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Background
Much research went in the last two decades into the problem of tumor growth and drug 
delivery [1]. An extensive literature review [2] has shown that the most recent models 
for tumor growth are multicomponent models with or without diffuse interfaces among 
the constituents [3–10]. They all consider a malignant mass (tumor cells: TCs), host cells 
(HCs) and the interstitial fluid (IF) as homogeneous, viscous fluids and employ reaction–
diffusion–advection equations for predicting the distribution and transport of nutrients. 
In general, these models contain limitations on the evolution of the volume fractions and 
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on the velocities of the different cell populations and the IF is uncoupled from the rest. 
All models, with the exception of [10], disregard the contribution of the extracellular 
matrix (ECM). However experiments [11] clearly demonstrate that the tumor ECM is 
a source of resistance to the delivery of blood-borne drugs to cancer cells, especially for 
macromolecules and monoparticles [13]. The penetration of macromolecules correlates 
with ECM elasticity (deformability) and hydraulic conductivity (flow) [11, 13]. Further, 
TCs tend to deposit new ECM: as the mass of tumor cells increases; the ECM within the 
malignant tissue undergoes extensive rearrangements with increased deposition of col-
lagen fibers, making the resulting tissue thicker and more difficult to penetrate [12, 13] 
as compared to host tissue.

We have developed a very general growth model for avascular tumors which is a mul-
tiphase flow model in a porous solid (ECM) [14–16]. The system is modeled at mac-
roscopic scale making use of TCAT (thermodynamic constrained averaging theory). 
This model comprises TCs, which partition into living cells and necrotic cells, healthy 
cells (HCs), extracellular matrix (ECM) and interstitial fluid (IF). The ECM is a porous 
solid, while all other phases are treated as fluids. The IF transports chemical species such 
as nutrients, Tumor Angiogenic Factor (TFA), cytokines, etc. The interaction between 
the different compartments is fully taken into account through the stress tensor which 
involves the phase pressures, through the volumetric deformation appearing in the 
mass balance equations and through several constitutive equations. The flow aspects 
have been investigated in [17, 18]. The model has been validated with respect to in vitro 
experiments from literature [19–21] and own experiments [18].

The role of the deformable ECM has been addressed in [22]. The adopted constitutive 
model is of the Green-elastic and elasto-visco-plastic type within a large strain approach. 
Truesdell objective stress measure is adopted together with the deformation rate tensor. 
The importance of including a deformable ECM in the model has been highlighted in an 
example of growth of a melanoma where different stiffness of the ECM leads to a differ-
ent shape of the tumor. [22, 23].

We extend here the model to allow for observed ECM deposition and ECM remod-
eling which affect the rate of growth of tumor spheroids. Further we introduce lysis, i.e. 
the re-transformation of necrotic cells into IF.

The main objective is to explain some aspects of MTS growth, such as the possible 
causes of a more or less strong growth, outflow of the IF from the MTS, the final steady 
state in the growth curve, by means of the introduction of lysis and ECM deposition in 
the model. Also the effect of a moving boundary at the border of the MTS is investi-
gated. It will be shown among other aspects that the combination of necrosis and lysis, 
together with a deformable ECM allows for reproducing outflow of IF from a tumor 
spheroid, as observed experimentally in [13].

The outline of the paper is the following: the updated mathematical formulation of the 
model allowing for ECM deposition and lysis are described in the “Methods” Section 
together with the necessary constitutive equations for fluids and the ECM. Numerical 
reproduction of experimental results of a multicellular tumor spheroid (MTS) growing 
in vitro and two examples of MTS growth are presented in Section “Results and discus-
sion”: the first of the two examples refers to the comparison between the growth of a 
MTS in an ECM deposited by TCs, in an ECM free culture medium and in a remodeling 
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ECM scaffold; the second one shows the influence of lysis on the growth of a MTS. Con-
clusions and perspectives of the presented multiphase model complete the paper.

Methods
The multiphase tumor growth model

The updates introduced into our tumor growth model [14, 15, 17, 22] are now summa-
rized. It is recalled that tumors are modeled at the macroscopic scale, being the domain 
of interest too large and the phase distributions too complex for modeling at the micro-
scale. The TCAT approach [24–26] is used to transform known microscale relations to 
mathematically and physically consistent macroscale relations. These macroscale rela-
tions are adequate for describing the tumor behavior while filtering out high frequency 
spatial variability. The governing equations of the model are closed by introducing con-
stitutive relations into the macroscale equations.

The multiphase system is comprised of the following phases: (1) tumor cells (TCs), 
which partition into living cells (LTC) and necrotic cells (NTC); (2) healthy cells (HCs); 
(3) extracellular matrix (ECM); and (4) interstitial fluid (IF); see [15, 17]. The ECM is 
a porous solid, while all other phases are fluids. The tumor cells may become necrotic 
upon exposure to low nutrient concentrations or excessive mechanical pressure [27]. 
The IF, transporting nutrients, is a mixture of water and biomolecules, such as nutrients, 
oxygen and waste products. In the following mass and momentum balance equations, 
α denotes a generic phase, t the tumor cells (TCs), h the healthy cells (HCs), s the solid 
phase (ECM), and l the interstitial fluid (IF).

The representative elementary volume of the multiphase system is depicted in the 
inset of Fig. 1 which shows an outline of the different stages of the modeling process.

A short overview of the mathematical model is given next; additional details are avail-
able in [22]. We use both vectorial and indicial notation where convenient.

General governing equations

The ECM is a deformable porous solid with porosity ε. The volume fraction of the solid 
phase is εs = 1 − ε. The other phases, tumor cells (εt), healthy cells (εh) and interstitial 
fluid (εl), occupy the rest of the volume. The volume fractions for all phases add up to 
unity

The saturation degree of a fluid phase α is: Sα = εα/ε. Using porosity, ε, and volume 
fraction, εα, (1) yields

As in the previous work [22], the primary variables of the model are: differential pres-
sures phl and pth, IF pressure pl, nutrient mass fraction ωnl , and displacement us of solid 
phase (ECM).

The macroscopic mass and momentum balance equations of phases and species have 
been derived in [15] and their transformation to take into account of the differential 
pressures as primary variables has been obtained in [22]. The final form of the governing 
equations shown below are obtained from the general forms (see [22]) by introducing 

(1)εs + εh + εt + εl = 1

(2)Sh + St + Sl = 1
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some simplifications and closure relationships (e.g., a Fickian type equation for diffusion 
of species, a generalized Darcy’s equation for flow of the fluid phases, etc.).

New terms with respect to the previous works are present in the governing equations 
to introduce the two new aspects of this paper: the ECM deposition by the tumor cells 
and lysis. For the ECM deposition we take into account that the tumor cells consume 
more liquid to deposit their own matrix, hence the choice of a mass exchange from 
the liquid phase directly to the solid phase seems to be the easiest way:

l→s
M
ECM

. The lysis 
is the conversion of the necrotic tumor cells in liquid, hence the introduction of a mass 
exchange from the tumor phase to the liquid phase is required:

t→l
M
lysis

.
The new mass balance equation of the ECM is hence

The new mass balance equation of TCs reads

(3)∂ε

∂t
= ∇ · vs +

(1− ε)

ρs

∂ρs

∂t
− ∇ ·

(

εvs
)

−

l→s
M
ECM

ρs

Multiphase Model

Choice of a proper size for the discretized
domain (representative of the real case).
Choice of the proper degree of refinement
of the discretization grid.
Accounting of oxygen sources (e.g. blood
vessel) via suitable boundary conditions.

FE mesh & boundary condition

Setting of initial volume fractions of phases
and initial concentration of oxygen in the 
discretized domain.

Initial condition

ECM phase:
-intrinsic permeability;
-fluids adsorption properties;
-ECM stiffness;

Host cells and interstitial fluid (h and l):
-dyn. viscosity and adhesion (for h only);
-h-l interfacial tension;

Tumor cells (t):
-dyn. viscosity and adhesion;
-t-l and t-h interfacial tension;
-oxygen consumption and growth rate;
-death rate.

Model parameters

Evolution with time (in all points of the discretized domain) of:

-volume fraction of phases and mass fraction of species (e.g. oxygen, glucose, etc.);
-internal pressure of fluid phases (t, h, l);
-displacement, strain and stress fields of the ECM.

Output and post-processing

Fig. 1  Flow chart of the modeling process. This flow chart is reproduced with permission from [22].
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The new mass balance equation of HCs is

The new mass balance equation of IF reads

where μα is the dynamic viscosity, kαrel is relative permeability, ρα is the density, pα is the 
pressure of the α phase (α = h, l and t) and pαβ is the differential pressure of phases αβ. 
Also, d¯̄s is the Eulerian rate of strain tensor, k the intrinsic permeability tensor of the 

ECM, and 
l→t
M

growth
 is an inter-phase exchange of mass between the phases l and t, and rep-

resents the mass of IF which becomes tumor due to cell growth. Ki is the compressibility 
of phase i (with i = s, t, h and l). For all other terms refer to the abbreviations.

Summing Eqs. (4–6), using the constraint equations on volume fractions and satura-
tion, Eqs. (1, 2) gives (see [22])

(4)

[

εSt

Kt
+

St(1− ε)

Ks

(

St + pth
∂St

∂pth

)

+ ε
∂St

∂pth

]

∂pth

∂t

+

[

εSt

Kt
+

St(1− ε)

Ks

(

1− Sl − phl
∂Sl

∂phl

)]

∂phl

∂t

+

[

εSt

Kt
+

St(1− ε)

Ks

]

∂pl

∂t
= ∇ ·

[

ktrelk

µt
· ∇

(

pl + phl + pth
)

]

− St
(

1 : d
¯̄s
)

− ∇St ·
(

εvs
)

+
1

ρt

(

l→t
M

growth
−

t→l
M
lysis

)

+ St

l→s
M
ECM

ρs

(5)

[

Sh(1− ε)

Ks

(

St + pth
∂St

∂pth

)

− ε
∂St

∂pth

]

∂pth

∂St

+

[

εSh

Kh
+

Sh(1− ε)

Ks

(

1− Sl − phl
∂Sl

∂phl

)

− ε
∂Sl

∂phl

]

∂phl

∂Sh

+

[

εSh

Kh
+

Sh(1− ε)

Ks

]

∂pl

∂t
= ∇ ·

(

khrelk

µh
· ∇

(

pl + phl
)

)

− Sh
(

1 : d
¯̄s
)

− ∇Sh ·
(

εvs
)

+ Sh

l→s
M
ECM

ρs

(6)

Sl(1− ε)

Ks

(

pth
∂St

∂pth
+ St

)

∂pth

∂t

+

[

Sl(1− ε)

Ks

(

1− phl
∂Sl

∂phl
− Sl

)

+ ε
∂Sl

∂phl

]

∂phl

∂t

+

(

Sl(1− ε)

Ks
+

εSl

Kl

)

∂pl

∂t
= ∇ ·

[

klrelk

µl
· ∇pl

]

− Sl
(

1 : d
¯̄s
)

−∇Sl ·
(

εv s̄
)

−
1

ρl

(

l→t
M

growth
−

t→l
M
lysis

)

−
1

ρl

l→s
M

ECM
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Equations (4, 5 and 7) which incorporate Eq. (3) are three of the governing equations of 
the model.

The tumor phase t comprises a necrotic compartment (NTC) with mass fraction ωNt 
and a growing compartment with living cells (LTC) whose mass fraction is 1− ωNt. 
Assuming that there is no diffusion of either necrotic or living cells and that there is no 
exchange of the necrotic cells with other phases, the mass balance equations arefor the 
necrotic tumor cells:

for the living tumor cells:

where vt  is the velocity of the tumor cells (LTC and NTC move with the same velocity) 
and εt rNt is the death rate of tumor cells, i.e. the rate of generation of necrotic cells. The 
reaction term εt rNt is an intra-phase exchange term (see [22]).

The sum of the previous two equations gives the equation for tumor cells:

From this equation, after the introduction of (3) and taking into account of the differ-
ential pressures as primary variables, see [22], we have obtained Eq. (4).

After the introduction of Eq. (10), Eq. (8) for the necrotic tumor cells can be rewritten:

where 
t→l
M
lysis

 takes into account of mass exchange between the necrotic compartment of 

tumor cells and the IF phase.
The mass balance equation of the nutrient reads

(7)

[

εSt

Kt
+

1− ε

Ks

(

St + pth
∂St

∂pth

)]

∂pth

∂t

+

[

εSt

Kt
+

εSh

Kh
+

1− ε

Ks

(

1− Sl − phl
∂Sl

∂phl

)]

∂phl

∂t

+

(

εSt

Kt
+

εSh

Kh
+

εSl

Kl
+

1− ε

Ks

)

∂pl

∂t
= ∇ ·

[

ktrelk

µt
· ∇pth

]

+∇ ·

[(

ktrelk

µt
+

khrelk

µh

)

· ∇phl

]

+ ∇ ·

[(

ktrelk

µt
+

khrelk

µh
+

klrelk

µl

)

· ∇pl

]

−

(

1 : d
¯̄s
)

+
ρl − ρt

ρtρl

(

l→t
M

growth
−

t→l
M
lysis

)

+
ρl − ρs

ρsρl

l→s
M
ECM

(8)
∂

(

εtρtωNt
)

∂t
+∇ · (εtρtωNtvt) = εt rNt −

t→l
M
lysis

(9)
∂

[

εtρt(1− ωNt)

]

∂t
+ ∇ ·

[

εtρt(1− ωNt)vt
]

=
l→t
M

growth
−εt rNt

(10)
∂(εStρt)

∂t
+ ∇ · (εStρtvt) =

l→t
M

growth
−

t→l
M
lysis

(11)
∂ωNt

∂t
=

1

εStρt

[

εt rNt −

(

ωNt

(

l→t
M

growth
−

t→l
M
lysis

)

−
t→l
M
lysis

)

−

(

εStρtvt
)

· ∇ωNt

]
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where Dnl
eff  is the effective diffusivity of the nutrient species in the extracellular space 

and 
nl→t
M  is the mass of nutrient consumed by tumor cells via metabolism and growth. 

Eq. (12) is another governing equation of the model.
The effective stress tensor, t ¯̄seff , in the sense of porous media mechanics is

where 1 is the unit tensor, ts is the total stress tensor in the solid phase, ᾱ is the Biot’s 
coefficient ᾱ = 1− K

/

Ks, with K the compressibility of the empty ECM. In the mod-
eled problem, K/Ks tends to zero hence we can assume a Biot’s coefficient equal to 1. The 
solid pressure ps is given as [26]

where the Bishop parameter of each fluid phase (solid surface fraction in contact with 
the phase) has been taken equal to its own degree of saturation.

The last governing equation of the model is the linear momentum balance of the solid 
phase expressed in rate form [28] as

where the interaction between the solid and the three fluid phases is accounted for 
through the effective stress principle, Eq. (13).

Solid phase behavior

Since an ECM is present in the model its configuration is used as reference configura-
tion whereby the velocities of the fluid are relative to the ECM which is described in 
a Lagrangian system. This is customary in multiphase flow models within deforming 
porous media [28].

A large deformation regime is assumed for the ECM (solid phase). As far as the stress 
and strain measures are concerned, objectivity (invariancy with respect to coordinate 
transformations, particularly rotations) and work-conjugacy (which guarantees energy 
consistency, i.e. correct expressions for the second-order energy increment) should be 
conserved. The satisfaction of the second requirement guarantees that of the first one, 
but not the opposite. Among the several objective stress rates [29, 30] we take the Trues-
dell stress rate.

It is recalled that the deformation is described by the velocity gradient tensor 
L
¯̄s = ∇v

¯̄s = d
¯̄s + w

¯̄s, where the symmetric part d¯̄s is the Eulerian strain rate tensor

(12)

εSl
∂ωnl

∂t
−∇ ·

(

εSlDnl
eff ∇ωnl

)

=
1

ρl

(

ωnl

((

l→t
M

growth
−

t→l
M
lysis

)

+
l→s
M
ECM

)

−
nl→t
M

)

− εSlvl∇ωnl

(13)t
¯̄s
eff = t

¯̄s
+ ᾱps1

(14)ps = Shph + Stpt + Slpl = pl +
(

1− Sl
)

phl + Stpth

(15)∇ ·





∂t
¯̄s
eff

∂t
− ᾱ

∂ps

∂t
1



 = 0
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and the skew-symmetric one, w ¯̄s, the spin tensor

The objective Truesdell rate of Cauchy stress is

which is work conjugate with the Green–Lagrange strain measure. For a sufficiently 
small loading step (or increment), one may use the deformation rate tensor (or velocity 
strain) d¯̄s or the increment representing the linearized strain increment from the initial 
(stressed and deformed) state in the step, i.e. the last converged solution

The adoption of the objective Truesdell rate of Cauchy gives a symmetric tangent stiff-
ness matrix.

Constitutive relationships

The constitutive relationships for the fluid phases have been extensively dealt with in 
[17, 18]. The constitutive equations for growth, necrosis, and nutrient consumption are 
given in [15, 17] and only the new relationships are listed here.

As we have seen in section “General governing equations” we introduce a new term 
for the mass exchange between the tumor cell phase and the liquid phase to take into 
account of lysis. The constitutive relationship for this mass exchange is:

with � constant, and ωNtεSt the mass fraction of necrotic tumor cells. The mass exchange 
is proportional to the volume fraction of the necrotic cells present; hence a part of the 
necrotic cells becomes new liquid and give new sustenance to the living tumor cells.

The other new mass exchange term is that between liquid and solid phase to take into 
account of the ECM growth. This term is assumed as:

with εs
0
 constant, being the ECM production limit and γ the coefficient of ECM deposi-

tion. This form considers that the new ECM is produced by the tumor cells, hence the 
mass exchange is proportional to the TCs mass fraction with a factor γ. The function 
into the Macaulay brackets puts a limit for the ECM production; εs

0
 is the superior limit; 

when the solid mass fraction reaches this limit the production of ECM stops. Below this 
value the production is inversely proportional to the solid mass fraction.

(16)dsij =
1

2

(

∂vi

∂xj
+

∂vj

∂xi

)

(17)ws
ij =

1

2

(

∂vi

∂xj
−

∂vj

∂xi

)

(18)
T
ṫ
s
ij = ṫ

s
ij − t

s
kj

∂vi

∂xk
− t

s ∂vi

∂xk
+ t

s
ij

∂vk

∂xk

(19)�Es
ij = dsij�t

(20)
t→l
M
lysis

= �ωNtεSt

(21)
l→s
M
ECM

= γ

〈

εs
0
− εs

εs
0

〉

εSt
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The solid phase behavior is either Green-elastic where the elastic coefficients are 
derived from the strain energy function or elasto-visco-plastic where the stress–strain 
relation is defined incrementally. The absence of a potential in the second case requires 
the adoption of objective stress rates mentioned above. Elasto-visco-plasticity is appro-
priate for remodeling of the ECM, see Preziosi et al. [31]. The elasto-visco-plastic model 
has been described in [22] in detail hence only the principal points are summarized here 
together with the introduction of a new expression of the elastic modulus.

The Eulerian strain rate tensor defined in Eq.  (16) is composed of an elastic and an 
irreversible part, see [32]. Hence in each step of our updated Lagrangian analysis with 
small strain increments, the total solid strain can be considered as a sum of the elastic 
part and the visco-plastic part.

The relationship between the effective stress for the solid and the elastic strain is

where Ds is the tangent matrix containing the mechanical properties of the solid 
skeleton.

For visco-plastic analysis the constitutive tangent matrix Ds should be such that all 
material symmetries are preserved, in accordance with the associative character of the 
model. The matrix will generally depend on the current state variables and on the direc-
tion of loading.

The elastic range is defined as the set of all possible absolute values of the effective 
stress that are less than or equal to the frictional constant tseff ,y, i.e. the yield limit (this 
value allows to define the boundary of elastic domain) [22]. Until the absolute value of 
the effective stress is contained in the elastic range, the rate of change of the visco-plastic 
strain is zero while beyond this limit it is different from zero.

In the elastic range the mechanical elastic behavior is governed by the Young modulus 
that is not constant but it is proportional to the mass fraction of the solid phase:

In this equation Ef  is the final value of the Young modulus, εsfin is the final mass frac-
tion of solid and εsi is the mass fraction of solid below which the ECM has negligible 
mechanical properties. This function has been chosen with reference to the variable 
Young modulus in [33].

The particular elasto-visco-plastic model used to describe the ECM behavior was 
introduced by Perzyna [34, 35]. Here it is used by introducing the von Mises yield 
condition as limit yield function, above which the ECM has viscoplastic behavior. The 
algorithm used to model this constitutive behavior is the “radial return mapping algo-
rithm” by Simo and Hughes [35] and has been implemented in the finite elements 
code CAST3 M (http://www.cast3m.cea.fr) of the French Atomic Energy Commission 
together with our model.

(22)e
¯̄s
= e

¯̄s
el + e

¯̄s
vp

(23)ṫ
¯̄s
eff = Ds : ė

¯̄s
el = Ds :

(

ė
¯̄s
− ė

¯̄s
vp

)

(24)E(εs) =
Ef

εsfin

〈

εs − εsi

1− εsi

〉

http://www.cast3m.cea.fr
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An overview of the finite element implementation and solution process is given in the 
“Appendix”.

Results and discussion
This section shows numerical results of the model used to simulate the multicellular 
tumor spheroid (MTS) growing in  vitro. At the beginning, a comparison with experi-
mental data validates the model and then two cases of MTS growth are analyzed. In 
these examples the focus is on the ECM deposition and lysis effects.

MTS growth in vitro: comparison with experimental data

The model had been validated with respect to the experiment by Chignola et al. 2000 
[21] in [22]. With the present version of the model we reproduce the new available data 
of MTS growth experiments in vitro carried out at HMRI. Differently from [15, 22] the 
simulation is performed with free-boundary conditions; this means that we simulate 
only the MTS, without IF or ECM outside the border, see Fig. 2. The rim of MTS moves 
during the time with velocity:

Hence the boundary conditions are updated at every step and have fixed values on the 
moving boundary: zero IF pressure and oxygen concentration equal to 7.0 × 10−6 Pa.

The initial conditions in the MTS zone are: volume fraction of TCs equal to 0.01, vol-
ume fraction of HC equal to 0, porosity equal to 1. The parameters for this simulation are 

(25)vt = −
ktrelk

µtεt
· ∇pth

Fig. 2  Free boundary conditions. Geometry and boundary conditions for an MTS growing with moving 
boundary.
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reported in Table 1. The parameters for TCs, HCs, IF and oxygen are listed in Tables 2, 3. 
In this case with free boundary conditions λ affects only marginally the behavior as has 
been evidenced with two values of λ = 0.1 and λ = 0.001.

A deformable ECM is assumed and it is deposed by TCs during the tumor mass 
growth according to Eq (21). For the ECM the parameters are presented in Table 4. The 
Young’s modulus is of the same order of magnitude of the corresponding one in [22].

The results are shown in Fig.  3 where dots refer to the diameter of U87 spheroid. 
Human multiforme glioblastoma U-87 MG cells (ATCC) were grown at 37°C at 5% 
CO2 in complete EMEM (HyClone) supplemented with 50 U/mL penicillin, 50 μg/mL 
streptomycin and 10% FBS (v/v). Multicellular U-87 MG spheroids prepared by liquid 
overlay method. Briefly, serum free EMEM medium with 2% (w/v) agar was prepared 
and sterilized. This agar solution was added to the bottom of each well of the 24 well-
plates to prevent cell adhesion onto the well surface. Plates were allowed to cool down 
before use. U-87 MG cells were counted and plated at the density of 20,000 cells/well in 

Table 1  Initial conditions

Zone pl [Pa] Sh [−] St [−]
ω
nl [−]

Red zone (up to 280 µm) 0.0 0.0 0.01 7.0 × 10−6

Table 2  Parameters depending on cells’ type and IF

Parameter Symbol Value Unit

Density of the three fluid phases (α = h, t and l) ρα 1,000 kg/m3

Dynamic viscosity of IF [22] μl 1 × 10−3 Pa s

Dynamic viscosity of TC [22] µt
0

36 Pa s

Dynamic viscosity of HC [22] µh
0

36 Pa s

Adhesion of TC [22] ψt 0 Pa/m

Adhesion of HC [22] ψh 0 Pa/m

Critical mass fraction of oxygen [15, 17] ωnl
crit

6.0 × 10−6 –

Growth coefficient of tumor cells [15, 17] γ t
growth

1.3 × 10−2 kg/(m3 s)

Necrosis coefficient [15, 17] γ t
necrosis 1.0 × 10−2 kg/(m3 s)

Consumption related to growth [15, 17] γ nl
growth

5 × 10−4 kg/(m3 s)

Consumption related to metabolism [15, 17] γ nl
0

6 × 10−5 kg/(m3 s)

HC-IF interfacial tension [22] σhl 72 mN/m

TC-HC interfacial tension [22] σth 36 mN/m

TC-IF interfacial tension σtl 108 mN/m

Lysis parameter λ 0.001 –

Table 3  Parameters related to oxygen diffusion

Parameter Symbol Value Unit

Diffusion coefficient of oxygen in interstitial fluid [15, 17] Dnl
0

3.2 × 10−9 m2/s

Coefficient δ [15, 17] δ 2 –

Normal mass fraction of oxygen in tissue [15, 17] ωnl
env

7.0 × 10−6 –
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complete EMEM. Plates were centrifuged for 5 min at 1,000×g to facilitate cell aggrega-
tion. Spheroid diameter was measured 5 days after cell seeding and over 20 days, using 
Nikon Eclipse Ti microscope (Nikon) with NIS-Element software. The culture medium 
was replaced with fresh complete medium every 3 days.

The simulation captures both the first exponential phase of the growth and the second 
phase: the plateau where the tumor mass reaches an equilibrium. The equilibrium, in the 
simulation, is reached thanks to the free-boundary conditions and to the growth limiter 
due to pressure. Lysis has here only a minor influence, contrarily to the last example. The 
moving boundary with a Dirichlet condition for the nutrient concentration at the MTS 
surface allows simulating growth without such a conditions posed at some point in the 
culture medium that may influence the proliferation and the movement of tumor cells.

A steady radius, as documented in several experiments (see for example [36–38]), 
characterizes the final phase of spheroid growth. This behavior is described by dif-
ferent models in the literature [39–42]. In [39] Byrne and Preziosi develop a biphasic 
model of avascular growth based on mixture theory. They report a steady radius for long 
times which depends on tumor compression and different model parameters. Another 

Table 4  Parameters for ECM taken from [22]

Parameter Symbol Value Unit

Density of the solid phase ρs 1 × 103 kg/m3

Poisson’s ratio of the ECM ν 0.4 –

Young’s modulus of the ECM Efin 1.6 × 102 Pa

Volume fraction of ECM (initial) εs 0.0 –

Coefficient a a 590 Pa

Intrinsic permeability k 1.8 × 10−15 m2

Yield effective stress limit ts
eff
,y 0.5 × 101 Pa

Viscosity η 5 Pa s

Hardening modulus H 1.0 × 102 Pa

Fig. 3  Model results and experimental data. Comparison between model results (solid line) and experimental 
data (dots) U87 spheroid cultivated by C. Stigliano at HMRI.
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example is given by the work of Wise et al. [42], where a porous media model for tumor 
growth is derived by energetic considerations. Their solution displays the equilibrium 
radius as a function of cell adhesiveness and other parameters describing the growth of 
the tumor. In our previous work [22], we validated the model against experimental data 
describing the first stages of spheroid growth without considering the final phase. In 
this paper we extend the previous validation and take into account the complete growth 
pattern.

Comparison between MTS growth in an ECM deposited by TCs, in an ECM‑free medium 

and in an ECM scaffold

In this example we compare the growth of (a) a multicellular tumor spheroid immersed 
in the interstitial fluid and deposing its own deformable ECM, (b) a multicellular tumor 
spheroid immersed in the interstitial fluid without ECM and (c) a multicellular tumor 
spheroid growing in a deformable and decellularized ECM scaffold. Tumor cells can in 
fact be grown successfully in a decellularized ECM of an organ as shown in Mishra et al. 
[43]. This allows mimicking the in vivo environment and has been done successfully for 
an ex vivo 3D lung model where it was possible to grow perfusable lung nodules [43].

The simulations are limited to the avascular stage. In this comparison we show the 
influence of the ECM presence on the growth.

The geometry of the three problems compared is simulated with a sphere segment in 
axisymmetric conditions with radius of 1,000 µm. At the initial time instant, in cases (a) 
and (b) the MTS is composed of only two phases: (1) the TC phase, in the red area with 
radius of 30 µm shown in Fig. 4, and (2) the IF phase which fills the whole domain; in 
case (c) the MTS is composed of the previous two phases and a third phase, (3) the solid 
phase ECM (which fills the whole domain). The atmospheric pressure is taken as the ref-
erence pressure and the initial IF pressure is zero Pa in the entire domain. The initial vol-
ume fraction of TCs is 0.02, the HCs are not present and in cases (a) and (b) the porosity 
is 1 in the whole domain, while in case (c) the volume fraction of the ECM in the domain 
is 0.2, hence the initial porosity is 0.8.

Fig. 4  MTS growing in different culture media. Geometry and boundary conditions for an MTS growing in: a, 
b an ECM-free and deposited ECM culture medium respectively; c an ECM scaffold.
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Boundary conditions are imposed as indicated in Fig. 4. To allow IF flux at the outer 
boundary the IF pressure is fixed there to zero Pa. Due to the symmetry of the problem 
there is no flux normal to the radius of the sphere segment. Oxygen is the sole nutrient 

species and its mass fraction is fixed to ωnl

env = 4.2× 10−6 at the outer boundary and 
throughout the computational domain at initial time. This mass fraction of oxygen cor-
responds to the average of the dissolved oxygen in the plasma of a healthy individual.

All model parameters are listed in Tables 5, 6, 7 and 8, classified by type. The critical 
value of the oxygen mass fraction which controls TC growth rate and induces necrosis 

is ωnl

crit = 3× 10−6 (the used constitutive equations for growth and necrosis are reported 
in [15]). This critical threshold has been chosen according with experiments of Walenta 

et al. [44]. Coefficients γ nl

growth and γ nl

0
 control the TCs uptake of oxygen (see the constitu-

tive equation reported [16]); they allow modeling consumption due to TCs growth and 
their metabolism, and with the chosen values an oxygen consumption rate in accordance 

Table 5  Initial conditions

Zone pl [Pa] Sh [−] St [−]
ω
nl [−]

Red zone (up to 30 µm) 0.0 0.0 0.02 4.2 × 10−6

Blue zone (up to 1,000 µm) 0.0 0.0 0.0 4.2 × 10−6

Table 6  Parameters depending on cells’ type and IF

Parameter Symbol Value Unit

Density of the three fluid phases (α = h, t and l) ρα 1,000 kg/m3

Dynamic viscosity of IF [22] μl 1 × 10−3 Pa·s
Dynamic viscosity of TC [22] µt

0
36 Pa·s

Dynamic viscosity of HC [22] µh
0

36 Pa·s
Adhesion of TC [22] ψt 0 Pa/m

Adhesion of HC [22] ψh 0 Pa/m

Critical mass fraction of oxygen [15, 17] ωnl
crit

3.0 × 10−6 –

Growth coefficient of tumor cells [15, 17] γ t
growth

1.8 × 10−2 kg/(m3 s)

Necrosis coefficient [15, 17] γ t
necrosis

9.6 × 10−3 kg/(m3 s)

Consumption related to growth [15, 17] γ nl
growth

2 × 10−4 kg/(m3 s)

Consumption related to metabolism [15, 17] γ nl
0

3 × 10−4 kg/(m3 s)

HC-IF interfacial tension [22] σhl 72 mN/m

TC-HC interfacial tension [22] σth 36 mN/m

TC-IF interfacial tension σtl 108 mN/m

Lysis parameter λ 0.0001 –

Table 7  Parameters related to oxygen diffusion

Parameter Symbol Value Unit

Diffusion coefficient of oxygen in interstitial fluid [15, 17] Dnl
0

3.2 × 10−9 m2/s

Coefficient δ [15, 17] δ 2 –

Normal mass fraction of oxygen in tissue [15, 17] ωnl
env

4.2 × 10−6 –
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with experimental observations of Mueller-Klieser et al. [45] is obtained. The oxygen dif-
fusion coefficient in the IF, Dnl

0
, has been taken from literature [46].

Recently we have also included the effect of fluid–fluid interfacial tension taking into 
account explicitly HC-IF, σhl, TC-HC, σth, and TC-IF interfacial tensions, σtl [17]. The 
values of interfacial tensions in Table 6 have been chosen respecting order of magnitude 
of experimental measurements [47, 48].

From Fig.  5a, by comparing the tumor mass fractions versus radius in case of ECM 
deposited by TCs (solid lines), in case of ECM-free culture medium (dotted lines) and in 
case of remodeling ECM scaffold (dashed lines), it appears that the MTS growth seems 
to be larger in the first case. This can be explained with the larger availability of IF to 

Table 8  Parameters for ECM taken from [22]

Parameter Symbol Value Unit

Density of the solid phase ρs 1 × 103 kg/m3

Poisson’s ratio of the ECM ν 0.4 –

Young’s modulus of the ECM in case of Fig. 4a Efin 1 × 102 Pa

Young’s modulus of the ECM in case of Fig. 4b E 1 × 102 Pa

Volume fraction of ECM (initial) in case of Fig. 4a εs 0.0 –

Volume fraction of ECM (initial) in case of Fig. 4b εs 0.2 –

Coefficient a [22] a 590 Pa

Intrinsic permeability k 1.8 × 10−15 m2

Yield effective stress limit ts
eff
,y 0.5 × 101 Pa

Viscosity η 5 Pa s

Hardening modulus H 1.0 × 102 Pa

Fig. 5  Effect of presence, deposition and absence of ECM. Volume fraction of TCs (a), IFP (b), mass fraction 
of oxygen (c) and volume fraction of necrotic cells (d) at different times along the radius of the spheroid. In 
the Figures dashed lines refer to the case of the MTS growing in an ECM scaffold, solid lines refer to the case 
of the MTS growing in an ECM deposited by TCs and dotted line refers to the case of the MTS growing in an 
ECM-free culture medium.
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MTS growth in a deposited ECM and in a ECM-free medium, where the space outside 
TCs is filled only by IF; in a remodeling ECM scaffold there is also this scaffold. Fur-
thermore, in the first two cases, the MTS has growth freedom; it must not deform an 
external ECM. The difference between the tumor growth in case of deposited ECM and 
in case of ECM-free medium may be explained as follows: the deposited ECM hinders 
the increase of TCs density in the center of MTS; the growing tumor cells are forced 
to the outside. Without ECM, instead, the tumor cells growth increases the malignant 
mass density more than its volume. Figure 5b shows the IF pressure versus radius for the 
case of deposited ECM culture medium (solid lines), ECM-free culture medium (dotted 
lines) and the case of remodeling ECM scaffold (dashed lines). In all cases at the begin-
ning IFP gradient remains close to zero because little additional IF from the surround-
ings is needed and the TCs increase density without lateral expansion. When the MTS 
increases its volume the IF flows inward because of increased consumption, respecting 
the constraint St + Sl = 1. The processes in a ECM-free medium and in a deposited ECM 
are more rapid than in a remodeling ECM scaffold: the front of IF pressure and of tumor 
mass fraction move faster towards the outside border (see Fig. 5b).

Figure 5c shows the evolution of the oxygen mass fraction in a culture medium with 
deposited ECM, ECM-free culture medium and remodeling ECM scaffold (solid, dotted 
and dashed lines respectively). The oxygen decreases from the original mass fraction of 
4.2 × 10−6 because of its consumption made by living tumor cells. Oxygen is the sole 
nutrient species considered here. Once the oxygen concentration decreases below the 
critical value fixed in Table 6 cell necrosis begins. In Fig. 5d we can see a larger necrosis 
in the MTS growing in deposited ECM and ECM-free culture medium (solid and dotted 
lines) with respect to the MTS growing in remodeling ECM scaffold. Indeed, TCs grow 
faster and consume more in the first two cases.

It is recalled that finite displacements and a Lagrangian updated formulation together 
with the objective Truesdell rate of Cauchy stress are adopted for the simulations, see 
section “Solid phase behavior”. The Young modulus for the deformable deposited ECM 
during the MTS growth is described in Eq. (24) with Efin = 8.0 × 101 Pa; E = 8.0 × 101 
Pa for the deformable ECM scaffold. Hence when the deposited ECM reaches the vol-
ume fraction of εsfin = 0.2 the Young modulus is the same as that of the ECM scaffold 
with εs = 0.2. The constitutive behavior of the deformable ECM is elastic until the yield 
limit, after that the behavior becomes viscoplastic. The viscoplastic parameters for the 
Perzyna type model (see [22]) are described in Table 8.

Figure 6 shows the evolution of the solid volume fraction; on the top for the case of 
ECM deposited by TCs and at the bottom for the case of remodeling ECM scaffold. In 
the first case the initial solid volume fraction is 0 because there is no solid phase. At the 
final stage the solid volume fraction is different from 0 in the zone where the TCs have 
grown and have deposited their ECM. The average solid volume fraction in this zone is 
0.2, because of the limit we have posed to the deposition, but we can see a larger solid 
volume fraction in the center with respect to the border of MTS: the limit of 0.2 is over-
come by deformation. The TCs indeed have larger density in the center and hence the 
ECM has a larger density in the center too. In the second case the initial and final aver-
age solid volume fraction is fixed at 0.2 because the ECM scaffold is always present. At 
the final stage we observe however a smaller solid volume fraction in the center of the 
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spheroid and larger solid volume fraction in the border due again to the deformability of 
the solid phase. In a deformable ECM the growing tumor is able to increase the available 
pore space in the region where growth happens, while in the outer space the porosity of 
the ECM slightly decreases (see [22]).

Comparison between MTS growth in a deposited ECM medium with and without lysis

In this section the focus is on the effect of the lysis in the MTS growth in a ECM depos-
ited by TCs. We recall that lysis transforms a part of necrotic tumor cells in the core of 
MTS into liquid phase increasing the liquid pressure in the center of MTS; remind that 
with growing tumor density the permeability reduces hindering the outflow through 
the viable rim, see the constitutive law for permeability in [15]. Since the IF pressure is 
higher inside the tumor than at its outer boundary, the IF flows towards the boundary 
while tumor cells move towards the center of the MTS as required by the mass balance. 
The MTS growth reaches an equilibrium phase in the tumor cell flux between the center 
and the border of the MTS.

The data are the same as in the previous example, only the lysis parameter changes. 
The comparison is between the lysis parameter � of the Eq.  (20), equal to 0.0001 and 
0.01. In the Fig. 7a the radius of the MTS versus the time is shown in both cases. An 
initial exponential growth followed by a linear phase can be seen. The plateau is not 
reached here because we did not use the free boundary condition, Eq. (25) which would 
hide partially the effect of lysis. In the case of lysis parameter � equal to 0.0001 the tumor 
grows more than in the case of the lysis parameter � equal to 0.01: lysis transforms a part 
of necrotic cells in liquid phase and hence reduces the volume, and consequently the 
radius, of MTS.

Fig. 6  Solid volume fraction. Solid volume fraction distribution at initial (a) and final (b) stage of a MTS grow-
ing in a ECM deposited by TCs and solid volume fraction distribution at initial (c) and final (d) stage of a MTS 
growing in a remodeling ECM scaffold.
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Lysis increases the liquid in the MTS, causing an increase of the IF pressure as shown 
in Fig. 7b. The red line represents the IF pressure at the last step of the analysis in the 
case of � equal to 0.01; the black line represents the IF pressure at last step in the case 
of � equal to 0.0001. The increment of IF pressure happens in the necrotic core of MTS, 
where a part of necrotic cells become liquid and the outflow through the outer rim is 
reduced because of reduced permeability in the viable rim. The IF pressure passes from 
negative values of the black curve to positive ones in the red curve in the center of MTS. 
The IF pressures at the center of MTS, in both black and red curves are higher than at 
the border of the MTS; hence the IF flows from the center to the border. With the lysis 
parameter � = 0.01, this phenomenon is more visible.

In conclusion lysis produces outflow of the IF from the tumor mass. The tumor cells 
pressure however has an inverse behavior due to lysis: it decreases in the necrotic core 
as shown in Fig.  7c. Hence it redirects some of the tumor cells towards the interior. 
Figure  7d shows the volume fraction of living tumor cells at the last calculation step: 
with � equal to 0.01 more tumor cells come back to the center of the MTS than with � 
equal to 0.0001. The tumor cell flux resulting from proliferation has been conjectured 
also in [49].

Conclusions
The original model for tumor growth has been enhanced by the introduction of ECM 
deposition during the TC growth and of lysis, i.e. the re-transformation of necrotic cells 
into IF.

The ECM has been modeled as a porous solid matrix with Green-elastic and elasto-
visco-plastic material behavior within a large strain approach. Truesdell objective stress 
measure is adopted together with the deformation rate tensor. An updated Lagrangian 
formulation has been used for the numerical simulations. A free-boundary simulation 

Fig. 7  Effect of lysis. Radius of the MTS, growing in a ECM deposited by TCs, versus time (a), IF pressure (b), 
pressure of tumor cells (c), volume fraction of living tumor cells (d). In the panel’s figures red lines refer to the 
case of lysis parameter λ = 0.01, black lines refer to the case of lysis parameter λ = 0.0001.
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of MTS growth with the enhanced mathematical formulation of the model has allowed 
to reproduce new experimental data, carried out at HMRI. Both the first exponential 
growth and the plateau when the tumor mass reaches equilibrium have been replicated.

ECM deposition, ECM free growth and ECM remodeling have then been investigated: 
it appears that the MTS growth seems to be faster in the first two cases. The larger avail-
ability of IF to MTS growth and the major growth freedom in a ECM-free medium with 
respect in a remodeling ECM medium can explain this behavior. The last example shows 
how lysis affects the results. Lysis transforms a part of the necrotic tumor cells into IF. 
This increases the liquid in the center of MTS, causing an increase of the IF pressure 
with respect to the border of the MTS. Hence the IF flows out from the center to the 
border and produces an outflow of the IF from the tumor mass. The tumor cell pressure 
instead results lower in the center of MTS because of lysis and this leads some of the 
tumor cells migrating towards the interior.

The introduction of lysis and ECM deposition allows capturing different aspects of the 
avascular tumor growth not yet comprised in the original model. We are now extending 
this more complete multiphase model to include the vascular stage of tumor growth.

Nomenclature
eqn.	� equation
eqs.	� equations
REV	� representative elementary volume
TCAT	� thermodynamically constrained averaging theory
a	� coefficient in the pressure–saturations relationship
Cij	� non linear coefficient of the discretized capacity matrix
dα 	� rate of strain tensor
Dil
eff 	� effective diffusion coefficient for the species i dissolved in the phase l

Ds	� tangent matrix of the solid skeleton
e
¯̄s	� total strain tensor

e
¯̄s
el	� elastic strain tensor

e
¯̄s
vp	� visco-plastic strain tensor
fv	� discretized source term associated to the primary variable v
Kij	� non linear coefficient of the discretized conduction matrix
Ki	� compressibility of the phase i (i = s, t, h and l)
k	� intrinsic permeability tensor of the ECM
kαrel	� relative permeability of the phase α
Nv	� vector of shape functions related to the primary variable v
pα	� pressure in the phase α
pij	� pressure difference between fluid phases i and j
Rα	� resistance tensor
Sα	� saturation degree of the phase α
tseff 	� effective stress tensor of the solid phase s

ts	� total stress tensor of the solid phase s

t
¯̄s
eff ,y	� yield limit of the solid phase which defines the boundary of elastic domain

us	� displacement vector of the solid phase s
vᾱ	� velocity vector of the phase α
x	� solution vector
ᾱ	� Biot’s coefficient
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γ t
growth	� growth coefficient

γ t
necrosis	� necrosis coefficient

γ nl
growth	� nutrient consumption coefficient related to growth

γ nl
0

	� nutrient consumption coefficient not related to growth

ε	� porosity
εα	� volume fraction of the phase α
η	� viscosity parameter of the solid phase
µα	� dynamic viscosity of the phase α
ρα	� density of the phase α
σij	� interfacial tension between fluid phases i and j
ψα	� adhesion of the phase α
ωNt	� mass fraction of necrotic cells in the tumor cells phase
ωnl 	� nutrient mass fraction in the interstitial fluid

ωnl
crit	� critical nutrient mass fraction for growth

ωnl
env	� reference nutrient mass fraction in the environment

κ→α

M 	� inter-phase mass transfer

εαriα	� reaction term i.e. intra-phase mass transfer.

Subscripts and superscripts
crit	� critical value for growth
n	� nutrient
h	� host cell phase
l	� interstitial fluid
s	� solid
t	� tumor cell phase
α	� phase indicator with α = t, h, l, or s

Authors’ contributions
BAS contributed the theoretical framework and helped in drafting the manuscript. RS developed the ECM deposition 
equations and implemented them in the code, performed all simulations and drafted the manuscript. PM developed 
and implemented in the code the equations for lysis. CS carried out the experimental data at HMRI. PD gave sugges-
tions to clarify the work and MF contributed to the background of this work. All authors read and approved the final 
manuscript.

Author details
1 Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua 35131, Italy. 2 Depart-
ment of Translational Imaging, The Methodist Hospital Research Institute, Houston, USA. 3 Department of Nanomedicine, 
The Methodist Hospital Research Institute, Houston, USA. 4 Department of Medicine, Weill Cornell Medical College 
of Cornell University, New York, USA. 5 Drug Discovery and Development Department, Fondazione Istituto Italiano di 
Tecnologia, Genoa 16163, Italy. 

Acknowledgements
RS acknowledge the University of Padua for financial support (project n. CPDR121149). MF acknowledges the financial 
supports from NCI Physical Science-Oncology Centers (NIH U54CA143837), and from The Methodist Hospital Research 
Institute, including the Ernest Cockrell Jr. Presidential Distinguished Chair. PD acknowledges partial support from the 
European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant 
agreement No. 616695 and the Houston Methodist Research Institute.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Appendix: Numerical solution and computational procedure
The system of equations presented in the main text is solved by means of a partitioned 
approach within the framework of a staggered algorithm preserving the coupling nature 
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of the multiphysics problem. The model is implemented in CAST3M (http://www.
cast3m.cea.fr) where the mass balance equations are introduced in a slightly modified 
form according to the procedure of [22] which is here updated. More in detail, we call 
d
¯̄s
sp the elastic strain rate induced by the solid pressure

where K is the bulk modulus of the unsaturated ECM scaffold. Introduction of the rate 
of the solid pressure, Eq. (14) yields

We consider now e.g. the mass balance equation of the tumor phase (Eq. (4)): by add-
ing and subtracting St

(

1 : d
¯̄s
sp

)

, moving the subtracted quantity to the lhs, and exploit-
ing (27) this equation becomes

The same is carried out for Eqs. (5, 7).
The weak form of Eqs.  (4), (5), (7), (12) and (15) in their modified form as above is 

obtained by means of the standard Galerkin procedure and is then discretized in space 
by means of the Finite Element Method [32]. The primary variables are expressed in 
terms of their nodal values as

where ω̄nl
i (t), p̄th(t), p̄hl(t), p̄l(t), ūs(t) are vectors of nodal values of the primary vari-

ables at time instant t, and Nn, Nt, Nh, Nl, and Nu are vectors/matrices of shape functions 
related to these variables.

Integration in the time domain is carried out by the Finite Difference Method adopt-
ing a quasi-Crank–Nicolson scheme (θ-Wilson method with θ = 0.52). Within each time 
step the equations are linearized by the Newton–Raphson method. For the numeri-
cal solution of the resulting system of equations, a staggered scheme is adopted with 

(26)d
¯̄s
sp =

ᾱ

3K

∂ps

∂t
1

(27)1 : d
¯̄s
sp =

ᾱ

K

(

St + pth
∂St

∂pth

)

∂pth

∂t
+

ᾱ

K
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)
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∂t
+

ᾱ

K
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pth(t) ∼= Nt p̄
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s(t)

http://www.cast3m.cea.fr
http://www.cast3m.cea.fr


Page 22 of 26Santagiuliana et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:19 

iterations within each time step to preserve the coupled nature of the system. The con-
vergence properties of such staggered schemes have been investigated by Turska and 
Schrefler [50]. In particular, for the iteration convergence within each computational 
step a lower limit of Δt/h2, function of the material properties, has to be observed; Δt 
is the time step and h the element size. The existence of this limit means that we can-
not diminish the time step at will below a certain threshold without also decreasing the 
element size. For the simulations in this paper we choose Δt = 6 min and the limit Δt/
h2 = 3 · 1013.

Three computational units are used in the staggered scheme: the first is for the nutri-
ent mass fraction ωnl , the second to compute pth, phl and pl, and the third is used to 
obtain the displacement vector us. Within each iteration the mass fraction of NTC, ωNt̄, 
is updated using Eq. (11).

Taking into account the chosen staggered scheme, the final system of equations can be 
expressed in matrix form as follows, where some of the coupling terms have been placed 
in the source terms and are updated at each iteration

with

where xT =

{

ω̄nl , p̄th, p̄hl , p̄l , ūs
}

.
The modular computational structure allows more than one chemical species to be 

taken into account, simply by adding a computational unit (equivalent to the first one 
used for the nutrient) for each of the additional chemical species considered

The nonlinear coefficient matrices Cij(x), Kij(x) and fi(x) are given below.

(30)Cij(x)
∂x

∂t
+ Kij(x)x = fi(x)

(31)

Cij =











Cnn 0 0 0 0

0 Ctt Cth Ctl 0

0 Cht Chh Ctl 0
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0 0 0 0 Cuu








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