WOOD’03 Preliminary Version

Can Addresses be Types?
(a case study: objects with delegation)

Christopher Andersot

Department of Computing, Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, U.K.

Franco Barbaner

Dipartimento di Matematica e Informatica, Univesidi Catania,
Viale A. Doria, 95125 Catania, Italy.

Mariangiola Dezani-Ciancaglinf

Dipartimento di Informatica, Universitdi Torino,
C.s0 Svizzera, 158, 10149 Torino, Italy.

Sophia Drossopoulotf

Department of Computing, Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, U.K.

Abstract

We adapt thaliasing constraintsapproach for designing a flexible typing of evolving
objects. Types are singleton types (addresses of objects, as a matter of fact) whose relevance
is mainly due to the sort afafety propertyhey guarantee. In particular we provide a type
system for an imperative object based calculus with delegation and which supports method
and delegate overriding, addition, and removing.

Key words: object based calculi, delegation, alias types, effects

1 Work partly supported by DART, European Commission Research Directorates, IST-01-6-1A
2 partially supported by MURST Cofin’01 project NAPOLI.
3 partially supported by EU within the FET - Global Computing initiative, project DART ST-2001-
33477, by MURST Cofin’01 project COMETA, and by MURST Cofin’02 project McTati. The
funding bodies are not responsible for any use that might be made of the results presented here.
4 Email: cla97@doc.ic.ac.uk
5 Email: barba@dmi.unict.it
6 Email: dezani@di.unito.it
7 Email: scd@doc.ic.ac.uk

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

C.ANDERSON ET AL.

1 Introduction

In the global computing scenario it is crucial to develop software exhibiting three
key properties:evolution incompletenessandsafety In the context of the ob-

ject oriented paradigm the first two properties amount to have objects with method
and delegate overriding, addition, removing and which can delegate executions of
methods to other objectkig86], [ABC192], [AD02].

A traditional approach for ensuring safety is typing. There is a large literature
about calculi of objects with types (se&d964, [Bru02, [Pie03, and their refer-
ences), where safety is interpreted mainly as the property that well typed programs
cannot go wrong, i.e. that nmessage not understo@xception can be thrown.
This is also the approach to program safety of the present paper, but whereas many
of the proposed type systems in the literature are for functional object calculi and
some of them are for imperative object calculi, we focus on an imperative ob-
ject calculus with method and delegate updating, removal and delegation. To our
knowledge no typing has been proposed for calculi with these features.

The aim of the present paper is then to partially fill the gap between the theory
of types and the imperative object calculi with delegation. This is achieved by
means of a simple idea: to adapt thié&as typesapproach $WMO01], [WMO01] to
the case of objects with delegation.

For low level code thalias typesmethodology has produced type systems
which are collections odliasing constraints These constraints describe the shape
of the store and every function uses them to specify the store that it expects. The
pointers haveingleton typesvhich are the locations themselves.

Our proposal is to type objects with singleton types: the logical or physical
addresses of the objects. The environments are constraints on the (typed) sets of
methods and delegates of the objects. The satisfaction of such constraints guaran-
tees that a typable program can $efelyevaluated. A key choice in the system
is the typing of the method bodies: here the types give also complete information
about the environments in which the bodies need to be typed. To correctly type
a method call we require that the environment of the call represents (at least) the
constraints needed for the typing the method body.

As a test case we apply this approachit@ simple intuitive calculus for im-
perative object based delegatigki}02].

It is worth mentioning that recently the same approach has been applied to a
calculus for “environment-aware” computatiddG03).

The present paper is organized as follows: in Se@iae introduce) following
[ADO2]. Section3 presents the type assignment system: types, typing rules and
soundness proof.

2 The Calculus

We presend, a minimal imperative object based calculus with delegation. Delega-
tion has also been studied iRM95] and its derivatives. Also inAC96H] delega-

2

C.ANDERSON ET AL.

L —>

print = code to print

A

L—> d=1,

move = code to move
A

<>

Fig. 1. Point with delegation

tion is encoded into some of the variants of thealculus. However, because the
¢-calculus does not support the addition of methods and because the derivatives of
[FM95] model delegation through copying, neither adequately reflect the situation
where an object; delegates to another objegt, theno,’s method body foim is
modified or added and subsequent method cath @n o; results in execution of
the modified method body rather than the original one.

With delegation we can represent a point thyee objects. One object that
knows how to print points:

t1.print < PrintCode

Here we have used lazy updata, to add the unevaluted code for printing
to +; with method identifierprint. We abbreviate the body of methqdint by
PrintCode. Similaly another object knows how to move objects:

1p.move < (self x «self.x+ 1)

Again, lazy update is used to add metmaale to object.,. The body of method
move uses eager updata, to increment the method of the receiver, identified by
self. Thus,self.x + 1 is evaulated and the result storedséff.x. Note that for
simplicity, we use the literals 1,2 ... as a shorthand for the object representations of
the corresponding numbers.

Finally we have an object containing tk@ndy co-ordinates:

((t3.x €4 5).y €4 3)

We now link the objects together using delegate updetie, « b:

13Qd <« Lo 1,Qd <« g

C.ANDERSON ET AL.

Figurel shows the three objects representing a point at coordinates (3,5). The
objects are represented in two parts: the upper part contains the delegates and the
lower part contains the methods. Whegmeceives anove message it delegates it to
L». Similarly, when:; receives arint message it delegates ittpand:, delegates
it to +;. Thus, delegation allows sharing of methods between objects and thus the
objects may be defined in terms of each other. Any changes to methods will be
visible to both delegator and delegate. Hence, if we were to update the print code
of ¢; this would affect the behaviour of both ands.

The following example shows the difference between eager and lazy updating.
The evaluation of the eager updatingn « (v'.m’ < self) first evaluates the body
of the method, i.e./.m" < self, and then updates the method of the object at
with the result of the body evaluation, i.€.

Then for all storesr

t.m < (V.m <self) ; /.m0~ o

whereo’ is obtained fromr by updating the methodh in the object at and the
methodm’ in the object at’'.

If in the previous expression we change the method updating from eager to lazy,
and the object at and its delegates do not have the methbdwve get astuckErr:

tm < (J.m’ < self) ;' .m',o ~; stuckErr,o’

whereco’ is obtained fronv by updating only the methoa in the object at with
the (unevaluated) body.m’ < self.

Consider the following example which demonstrates an object with two dele-
gates:

1Qd; € /;Qdy €5 m < (Vom’ aself); e.m;em’

We assume that in the initial state the obje@nd its delegates do not have the
methodsm andm’. Firstly, ./ and.” are made delegates gffollowed by the lazy
addition of methodn to /. When..m is executed, delegates execution af to //
which adds a new methaod’ to /. When..m' is executed delegates execution of
m’ to .”. If instead we had written:

1Qd; «/;.Qdy €. m < (.m aself); c.m;e.m

after the first call ta.m both./ and.” have a methoeh. Therefore, the second call
to ..m is ambiguous and execution will produgeuckErr. However, we can write
1@d,.m to executen in . with the receiver being.

Remark 2.1 In the previous examples we use parentheses which are not part of the
syntax to help reading.

C.ANDERSON ET AL.

t € PhysAddress
m € MethlD
d € DellD
MethID N DellD= ()

a,b € Exp == L physical address
a.m method invocation
a.m <4 b eager update
am<b lazy update
clone(a) clone (shallow)
self receiver

a@d.m delegate invocation

a@d 4 b delegate update

alem method remove
abgd delegate remove
a;b composition

Fig. 2. Syntax ofo

2.1 Syntax

The syntax (shown in figur® defines ten kinds of expressions: physical addresses,
method invocation, lazy and eager update, clesé, method removal, delegate
invocation, addition and removal, compositid?hysAddress is the set of physical
addresses: they play, in some sense, the role of variables. Method and delegate
identifiers are taken from the disjoint infinite sets of nanvkshID and DellD
respectively. We convene thate MethID w DellD, wherew denotes union of
disjoint sets.

We use (=b) € o as short for:
the objecb has

» the method identifien with associated bodly if n € MethlD or
« the delegate identifier with associated physical addrésg n € DellD.

5

C.ANDERSON ET AL.

Look :: Store x Address x (MethID W DellD) — Exp W {Udf }
Look! :: Store x Address x (MethID & DellD) — P(Exp x Address)

b if Look'(c,e,n) = {(b,.)}
Udf otherwise

Look(o,t,n) = {

{(b,2)} if (n=b)eao(t)
Look!(o,1,n) =

U Look/(o,:/,n) otherwise
Jel
wherel = {./| (d =) € o(¢) for somed }

Fig. 3. The Look and L ook’ Functions
2.2 Semantics

The operational semantics féiis given in figures, but for the rules of stuck error
propagation, which are standard. It rewrites pairs of expression and stores into pairs
of physical addresses stuckErr and stores.

By +, we denote finite mappings. The stores map physical addresses to objects
andself to a memory address. Objects are finite mappings from method names to
expressions and from delegate names to physical addresses.

~; 1 Exp x Store 13,Address x Store
Store = ({self} — Address) U (Address +3,0bj)
Obj = (MethID +3,Exp) U (DellD +3,Address)

LetUdf denote undefined. The rewrite ruléde{ect and Delegate Seletuse
lookup functionsC ook and Look’ shown in figure3. Look’ returns the set of pairs
of addresses and bodies corresponding to a method identifier and an address in a
given store. Lookup starts in objeet.), and if no method body is found, then the
search continues in the delegates. Note thadk is defined only ifLook’ finds
exactly one method or delegate body. So, if an object has several method bodies
in several different delegates, or if no method body can be found in the object or
its delegates, then evaluation produces a stuck error (r8lesk Selegt (Stuckl
Delegate Seleyptand Stuck2 Delegate Selgxt If instead a unique method body
is found, this body is evaluated in the context of a store whelfas bound to the
address of the receiver. Finallself is set back to the address it had before the

6

C.ANDERSON ET AL.

b if " =n,/ =.andLook(c,t,n) = Udf
o{t.n <t b}(/)(n") =< b if n=n"andLook/(c,t,n) = {(b’,/)}

a(/)(n") otherwise

udf if ” =nand/ =
a{t>n}()(n) = {

a(/)(n") otherwise

Fig. 4. Delegate Store Update and Remove

method invocation.

There are two kinds of update: eagBafier Updatg and lazy Lazy Updatg
They differ in their treatment of the new body Lazy update replaces the method
body identified bym with the unevaluated body. In eager update the bodyis
evaluated before the update occurs. Hence, lazy update is like method update and
eager update is like field update. Both updates fisek and Look’ to check if
there isexactlyone object containing the specified method or delegate, starting the
lookup from the object which receives the message. If such an object is found, the
update is realized by overwriting the body of the method (or the physical address of
the delegate). Otherwise the object which receives the message is extended by the
method (or the delegate). This is done by the store updatey <™ b} defined in
figure4.®

Clone Clong evaluates the objeatthen it allocates a new address and copies
the object to the new address and returns the new address. We define:

0 if /=,
o(/) otherwise

olv—o|() = {

Delegate updatddelegate Updateadds or updates the delegate identified by
in the receivern with the evaluated bodly.

Delegate removallfelegate Remoyeand method removaMethod Removye
first evaluate the receiver then return the receiver with the delegate or method re-
moved. The store removat{. > n}, is defined in figurel.

8 We slightly changed the original definition of storage update to avoid to have operations which
modify more than one object.

7

C.ANDERSON ET AL.

(Self

self,0 ~ o(self), o
(Select

a,o ~ t,0’
Look(c’,1,m) =b
o' = o' [selfr—1]

b,CT”/ ,\% L/,UN

a.m,o ~; U/, 0" [self—>o(self)]
(Lazy Update

a,o ~ t,0’

a.m <db,o ~ ¢,0'{t.m <t b}
(Delegate Update

a,o ~ t,0'

b,o’ ~ J o

(Addn
L, 0 ~3 L, 0

(Delegate Selegt
a,0 ~; 1,0’
Look(o’,,d) =1/
Look(c’,/,;m)=b

"

o' = o'[selfr—1]

b70,/// ,\,5 LI,O'//

a@d.m,o ~; /, 0" [self—o(self)]

(Eager Update
a,0 ~; 1,0’

/ / 17
b,o" ~ o

a.m 4b,0 ~ ¢, 0"{t.m <t ./}

(Clone
a,o ~; 1,0’
J & dom(c’)

o' = o'[V/+0’'(1)]

a@Qd 4b,o0 ~ v,0"{e.d <t /}

(Method Remove

a,o ~ t,0’

alem,o ~ t,0'{t >m}

(Composition
a,o ~ t,0’
b,O'/ ~ L’,o’”

a;b,o ~ V0"

(Stuckl Delegate Select
a,o ~ t,0’

Look(o’,u,d) = Udf

a@d.m,o ~; stuckErr,o’

clone(a),o ~; ¢/, 0"

(Delegate Remoye

a,o0 ~; 1,0’

apodo ~3 L,O'/{L I>d}

(Stuck Selegt
a,0 ~; 1,0’

Look(o’, v, m) = Udf

a.m,o ~; stuckErr,o’

(Stuck2 Delegate Selegct
a,o ~; 1,0’

Look(o!,1,d) =4/
Look(c’,,m) = Udf

a@d.m,o ~; stuckErr,o’

Fig. 5. Operational Semantics of

C.ANDERSON ET AL.

3 The Type Assignment System

Looking at the operational semanticséadne easily sees thatsauckErr is gener-

ated only when a method invocation or a delegate invocation does not find a method
or adelegate. To assure that well typed expressions cannot go wrong we need a type
system tracing for all objects how methods and delegates are added, updated and
removed. We get this simply by allowing types of objects to be their (logical or
physical) addresses. The typing judgements are of the shape:

'Fa:1,p

where:

 the environment’ gives informations about the types of delegates and methods
of objects at fixed addresses;

« the typer gives the address of the object, which is the value (if it exists) of the
expressiora;

« the effecty represents the changes of the environment due to the typiagnof
I

The intuition (which will be clarified discussing soundness) is that

« the environment’ represents the constraints the store must satisfy in order to
successfully evaluate

« the typer gives the address of the object to whichhay converge;

» the effecty represents the changes of the store due to the evaluati@inod
store satisfying'.

In other words the evaluation af whenever it does not produce an error, is guar-
anteed to produce an object of typ@nd a store satisfying the constraiptd”), if
the evaluation starts with a store satisfying

Typing a delegate update gives:

F.Qd €/ :0bj(e), ¢
where effectp = {[v: (()) | (D]} o{le"=) | {NIro{{e: (d:Obi(v))a]} says that

L, are empty objects andis the delegatd at.. A more interesting example deals
with the eager and lazy method update:

Fdom < (.m” aself): Obj(4)), ¢’

wherep' = {[": () | { Dro{{e': {m: (D, Obj(¢'), ¢") Dt} @andyp” = {{": () | (D]}o
{o": ((m’: Obj(.")) e }}.

We obtain an effect containing a type which, in turn, contains an effect.

The effecty’ says that’ is an empty object and the methodis updated at’ with

a body of type(f), Obj(:'), ¢"). The effecty” inside the type of (the body ofy

9

C.ANDERSON ET AL.

OBJECTTYPES: T 7 = Obj(¢) where¢ € PhysAddress & LogAddress
METHOD TYPES: A Au=71|(T,7,0)

METHOD ROWS : p =) | (] m:AY wherem € MethID

DELEGATE Rows: v va={)| {v|d:m) whered € DellD

Row TYPES: p pu=v|p

ENVIRONMENTS : T’ Fe={}|TU{¢:p}

Row OPERATORS: v Y:=/em| /ad | (Mm:A)e | {d:THa

EFFECTS: ¢ o= id{C: ol | {C:w [pow

Fig. 6. Types, Environments, Effects

takes into account that the evaluation of this body will assign the empty rofv to
and will update the method’ at.” with type Obj(.”).

3.1 Types, Environments, Effects, Judgments

To define types we need to consider, besides the set of physical addR¢gséslress,
ranged over by, which are expressions), a setlofjical addresse§logAddress).

The setLogAddress is a denumerable set and it contains the distinguished element
Lsetf- The elementg s represents the logical address of the current obpetf) (

The remaining elements dbgAddress represent the logical addresses of clones:
Lc ranges over these elements. We (s® denote an element dthysAddress
wlLogAddress:

C o=t tself | Le

Figure®6 lists the definitions of types, environments, and effects.

An object types simply an address: the (physical or logical) address of an object
(the notationObj(¢) is used to stress thatis looked at as a type of an object).

We have two kinds ofmethod types

Methods added with eager update are fields containing objects: so they are assigned
object types.

Methods added with lazy update are methods whose bodies are unevaluated expres-
sions: we type them with triples of environments, object types and effects. These
triples give complete type informations about the typing of the bodigshils type

(T', 7, @) then the judgmeri + b: 7, p can be derived.

Method rowsdenote partial mappings between method names and method types.
Delegate rowslenote partial mappings between delegate names and delegate types.
Therefore the order in which methods (respectively delegates) occur in the corre-
sponding rows is irrelevant.

Row typesre pairs of method rows and delegate rows: they show the methods and

10

C.ANDERSON ET AL.

Jem(v |) =v | {m:X|m':Xep& m’ # m)) method deletion
Jad(v | p) = (d':7]d:7ev&d #d) | n delegate deletion
(m: 2o [1) = v | {/om(p) [m:A) method update
{d:m)a | p) = (/ad@) [d:7) | p delegate update
Fig. 7. Row Operators
id(T") =T identity
) _Jr if (€T & # teelf - .
{&: o) = {{C’:p | CpeT & ¢ £} U{C:p) otherwise independent row updating
{:RM) = {:p|¢peT & #CFU{C:Y(T))} dependent row overriding
po'(T) = ¢ () composition

Fig. 8. Effects

delegates of objects with their types.

Environmentgepresent partial mappings between addresses and row types. They
can be essentially seen as predicates (constraints) on stores.

We use(€ " as short foHp.(:p € T,

A row operatoris a total function from row types to row types as defined in figure

7. l.e. arow operator is one of the four operations: method deletion, delegate dele-
tion, method update, and delegate update.

Effectsdenote total functions from environments to environments: they update the
row types of addresses. This updating can be either an overriding or an addition,
according to the presence of the address in the environment. The overriding can be
dependent or independent from the actual row type of the current address. Depen-
dent overriding uses the row operators. The effects are built by composition out of
the three basic functions on environments: identity, independent row updating, de-
pendent row overriding (see figud®. The independent row updatid{ : p[} adds

the pair(: p to the environment, possibly deleting a pair with first compoment

only when(is tsr. The dependent row overridingc : ¢ }} must be applied to an
environment containing a pajr: p: the resulting environment will contain the pair

¢ Y(p).

As we already said gyping judgmenhas the shape:
I'Fa:m,¢

wherel is an environment; is an object type ang is an effect.
11

C.ANDERSON ET AL.

gD

(AX-¢-init)

[ez Obj(e), {fe: () [€ DI

tel
——— (Ax-1)
Tk ¢:0bj(e),id

I'Fa:0bj(0), e o)) =p tc&ep()
(R-clone)

I I clone(a): Obj(tc), ¢ o {ltc: pl}

T F a:0bj((),
Lt(p(T),¢,m) = 7

(R-eager-sel)
Ttk a.m:7[¢/tseif],

['Fa:0bj(¢), ¢
Lt(p(I),¢,m) = (I, 7, ¢")

tself €1
(Ax-self)

I F self : Obj(tseif), id

T'kFa:m,¢ o) Fb:7, ¢

(R-comp)
F'Fa;b:7,p0¢

' a:0bj((), ¢

Lt(p(T), ¢, d) = Obj(¢’)

Lt(pT),¢,m) =7

(R-del-eager-sel)
'+ a@d.miT[C/"selfL '

oM =p @o{ltser:plt(T) < T
{tc]tc€LT)&tc€P(T) &tc gT'} =0

(R-lazy-sel)

'-am: T[C/Lself}y Yo 90/ [C/Lself}

I'ta:0bj(¢), ¢

Lt(e(T),¢,d) = 0bj(¢") Lt(p(T),¢',m) = (T, 7,¢")

M) =p po{lsar:pH(I") < T

{tc|tc €' (T") & tc € p(T") & tc €T} =10

(R-del-lazy-sel)

I'ka@d.m: T[C/Lself}v wo 90/ K/Lself}

['a:0bj(¢),¢ La(p(l),(,m) =’

e(M)(¢)=p @o{ltse:p}(T) =T"

T'Fb:r, ¢
(R-eager-up)

CHa.m 4b:0bj(¢),po¢ o {¢":(m:The}}

I'ka:0bj(¢),¢ La(p(D),¢,m)=¢" T'kbir, ¢
(R-lazy-up)

I'Fa.m <9b:0bj(C), o {¢": (m: (I, 7, "))e

I'Fa:0bj(¢), @(I) Fb:0bj(¢"), ¢

(R-del-up)
I'-a@d 4b:0bj((), o0’ o {{¢:{(d:0bj(¢"))al}

I'Fa:0bj(¢), ¢ I'Fa:0bj((),»

(R-met-rem) (R-del-rem)

Tk a e m:Obj(¢), oo {{¢: /em}} Tk a e d:0bj(¢),po {{¢:/ad}}

Fig. 9. Typing Rules

12

C.ANDERSON ET AL.

3.2 Typing Rules

Figure9 lists the typing rules. We use the following notational convention:

(n:X)ep = p=(n:A) [V [porp=v]{n:N)[p

The axioms (Axe-init), (Ax-:) and (Axself) give to a physical address andstgf

the types representing them. The axiom (Akit) add. to the environment with

the empty row. The other two axioms do not change the environment, so their effect
IS id.

Rule (R-clone) says thatone(a) has a fresh logical address and the row type
of a. Notice that the row type af is taken from the environment obtained from the
initial one by applying the effect of the typing of

The composition rule (R-comp) types the second expression in the environment
obtained from the initial one by applying the effect of the typing of the first expres-
sion.

{(X 0} if (n:A) € T(Q)
LT, ¢n) =

Uererr(e) £(T,¢',n) otherwise

whereZ" (¢)={¢" | (d: Obj(¢")) € T(¢)}

¢ if LT, ¢) ={(A, ¢}
La(T',¢,n) =

¢ otherwise

A fLI,Cn) = {(A ()}
Lt(T,¢,n) =

Udf otherwise

Fig. 10.The £, La and Lt Functions

The method selection rules (R-eager-sel) and (R-lazy-sel) look for the method
in the whole up hierarchy of the delegates of the object: the typing is successful
only when we find at most one occurrence of the method in the search procedure
for it (i.e. the function below produces a singleton). Such a look up procedure
is described by means of the functighwhich uses the functiog: both functions

13

C.ANDERSON ET AL.

are defined in figurd0. The current environment is obtained from the initial one
taking into account the changes due to the typing of the receiver.

If the resulting type is an object typethis means that the method was updated
in an eager way, i.e. the body of the method has been evaluated before the method
updating. Rule (R-eager-sel) gives to the expressienthe addresg of the re-
ceivera in caser is the logical addressg.s of self. We denote this type by{(/ tseis]-
The final effect is the effect of the typing of

Instead if the type of the method body is a triglé, 7, ') then the method
was updated in a lazy way, i.e. the bokypf the method has not been evaluated
before the method updating. We must then checklhgtvell typed in the current
environment, i.e. in the environmen{T") obtained from the initial onell) by
applying the effecp of the typing ofa. We knowb is well typed in the environment
I, so we have to check that(T") is as good ag”. To this aim we introduce a
partial order on environments. We say thas better thad” (notationI” < I") iff
the binary functionCt(T", _, _) is an extension oft(I", _,), that is:

T <T' iff CHI',¢n)#AUdf = LI, ¢n) = LHT, ¢, n)

We have also to take into account thas the receiver of the method, so we modify

¢(I") by associating to the logical address of self the row typep of the receiver

a (i.e. we consider the environmepto {[isi: p[}(I')). To sum up we have to
comparep o {[isers : o[} (I') with I': this gives the conditiop o {[iserr: p[}(T') < TV.

The remaining conditiodcc | tc € ¢'(I") & tc € p(T) & 1o & T"} = () assures

that there are no name clashes between the logical addresses of clones which are
created independently either typia@r typingb. The resulting type i$[(/tseif| @s

in rule (R-eager-sel). The resulting effecb ¢'[(/iseif] iS the composition of the
effecty of typing a with the effecty’ of typing b where the address eéif has been
replaced by the address af

The rules for delegate selection (R-del-eager-sel) and (R-del-lazy-sel) differ
from the corresponding selection rules only in the way of looking for the method
type. These rules first look for the delegdte the upper hierarchy of the delegates
of the object. If the delegat is found the rules look for the method in the upper
hierarchy of the delegates of

To type an eager or lazy method updating we have to look for the address of a
delegate containing the method in the whole upper hierarchy of the delegates of the
object. This is done in rules (R-eager-up) and (R-lazy-up) by means of the function
Lawhich uses the functiod: both functions are defined in figul®. Notice that
if no delegate does contain the required method the fundétereturns the address
of the receiver and the updating extends the receiver: otherwise the updating is an
overriding.

In rule (R-eager-up) the new method body is typed in the environment obtained
from the initial one by applying the effect of the typing of the receiver and by
associating to the address wff the row of the object at the addre§sobtained
by La. The resulting type is the type of the receiver and the resulting effect is the
composition of the effecp of typing the receiver with the effect’ of typing the

14

C.ANDERSON ET AL.

method body and with the updating of the rovof the addresg’. This updating
amounts either to override the type of methadn p by the typer of the new
body or to extencgh with m: 7. Using the notations of figuresand8 the effect
representing this updating {§¢’: (m: 7))e }}.

Rule (R-lazy-up) instead only requires that the new method bdmytypable in
some environmerit’, which can have no relation with the environmé&nnh which
the receiver is typed. This is safe, since the type of the added method will recall
I and the typing rule for method call (R-lazy-sel) will check that the environment
in which the method call is typed will be better th&h If we can derivel” +
b: 7, ¢ then the methoeh will get the type(I”, 7, ¢'); this type gives a complete
information about the typing df. The type ofa.m < b is the type of the receiver.
The resulting effect is the composition of the effeatf typing the receiver with the
updating of the row of the addresg’ (value of La(¢(T"), ¢, m)). This updating
amounts either to override the type of methadn p by the type(I”, 7, ') or
to extendp with m: (I, 7,). Using the notations of figures and 8 the effect
representing this updating {§¢": {(m: (I", 7, ')) e }}-

For typing a delegate updating rule (R-del-up) requires to deduce a type for the
new delegate in the environment obtained from the initial one by applying the effect
of the typing of the receiver. The resulting type is the type of the receiver and the
resulting effect is the composition of the effectof typing the receiver with the
effecty’ of typing the body and with the updating of the rpwef the receiver. This
updating amounts either to override the type of deledaiep by the typeObj((’)
of the new delegate or to extepdvith d: Obj(¢’). Using the notations of figures
and8 the effect representing this updating{{g : (d: Obj({’)))a }} where(is the
address of the receliver.

Rules (R-met-rem) and (R-del-rem) type respectively method remove and del-
egate remove. Again the resulting type is the type of the receiver. The resulting
effect is the composition of the effegt of typing the receiver with the deletion
of the method (in rule (R-met-rem)) or with the deletion of the delegate (in rule
(R-del-rem)) in the row of the receiver. Using the notations of figutiee effects
representing these deletions are respecti{fgly /em}} and{{(: /ad}}, where(is
the address of the receiver.

3.3 Typing Example

We now give a detailed outline of the typing for thexpression:
1Qd; «€//5.Qdy, €« .m < (V.m” aself); e.m;e.m’

given in sectior.

The overall typing is a series of applications of the rule (R-comp) (see figure
wherer = Obj(/”)). The typing of) - .@d; <« ': Obj(+), 1 uses rule (R-del-up)
producing effect:

pr = e O TN o {7 O 1O o He: (d: Obj() hatt
15

C.ANDERSON ET AL.

Iskem:t,pq Tabem’:7id

Po kom0 (V'.m’ aself): Obj(t/), 03 T3t e.mjem’:7, 04

'y - cQdy €”:0bj(e), 2 To k' .m < (/".m" aself);e.m;e.m’: 7,3 0 4

! 1 I

O F.Qd; €t :0bj(t),p1 T1FQdy €50 . m < ('.m’ «self);e.m;e.m’: 7 @2 003 0 @4

" ’

OF.Qd; €;.Qdy €5 . m < (V.m’ aself);e.m;e.m’: 7,01 0 02 093 004

Fig. 11.Example of Typing

which states that and.” are empty object types, (produced by rule (Akzit)),
and/’ is the delegatd; of .. Rule (R-comp) requires the effegt to be applied to
the empty environment to produce environment:

Ty = {es (da= Obj()) | (D, N 1 AN

Similarly in typingI'; F .@Qd, <« ¢”:Obj(¢), v we use (R-del-up) and obtain
effect:

po = " () 1D o {{e: ((d2: Obj("))}t

Applying s to environment’; we get:

Ty = {o: {(d1: Obj(¢') [da: ObJ() | (), "+ () 1D "+ () 1D}

The typing ofl’s F //.m < (/".m’ « self): Obj(/), ¢53 uses rule (R-lazy-up) and we

obtain effect:
w3 = {1 {(m: (0, 0bj(."), pa) e }}

which states that method is updated at’ with a body of type((), Obj(.”), ¢4).
Applying 3 to environment’; we get:

T3 = {v: {(d1: Obj(¢') [d2: Obj(")) | (N,e"+ (N | {m: (@, 0bi("), 0a))), "= () [D}
Environmentl’; now reflects the fact that has methodn with the type given

above. The typing of'; - ¢.m: Obj(."), ¢4 uses rule (R-lazy-sel) given thatwas
lazyly inserted inta’. The resulting effect is:

pa = {{": {(m": Obj(.") e }}

Applying ¢, to environment’s we get:

Ty = {0:{(d1: Obj(t') [da: Obj(u D) [{2/ (N | {m: (0, Obj("), 0a))), " () | {m": Obj("))}

16

C.ANDERSON ET AL.
Environment’, now reflects the fact that has methoadn” with type Obj(.”). The

typing of I’y F «.m’: Obj(.”), id uses rule (R-eager-sel) given thatwas eagerly
inserted inta” as described in effect,.

3.4 Soundness

(0, 0")&xMid
(0, 0")&M[¢: pl)
(0,0)& ¢}

Vio(e) =0o'(1)

Vi # A(C).o(e) =o' (t) & o' ot {¢: p}
Vi # AQ).0() =0'(t) &

Vp.o oA {Cip) = o oA {Cb(p)}

(0_7 O_/)&A@/ ° S0// s 301/.(0’ 0'”)5("4@/ & (O’”,U,)&AQOH

117

Fig. 12. Definition of (o, o) ¢
There are clear correspondences between the syntax of the calculus Zjiguice
that of types (figure), the look up functions of the operational semantics (figure
3) and those of the typing rules (figud®), the store update (figurd) and the
row operations (figurg). So a soundness result for the given type assignment is
expected.

An address mappin¢d is a partial mapping from addresses to physical ad-
dresses which is injective for all arguments with the exceptiog.@efind such that
A(r) = for all memory addressesin the domain ofA. An address mapping’
is better than another address mappiti¢notationA’ > A) iff A’ is an extension
of A, i.e. A(¢) = A(¢) for all addresses in the domain ofA.

We define agreement between stores, address mappings, effects and environ-
ments: a pair of stores agrees with an effect iff the effect “says” how to update
the first store for obtaining the second one. A stor@grees with an environment
I' via the address mapping iff the objects in the store have delegates and fields
as required by the environment. Moreover the method bodies behave well when
evaluated in environments which respects their typings.

Definition 3.1 (i) A storec agrees with an address mappig(notations o« .A)
iff o(self) = A(tser)-

(i) Thepre-agreement of a pair of storé¢s, o’) with an effecty via the address
mapping.A (notation(o, 0’)&Agp) Is defined by induction o in figure12.

(iii) A pair of stores(o, ¢’) agrees with an an effegt via the address mapping
(notation(o, o) oA) iff o x A, o’ < A and(c, ") & .

(iv) A storeo agrees with an environmentvia the address mapping (notation
o A 1) iff o ox A and they satisfy the conditions of figut&.

17

C.ANDERSON ET AL.

Lt(I', ¢,n) = Obj(¢’)
Lt(T, ¢, m) = (I, Obj(¢'), »)

Look(a, A(¢),n) = A({")
Look(c, A((),m)=b &
VA, o' such that’ ocA' T

—
—

eitherb, o’ diverges or
b,o’ ~; A"({"), 0" for someA”, o

such thatd” > A’, and(o’, 0”) oA ¢.

Fig. 13.Definition of o ocA T

To show soundness we use a bunch of properties relating the various agree-
ments, the partial order on environments and the replacemesif offhese prop-
erties follow quite easily from the definitions.

Lemma3.2 (i) If o oc* T andl’ < I" theno oA I7.
(i) If (0,0") oc* p and A’ > Athen(o,0’) o .
(iii) If (0,0") oc* g ando o T, theno’ ot ().
(IV) If A’ Z A thenA/[Lsem—M} z A[Lsem—w].
(V) If o ocAT and A’ = Altgeir—.A(Q)] thenoselfi—A(C)] oA {Jterr : T(O)F(T).
Vi) If (0,0") c* o, A = Altseis—1], ando(self) = A(¢) then
(o[selfit], o' [self—1]) oc? ©[C/tset].
Lemma 3.3 Leto oc* T" and La(T', ¢, m) = ¢'.

() Vi £ A(C).o(0) = o{AC).m < b}0).
(i) Look(c{A(¢).m <T b}, A(¢"),m) =b.

The type system is sound in the sense that a converging well typed expression
returns an address which agrees with the type of the expression, and never returns
stuckErr.

Theorem 3.4 (Soundness)f I' F a: Obj(¢),p ando o«* T then eithera, o di-
verges ona, o ~; A'(¢), o’ for somed’, ¢’ such thatd’ > A, and(o,0’) oc?' .

Proof. The proof is by structural induction an

Let us consider the case whers the selection of a delegate method added or over-
rided with a lazy updating. In this case= a’@d.m and the last applied rule in the
typing of a is rule (R-del-lazy-sel) (see figutel). By inductionT” - a’: Obj((), ¢
implies that eithewr’, o diverges ora’,0 ~, A'((), o’ for someA’, o’ such that

A" > A, and(o,0') ot . If a’, o diverges then alse, o diverges.

Otherwise by Lemma&.2ii) (o,0') * ¢ ando oA T'imply o’ oc* (T). By def-

18

C.ANDERSON ET AL.

['Fa’: 0bj((), ¢
Lt(p(I), ¢, d) = Obj(¢") Lt(p(I), ¢, m) = (I", Obj(¢"), ¢')
e(L)(CQ) =p @o{lser: p}t(I') < T"
{telteced (M) &icepl) &ic g’} =10
' a'@d.m: Obj(¢")[(/tself], ¢ © ¢'[C/ tself]

(R-del-lazy-sel)

Fig. 14.Rule (R-del-lazy-sel)

inition from Lt(¢(I'), ¢,d) = Obj(¢’) we getLook(o’, A'(¢),d) = A'(¢"). Again
by definition fromLt¢(p(T"), (', m) = (I, Obj(¢"), ¢’) we getlook (o, A’ (¢'), m) =
b and for all.A4;, 03, such that,, o T” eitherb, o, diverges ob, o, ~; A; ("), o)
for someA;, o such thatd; > A,, and(oy, o}) o .

Leto” = o'[selfi—A’(¢)] and A" = A'[tsr—A'()]: by Lemma3.2V) o’ oA’
o(I") implies 0" A" ¢ o {Jteerr: pl} (). Being o o {[uerr: p[}(I') < TV we get
o ocA” T by Lemma3.2(i). Then eitheb, o diverges omb, 0" ~; A" (¢"), 0"
for someA”, ¢ such thatd” > A", and(c"”, 0") o™ . If b, o’ diverges then
alsoa, o diverges.

If b,o” ~ A”(("),0” thena,o ~; A" (("), 0" [self—o(self)].

Let A* = A" [ises— 0 (self)]: then it suffices to show:

1) A" 2 A

(2) A (¢"[¢/ sere]) = A" (¢");

(3) (o, 0" [selfr>a(self)]) ot ¢ 0 ¢'[C/ tself]-

For (1) from A* = A" [ises—0 (self)] and A" = A” we getA* 2> A"[ises— 0 (self)]
by Lemma3.2(iv). Beingo « A’ it holds o(self) = A’(isr). From above and
A" = A'sar—A'(¢)] we haveA” [ise—o(self)] = A’ this together withd’ > A
allows us to concludel* > A.

For) if (" = s then A*(¢"[¢/tser]) = A*(C) = A(¢) and A”(¢") =
A" (1seif) = A" (1) = A'(¢) = A(C), taking into accont thatl* > A, A" > A",
A" = Afisas—A'(Q)], and A" = A. If (" # 15 then A*(¢") = A”(¢”) since
A* = A" iseis— 0 (self)].

The proof of () shows alsa4* > A’: this together witho, 0’) o ¢ gives
(0,0") <" o by Lemma3.2(ii). The proof of @) shows alse4” (tes) = A'().
From this,o” (self) = A'(¢) and(a”, 0") oc*” ' we get
(0" [selfr~o(self)], 0" [selfr~o(self)]) o™ ¢'[C/iserf] DY Lemma3.2(vi).

Now o"[self—o(self)] = o’[self—A'(()][self—a(self)] = o'. Then we derive
(07, 0" [selfi— o (self)]) oc™ '[¢/1sere]: this together with(o, o) ocA™ 0 ' [¢/tself]
gives @) by definition.

19

C.ANDERSON ET AL.

We go on now with the case of lazy updating. In this case a’.m < b and
the last applied rule in the typing efis:

['=2a":0bj(¢), ¢ La(p(l),¢,m)=¢" I'Fbir¢
['Fa'.m<b:0bj(¢), oo {¢: {m: (T, 7, &) Ne}

Let us assume’.m < b does not diverge. Givem and.A such thair o T, what
we need to prove is

(R-lazy-up)

(4) a’.m < b,0 ~ A'((), 0’ for someA’, ¢’ such that
A' 2 A and(o,0") ot o o {{¢: ((m: (T, 7, ') o}
By the induction hypothesig; I~ a’: Obj((), ¢ and the hypotheses of the theo-
rem imply that eithes’, o diverges on’, o ~; A;((), o, for someA,, o, such that
Al > A, and(o,0,) o™t . Only the second possibility need to be considered
since ifa’, o diverges then alse, o diverges.
Hence, by rulé LazyUpdate), we geta’.m < b, o ~; A;(¢), 01 {A1(¢).m < b}.

By defining A" = A, ando’ = 0,{A,(¢).m < b}, we can provd4) if we
manage to show that

(0,01 {Ai(¢)-m < b}) o™ o {{¢": {m: (I, 7, &) e}

This, by definition ofx, corresponds to showing thatx A;, o1{A;({).m <™
b} oc Ay and(a, o1 {A(¢).m <* b})xM g o {¢': (m: (", 7,¢))e }}.

The first clause descends immediately from the definitioncodind the fact
that, as seen above, by the induction hypothesis, we frave) <! ¢ and hence
o x A; ando; < A;. Fromo; < A, it descends also the second clause, since the
operatior{ A;(¢).m <* b} does not modify the address associatestto
Then what we have to show is

(0,01 {AL(¢).m <F bH)& Mo {¢: (m: (I, 7, &))1}
that is, by definition, we have to show that
30" (0,0")x M & (0", o1 {AL(Q).m <F b} (m: (1,))}

By takingo” = o, we obtain the first clause by what we have already inferred
from the induction hypothesis. Hence one needs to show that

(01,01 {A(¢).m <" bHEM{C: (m: (T, 7,) Do}
that is, by definition, one needs to show that

(5) V' # A1(().01() = 01{A1(¢).m <F b}(/)
(6) Vp.or oM {¢":p} = ar{Ai(¢).m <t b} ot {¢: {(m (T, 7,9))e(p)}
20

C.ANDERSON ET AL.

Notice thato; o™t (") by Lemma3.Zii) sincec oA T, 4, = A and
(o,01) o< . MoreoverLa(o(T),¢,m) = (": then 6) follows from Lemma
3.3(i).

To get @) by definition of agreement of a store with an environment and by the
induction hypotesis oh’ - b: 7, ¢’ we can see that we need only to prove that

Look(o1{A;1(¢).m < b}, A({"),m)=b

which is an immediate consequence of Lenfriii).

4 Conclusions and Future Work

As it usually happens in many type systems, our system rejects many expressions
which correctly evaluate. In fact there is no polymorphism in the present system.
We indeed plan to explore this issue in the line SYWYMO01].

As noted by two referees the extension of the present type system to conditional
expressions is not trivial. As a matter of faBtG03 gives a system of alias types
for an object based calculus with conditionals and a test for the absence/presence
of methods. Of course the delegation complicates the matter significantly, but we
already sketched some proposals we have to put at work on meaningful examples.

In our system, even if it is possible to type diverging expressions:like<i
self.m ; ..m, it can be noticed that types are very close to “computation traces”.
This indeed might invite a rather severe criticism, and indeed the design of types
abstracting more from the behaviour of expressions is definitely an issue we plan
to work on in future investigations.

Acknowledgements

We would like to thank Paola Giannini, and Ferruccio Damiani for helpful discus-
sions about the subject of this paper. Moreover we are grateful to the referees for
careful reading and useful suggestions.

References

e Agesen, Lars Bak, Craig ambers, Bay-Wei ang,
[ABCT92]Ole A L Bak, Craig Chamb Bay-Wei Ch Uidzlel
J. Maloney, Randall B. Smith, and David Ungar. The SELF Programmers’s
Reference Manual, version 2.0. Technical report, SUN Microsystems, 1992.

[AC96a] Martin Abadi and Luca CardelliA Theory of ObjectsSpringer, Berlin, 1996.

[AC96b] Martin Abadi and Luca CardelliA Theory of ObjectsSpringer-Verlag, New
York, NY, 1996.

21

C.ANDERSON ET AL.

[ADO2] Christopher Anderson and Sophia Drossopouloud - an imperative
object based calculus. Presented at the workshop USE in 2002, Malaga,
http://www.binarylord.com/work/delta.pdf, 2002.

[Bru02] Kim Bruce. Foundations of Object-Oriented Programming Languages: Types
and SemanticsThe MIT Presse, Cambridge, MA, 2002.

[DGO3] Ferruccio Damiani and Paola Giannini. Alias types for “environment-aware”
computation. INWOOD’03 Electronic Notes in Theoretical Computer Science.
Elsevier, 2003. to appear.

[FM95] Kathleen Fisher and John Mitchell. A delegation-based object calculus with
subtyping. InFundamentals of Computation Theory (FCT'93pringer
LNCS, 1995.

[Lie86] Henry Lieberman. Using prototypical objects to implement shared behavior
in object-oriented systems. In Norman Meyrowitz, edit®roceedings of
the Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLAY)olume 21(11), pages 214-223, New York, NY, 1986.
ACM Press.

[Pie02] Benjamin C. PierceTypes and Programming Languages: Semanfite MIT
Presse, Cambridge, MA, 2002.

[SWMO1] Frederick Smith, David Walker, and Greg Morrisett. Alias typesE80OP’'0Q
volume 1782 oL ecture Notes in Computer Scienpages 366-381, 2001.

[WMO1] David Walker and Greg Morrisett. Alias types for recursive data structures. In
TIC’01, volume 2071 ol_ecture Notes in Computer Sciengages 117-146.
Springer, 2001.

22

