
 Procedia Engineering   47  ( 2012 )  1093 – 1096 

1877-7058 © 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Symposium Cracoviense 
Sp. z.o.o.
doi: 10.1016/j.proeng.2012.09.341 

Proc. Eurosensors XXVI, September 9-12, 2012, Kraków, Poland 

A simple analytical model for the 
resonance frequency of perforated beams 

Luca Luschia
a*, Francesco Pieria 

aDipartimento di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy 

 

Abstract 

In this work the bending properties of beams with periodic rectangular perforations are examined. Starting from the 
standard Euler-Bernoulli beam equation, compact analytical expressions for the equivalent bending stiffness in the 
filled and perforated sections are developed and used to compute the resonance frequencies of the perforated beam. 
The results are in good agreement with FEM simulations for most practical designs, as long as shear stress effects can 
be considered negligible. 
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1. Introduction 

The release of beams and plates of large area in MEMS surface technologies is limited by etch speed of 
the sacrificial layer under the beam or plate itself. Most MEMS approaches resolve this issue by creation 
of a regular pattern of holes in the structural layer. Despite being introduced for merely technological 
reasons, these perforations are expected to affect the mechanical behavior of MEMS structures in various 
ways. Among them, only the effect of holes on the air damping has been extensively investigated [1]. 

In this work, we examine the mechanical properties of beams with regular square perforations, and 
propose a simple analytical model to compute their in-plane stiffness behavior and resonance frequency. 
The model is aimed at the time-efficient design of beam-based MEMS resonant sensors [2]. Numerical 
methods can be and have been used to predict the behavior of such structures [3], but they tend to be 
computationally expensive, especially with the reduction of the perforation size. The mechanical 
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properties of regularly structured materials can also be modeled by equivalent anisotropic materials [4, 5]. 
These approaches, however, are cumbersome and do not lead to simple closed expressions for the 
resonance frequency. Our approach is based on simple modifications of the standard Euler-Bernoulli (EB) 
beam equation, and retains its simplicity by substituting specialized expressions for the flexural stiffness 
of the different beam segments. 

 

Fig. 1. View of a perforated beam with the coordinate system used in the text. Part of the beam is cut away for clarity. 

2. Derivation of the model 

The deflection u(x) of a beam with constant section under bending can be modeled by the EB beam 
equation: 
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where E is the Young’s modulus of the material, I the moment of inertia of the beam section, and M the 
external torque. Our model proposes the substitution of the moment of inertia I with an equivalent 
moment of inertia IEQ for the perforated beam. Referring to the system of coordinates in Figs. 1, 2, EB 
theory assumes a linear distribution of the normal stress along the beam section of the form: 
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This distribution leads to the standard EB beam differential equation. We now consider the same beam 
with a pattern of square holes of period ls and side ls − ts (Fig. 2). We also define N as the number of holes 
along the section, and α = ts/ls as the filling ratio. We postulate a linear distribution of the stress in the 
(filled parts of the) perforated section, and a piecewise linear distribution (with two different slopes) in 
the filled section (Fig. 2). The stress distributions for the perforated section, the (under-stressed) parts of 
the filled section between holes, and the remainder of the filled section, are then: 

, ,P P FP FP FF FFK y K y K y  (3) 

where the K′s are constants to be determined. Both KFP and KFF have to converge to KEB when α → 1. An 
expression for KFP can be determined by solving a plane stress problem with appropriate boundary 
conditions in a single section of the filled part of the beam, following a general approach for plane stress 
problems [6]. 
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Fig. 2. Normal stress distribution in a full beam (left), and the proposed stress model in the perforated (center, green line) and filled 
(right, blue-pink line) sections of a perforated beam (right). 

If  we express KFP  (as it is convenient) as a fraction of  KEB, their ratio (which we will call the filling 
function F) can be shown to be: 
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where IP is the moment of inertia of the perforated section. Exploiting the conservation of the bending 
moment along the beam and (4), the constant KFF can be computed, and in turn an equivalent moment of 
inertia (averaged between the filled and the perforated part) can be determined: 
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3. Results 

The model was used to estimate the first in-plane (i.e. along y) resonant frequency of clamped-clamped 
beams using the standard formula: 
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where ρl is the average mass per unit length of the beam. The infinite sum in (4) converges rapidly and 
was numerically arrested at n = 10.  All the simulated beams were 300 μm in length and 10 μm in width. 
Different values of N (and, consequently, different hole sizes) were tested. The analytical results were 
compared with FEM simulations performed with ANSYS. 
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Fig. 3. Comparison between analytical and simulated resonance frequencies as a function of the filling ratio α for three different 
values of N (4, 6, 8) (left); relative error of the analytical frequency values with respect to the simulated ones as a function of N 
(right).  

The results are summarized in Fig. 3. For α > 0.3, which covers most practical MEMS designs, Eq. 6 
gives approximations within 6% of the simulated values (Fig. 3, right). For lower values of α, i.e. for 
larger holes, the EB theory fails because of the importance of shear stresses in the beam. While the 
presented results involve only resonance frequencies, the model can also be used to evaluate static 
deflection and static elastic constants of perforated beams. 

References 

[1] S.S. Mohite, V.R. Sonti, R. Pratap, A Compact Squeeze-Film Model Including Inertia, Compressibility, and Rarefaction 
Effects for Perforated 3-D MEMS Structures, J. Microelectromech. Syst., 17 (2008) 709-723 

[2] V.L. Rabinovich, R.K. Gupta, S.D. Senturia, The Effect of Release-Etch Holes on the Electromechanical Behavior of MEMS 
Structures, Transducers 1997, Chicago, 1125-1128 

[3] M. Pedersen, W. Olthuis, P. Bergveld, On the mechanical behaviour of thin perforated plates and their application in silicon 
condenser microphones, Sens. Act. A, 54 (1996) 499-504 

[4] S.A. Berggren, D. Lukkassen, A. Meidell, L. Simula, Some Methods For Calculating Stiffness Properties Of Periodic 
Structures, Applications of Mathematics, 48 (2003) 97-110 

[5] S. Lenci, F. Pieri, L. Haspeslagh, J. De Coster, S. Decoutere, A. Maestre Caro, S. Armini, A. Witvrouw, Stiction-Free Poly-
SiGe Resonators For Monolithic Integration Of Biosensors With CMOS, Transducers 2011, Beijing (PRC), 2136-2139 

[6] M.H. Sadd, Elasticity Theory, Applications & Numerics, Elsevier, 149-157 
 


