΓ3 we get:

Γ4 = {ι : 〈〈d1 :Obj(ι′) | d2 :Obj(ι′′)〉〉 || 〈〈 〉〉, ι′ : 〈〈 〉〉 || 〈〈m : 〈∅,Obj(ι′′), ϕ4〉〉〉, ι′′ : 〈〈 〉〉 || 〈〈m′ :Obj(ι′′)〉〉}
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EnvironmentΓ4 now reflects the fact thatι′′ has methodm′ with typeObj(ι′′). The
typing of Γ4 ` ι.m′ : Obj(ι′′), id uses rule (R-eager-sel) given thatm′ was eagerly
inserted intoι′′ as described in effectϕ4.

3.4 Soundness

(σ, σ′)∝̃Aid ⇐⇒ ∀ι.σ(ι) = σ′(ι)

(σ, σ′)∝̃A{[ζ : ρ]} ⇐⇒ ∀ι 6= A(ζ).σ(ι) = σ′(ι) & σ′ ∝A {ζ : ρ}

(σ, σ′)∝̃A{{ζ :ψ}} ⇐⇒ ∀ι 6= A(ζ).σ(ι) = σ′(ι) &

∀ρ.σ ∝A {ζ : ρ} =⇒ σ′ ∝A {ζ :ψ(ρ)}

(σ, σ′)∝̃Aϕ′ ◦ ϕ′′ ⇐⇒ ∃σ′′.(σ, σ′′)∝̃Aϕ′ & (σ′′, σ′)∝̃Aϕ′′

Fig. 12.Definition of (σ, σ′)∝̃Aϕ

There are clear correspondences between the syntax of the calculus (figure2) and
that of types (figure6), the look up functions of the operational semantics (figure
3) and those of the typing rules (figure10), the store update (figure4) and the
row operations (figure7). So a soundness result for the given type assignment is
expected.

An address mappingA is a partial mapping from addresses to physical ad-
dresses which is injective for all arguments with the exception ofιself and such that
A(ι) = ι for all memory addressesι in the domain ofA. An address mappingA′

is better than another address mappingA (notationA′ & A) iff A′ is an extension
of A, i.e.A′(ζ) = A(ζ) for all addressesζ in the domain ofA.

We define agreement between stores, address mappings, effects and environ-
ments: a pair of stores agrees with an effect iff the effect “says” how to update
the first store for obtaining the second one. A storeσ agrees with an environment
Γ via the address mappingA iff the objects in the store have delegates and fields
as required by the environment. Moreover the method bodies behave well when
evaluated in environments which respects their typings.

Definition 3.1 (i) A storeσ agrees with an address mappingA (notationσ ∝ A)
iff σ(self) = A(ιself).

(ii) Thepre-agreement of a pair of stores(σ, σ′) with an effectϕ via the address
mappingA (notation(σ, σ′)∝̃Aϕ) is defined by induction onϕ in figure12.

(iii) A pair of stores(σ, σ′) agrees with an an effectϕ via the address mappingA
(notation(σ, σ′) ∝A ϕ) iff σ ∝ A, σ′ ∝ A and(σ, σ′)∝̃Aϕ.

(iv) A storeσ agrees with an environmentΓ via the address mappingA (notation
σ ∝A Γ) iff σ ∝ A and they satisfy the conditions of figure13.
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Lt(Γ, ζ, n) = Obj(ζ ′) =⇒ Look(σ,A(ζ), n) = A(ζ ′)

Lt(Γ, ζ,m) = 〈Γ′,Obj(ζ ′), ϕ〉 =⇒ Look(σ,A(ζ),m) = b &

∀A′, σ′ such thatσ′ ∝A′
Γ′

eitherb, σ′ diverges or

b, σ′ ;
δ
A′′(ζ ′), σ′′ for someA′′, σ′′

such thatA′′ & A′, and(σ′, σ′′) ∝A ϕ.

Fig. 13.Definition ofσ ∝A Γ

To show soundness we use a bunch of properties relating the various agree-
ments, the partial order on environments and the replacement ofself. These prop-
erties follow quite easily from the definitions.

Lemma 3.2 (i) If σ ∝A Γ andΓ ≤ Γ′ thenσ ∝A Γ′.

(ii) If (σ, σ′) ∝A ϕ andA′ & A then(σ, σ′) ∝A′
ϕ.

(iii) If (σ, σ′) ∝A ϕ andσ ∝A Γ, thenσ′ ∝A ϕ(Γ).

(iv) If A′ & A thenA′[ιself 7→ι] & A[ιself 7→ι].

(v) If σ ∝A Γ andA′ = A[ιself 7→A(ζ)] thenσ[self 7→A(ζ)] ∝A′ {[ιself : Γ(ζ)]}(Γ).

(vi) If (σ, σ′) ∝A ϕ,A′ = A[ιself 7→ι], andσ(self) = A(ζ) then
(σ[self 7→ι], σ′[self 7→ι]) ∝A ϕ[ζ/ιself ].

Lemma 3.3 Letσ ∝A Γ andLa(Γ, ζ,m) = ζ ′.

(i) ∀ι 6= A(ζ ′).σ(ι) = σ{A(ζ).m C+ b}(ι).
(ii) Look(σ{A(ζ).m C+ b},A(ζ ′),m) = b.

The type system is sound in the sense that a converging well typed expression
returns an address which agrees with the type of the expression, and never returns
stuckErr.

Theorem 3.4 (Soundness)If Γ ` a : Obj(ζ), ϕ and σ ∝A Γ then eithera, σ di-
verges ora, σ ;

δ
A′(ζ), σ′ for someA′, σ′ such thatA′ & A, and(σ, σ′) ∝A′

ϕ.

Proof. The proof is by structural induction ona.
Let us consider the case whena is the selection of a delegate method added or over-
rided with a lazy updating. In this casea ≡ a′@d.m and the last applied rule in the
typing of a is rule (R-del-lazy-sel) (see figure14). By inductionΓ ` a′ : Obj(ζ), ϕ
implies that eithera′, σ diverges ora′, σ ;

δ
A′(ζ), σ′ for someA′, σ′ such that

A′ & A, and(σ, σ′) ∝A′
ϕ. If a′, σ diverges then alsoa, σ diverges.

Otherwise by Lemma3.2(iii ) (σ, σ′) ∝A ϕ andσ ∝A Γ imply σ′ ∝A ϕ(Γ). By def-
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Γ ` a′ :Obj(ζ), ϕ

Lt(ϕ(Γ), ζ, d) = Obj(ζ ′) Lt(ϕ(Γ), ζ ′,m) = 〈Γ′,Obj(ζ ′′), ϕ′〉

ϕ(Γ)(ζ) = ρ ϕ ◦ {[ιself : ρ]}(Γ) ≤ Γ′

{ιc | ιc ∈ ϕ′(Γ′) & ιc ∈ ϕ(Γ) & ιc 6∈ Γ′} = ∅
(R-del-lazy-sel)

Γ ` a′@d.m :Obj(ζ ′′)[ζ/ιself ], ϕ ◦ ϕ′[ζ/ιself ]

Fig. 14.Rule (R-del-lazy-sel)

inition from Lt(ϕ(Γ), ζ, d) = Obj(ζ ′) we getLook(σ′,A′(ζ), d) = A′(ζ ′). Again
by definition fromLt(ϕ(Γ), ζ ′,m) = 〈Γ′,Obj(ζ ′′), ϕ′〉we getLook(σ,A′(ζ ′),m) =
b and for allAb, σb, such thatσb ∝Ab Γ′ eitherb, σb diverges orb, σb ;

δ
A′
b(ζ

′′), σ′b
for someA′

b, σ
′
b such thatA′

b & Ab, and(σb, σ
′
b) ∝A′

b ϕ′.
Let σ′′′ = σ′[self 7→A′(ζ)] andA′′ = A′[ιself 7→A′(ζ)]: by Lemma3.2(v) σ′ ∝A′

ϕ(Γ) implies σ′′′ ∝A′′
ϕ ◦ {[ιself : ρ]}(Γ). Beingϕ ◦ {[ιself : ρ]}(Γ) ≤ Γ′ we get

σ′′′ ∝A′′
Γ′ by Lemma3.2(i). Then eitherb, σ′′′ diverges orb, σ′′′ ;

δ
A′′′(ζ ′′), σ′′

for someA′′′, σ′′ such thatA′′′ & A′′, and(σ′′′, σ′′) ∝A′′′
ϕ′. If b, σ′′′ diverges then

alsoa, σ diverges.
If b, σ′′′ ;

δ
A′′′(ζ ′′), σ′′ thena, σ ;

δ
A′′′(ζ ′′), σ′′[self 7→σ(self)].

LetA∗ = A′′′[ιself 7→σ(self)]: then it suffices to show:

(1) A∗ & A;

(2) A∗(ζ ′′[ζ/ιself ]) = A′′′(ζ ′′);

(3) (σ, σ′′[self 7→σ(self)]) ∝A∗
ϕ ◦ ϕ′[ζ/ιself ].

For (1) fromA∗ = A′′′[ιself 7→σ(self)] andA′′′ & A′′ we getA∗ & A′′[ιself 7→σ(self)]
by Lemma3.2(iv). Beingσ ∝ A′ it holds σ(self) = A′(ιself). From above and
A′′ = A′[ιself 7→A′(ζ)] we haveA′′[ιself 7→σ(self)] = A′: this together withA′ & A
allows us to concludeA∗ & A.

For (2) if ζ ′′ = ιself thenA∗(ζ ′′[ζ/ιself ]) = A∗(ζ) = A(ζ) andA′′′(ζ ′′) =
A′′′(ιself) = A′′(ιself) = A′(ζ) = A(ζ), taking into accont thatA∗ & A,A′′′ & A′′,
A′′ = A′[ιself 7→A′(ζ)], andA′ & A. If ζ ′′ 6= ιself thenA∗(ζ ′′) = A′′′(ζ ′′) since
A∗ = A′′′[ιself 7→σ(self)].

The proof of (1) shows alsoA∗ & A′: this together with(σ, σ′) ∝A′
ϕ gives

(σ, σ′) ∝A∗
ϕ by Lemma3.2(ii ). The proof of (2) shows alsoA′′′(ιself) = A′(ζ).

From this,σ′′′(self) = A′(ζ) and(σ′′′, σ′′) ∝A′′′
ϕ′ we get

(σ′′′[self 7→σ(self)], σ′′[self 7→σ(self)]) ∝A∗
ϕ′[ζ/ιself ] by Lemma3.2(vi).

Now σ′′′[self 7→σ(self)] = σ′[self 7→A′(ζ)][self 7→σ(self)] = σ′. Then we derive
(σ′, σ′′[self 7→σ(self)]) ∝A∗

ϕ′[ζ/ιself ]: this together with(σ, σ′) ∝A∗
ϕ ◦ ϕ′[ζ/ιself ]

gives (3) by definition.
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We go on now with the case of lazy updating. In this casea ≡ a′.m C b and
the last applied rule in the typing ofa is:

Γ ` a′ : Obj(ζ), ϕ La(ϕ(Γ), ζ,m) = ζ ′ Γ′ ` b : τ, ϕ′

(R-lazy-up)
Γ ` a′.m C b : Obj(ζ), ϕ ◦ {{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

Let us assumea′.m C b does not diverge. Givenσ andA such thatσ ∝A Γ, what
we need to prove is

(4) a′.m C b, σ ;
δ
A′(ζ), σ′ for someA′, σ′ such that

A′ & A, and(σ, σ′) ∝A ϕ ◦ {{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}.
By the induction hypothesis,Γ ` a′ : Obj(ζ), ϕ and the hypotheses of the theo-

rem imply that eithera′, σ diverges ora′, σ ;
δ
A1(ζ), σ1 for someA1, σ1 such that

A1 & A, and(σ, σ1) ∝A1 ϕ. Only the second possibility need to be considered
since ifa′, σ diverges then alsoa, σ diverges.
Hence, by rule(LazyUpdate), we geta′.m C b, σ ;

δ
A1(ζ), σ1{A1(ζ).m C+ b}.

By definingA′ = A1 andσ′ = σ1{A1(ζ).m C+ b}, we can prove(4) if we
manage to show that

(σ, σ1{A1(ζ).m C+ b}) ∝A1 ϕ ◦ {{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

This, by definition of∝, corresponds to showing thatσ ∝ A1, σ1{A1(ζ).m C+

b} ∝ A1 and(σ, σ1{A1(ζ).m C+ b})∝̃A1ϕ ◦ {{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}.

The first clause descends immediately from the definition of∝ and the fact
that, as seen above, by the induction hypothesis, we have(σ, σ1) ∝A1 ϕ and hence
σ ∝ A1 andσ1 ∝ A1. Fromσ1 ∝ A1 it descends also the second clause, since the
operation{A1(ζ).m C+ b} does not modify the address associated toself.
Then what we have to show is

(σ, σ1{A1(ζ).m C+ b})∝̃A1ϕ ◦ {{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

that is, by definition, we have to show that

∃σ′′.(σ, σ′′)∝̃A1ϕ & (σ′′, σ1{A1(ζ).m C+ b})∝̃A1{{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

By takingσ′′ = σ1 we obtain the first clause by what we have already inferred
from the induction hypothesis. Hence one needs to show that

(σ1, σ1{A1(ζ).m C+ b})∝̃A1{{ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•}}

that is, by definition, one needs to show that

(5) ∀ι′ 6= A1(ζ
′).σ1(ι

′) = σ1{A1(ζ).m C+ b}(ι′)
(6) ∀ρ.σ1 ∝A1 {ζ ′ : ρ} =⇒ σ1{A1(ζ).m C+ b} ∝A1 {ζ ′ : 〈〈m : 〈Γ′, τ, ϕ′〉〉〉•(ρ)}
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Notice thatσ1 ∝A1 ϕ(Γ) by Lemma3.2(iii ) sinceσ ∝A Γ, A1 & A and
(σ, σ1) ∝A1 ϕ. MoreoverLa(ϕ(Γ), ζ,m) = ζ ′: then (5) follows from Lemma
3.3(i).
To get (6) by definition of agreement of a store with an environment and by the
induction hypotesis onΓ′ ` b : τ, ϕ′ we can see that we need only to prove that

Look(σ1{A1(ζ).m C+ b},A(ζ ′),m) = b

which is an immediate consequence of Lemma3.3(ii ).
2

4 Conclusions and Future Work

As it usually happens in many type systems, our system rejects many expressions
which correctly evaluate. In fact there is no polymorphism in the present system.
We indeed plan to explore this issue in the line of [SWM01].

As noted by two referees the extension of the present type system to conditional
expressions is not trivial. As a matter of fact [DG03] gives a system of alias types
for an object based calculus with conditionals and a test for the absence/presence
of methods. Of course the delegation complicates the matter significantly, but we
already sketched some proposals we have to put at work on meaningful examples.

In our system, even if it is possible to type diverging expressions likeι.m C
self.m ; ι.m, it can be noticed that types are very close to “computation traces”.
This indeed might invite a rather severe criticism, and indeed the design of types
abstracting more from the behaviour of expressions is definitely an issue we plan
to work on in future investigations.
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