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Abstract 

Airport ground access is one of the key determinants influencing air travellers’ airport choice. The continuous growth of air travel 
demand and the consequent induced road congestion have encouraged the development of efficient transit systems approaching the 
airport, thus promoting a modal shift from individual cars to greener transport alternatives. In addition, transit systems must be 
resilient and reliable to air travellers, since the cost of missing a flight is high. In this paper, resilience aspects of transit systems 
accessing airport areas are discussed and some indexes have been set up to estimate the transit network resilience. Three different 
transit systems to get to a large regional Italian airport (Automated People Mover, Airport Shuttle Bus, Bus Line) are modelled and 
the system resilience has been estimated for each scenario by using the proposed indexes. 
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1. Introduction 

Air traffic has been rapidly growing in recent years. In 2015, around 3.5 billion people used it (+6.4% w.r.t. 2014), 
50 million tons of freight were carried and the number of departures reached approximately 34 million globally (ICAO, 
2015). The growth of air travellers caused an increase in airport ground access traffic and its related issues – e.g., an 
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airport with 45 million passengers per year may generate eight million kilometres of ground access travel in one day 
(Cooganet et al, 2008) – drawing airport operators and policy makers attention. 

Airport ground access describes the ground transportation system that provides access to and from the airport for 
people – passengers, employees, visitors, contractors – and goods. It affects directly airport operational and financial 
performances. In addition, surface access may be considered by airlines when deciding whether to serve a specific 
airport. Therefore, reliable, robust and attractive ground access alternatives are important airport requirements.  

Airport ground access can be classified into three categories: private vehicles, transit systems and non-motorised 
modes (cycling or walking). Among these three categories, private car is the most used as it is perceived as the one 
offering more comfort, convenience, personal security and reliability (Budd, 2016). However, the intensive use of cars 
for those trips has led to severe traffic congestion problems around airports and remarkable environmental 
externalities, such as atmospheric pollution due to vehicle emissions and localized noise (Postorino and Mantecchini, 
2014, 2016). Recently, there has been a growing pressure in both EU and US to promote the development of reliable 
transit systems accessing the airport, thus encouraging a shift toward more sustainable transport modes and reducing 
private car use. Furthermore, through the 1998 “A Deal for Transport” White Paper and the next 2003 “The future for 
Air Transport Paper” White Paper, UK airports were tasked to set targets to increase the percentage of trips by transit 
systems at the expenses of private vehicles (DETR, 1998; Department for Transport, 2006).  

To be an attractive option, transit system should meet consumer needs and preferences. Several studies have 
identified relevant factors associated with airport ground access mode choice, particularly journey time, distance and 
ease of baggage handling as well as the trip purpose are key determinants in passengers’ mode choice (Budd, 2014). 
Tam et al (2005) found that travel time reliability is the most important factor, where reliability refers to travel 
condition stability and predictability. Some studies showed that price is less important than time if a new, more reliable 
public transport system is available to access the airport (Jou et al., 2011). In addition, passengers are more willing to 
pay for improved travel time reliability, because lower travel time reliability depicts a higher possibility of late 
appearance at the airport, leading to a higher chance of missing the flight (Koster et al., 2011).  

In case of transit system disturbances, such as strikes or infrastructure failures, it is crucial that passengers are still 
enabled to reach the airport without missing their flight. The ability of a system to adsorb, adapt to and rapidly recover 
from a disruptive event is called resilience. (Mattson, 2015). The more resilient the system is, the more it minimises 
the magnitude and duration of the impacts caused by a disruption, thus reducing negative experiences for passengers 
and, in some cases, costs for operators.  

In this study, we analyse the resilience of the transit network accessing the airport as the magnitude and duration of 
the deviation of selected indicators from baseline performance levels. Particularly, delays on passengers, generalized 
costs and changes in the volume-over-capacity ratio after a disruption are proposed to measure the effects of unplanned 
service disruptions. Analyses of delays allow predicting the share of passengers who risk missing the flight, while the 
volume-over-capacity ratio allows understanding the different levels of system congestion and the network recovery 
time. The impacts of service disruption are modelled by BusMezzo, a simulation tool modelling the interactions 
between public transport operations and travellers’ choices, included the opportunity for passengers to switch their 
route after supply changes. Different sources of public transport operation uncertainty are modelled, including traffic 
conditions, vehicle capacities, dwell times and vehicle schedules. Each traveller is modelled as an adaptive decision 
maker who moves forward in the transit system by undertaking successive decisions (Cats et al., 2011). 

In the following sections, the transit system model is shortly introduced and the methodology used to evaluate 
impacts is described (2). An application to the large-regional Italian “Bologna Marconi” Airport is then presented (3), 
followed by some concluding remarks (4). 

2. Methodology 

2.1. Transit system model and implementation 

Transit system performance results from complex and mutual interactions among several components, which 
influence the way the system evolves over time. To model such complexity, the dynamic nature of both public transport 
supply and demand has been considered as shortly explained in the following sections. A general introduction 
concerning transit system dynamic aspects can be found in the book edited by Gentile and Nökel (2016).  
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2.1.1. Supply 
The transit network is represented by a direct graph 𝐺𝐺(𝑆𝑆, 𝐸𝐸) where 𝑆𝑆 is the set of nodes - corresponding to stops - 

and 𝐸𝐸 is the set of links connecting stops. Pedestrian links are also introduced, which allow transfers between stops. 
A transit line (or simply line) is defined as a sequence of stops or stations, 𝑙𝑙 = (𝑠𝑠𝑙𝑙1, 𝑠𝑠𝑙𝑙2, … , 𝑠𝑠l|𝑙𝑙|), where 𝑠𝑠𝑙𝑙1 = 𝑜𝑜𝑙𝑙  is the 
origin stop and  𝑠𝑠𝑙𝑙|𝑙𝑙| = 𝑑𝑑𝑙𝑙 is the destination stop. One or more lines may use the same link. Lines associated to their 
timetables represent runs. Transit vehicles follow a schedule that consists of sequences of runs, so delays on a given 
run may propagate to another one. The link travel time, defined on each link as the time between two subsequent stops, 
may vary depending on the current traffic conditions. It can be divided into two components: running times along the 
link and delays at intersections. The running time is a random variable with distribution derived from empirical 
observations. Delays at intersections are estimated by stochastic queue models. Similarly, each node (stop) is 
associated with a dwell time, which is the time required for a vehicle to stop for boarding and alighting passengers. 
Again, dwell time can be modelled as a random variable, as it varies depending on the number of passengers, vehicle 
and stop type.  

2.1.2. Demand 
Passenger demand is represented by an Origin/Destination (OD) matrix at stop level. Trips begin at an origin stop 

and passengers have to choose their path to a pre-defined destination stop, according to the final destination. The 
traveller’s path is defined as a sequence of stops from the origin to the destination, that is 𝑗𝑗 = (𝑠𝑠𝑗𝑗1, 𝑠𝑠𝑗𝑗2, … , 𝑠𝑠𝑗𝑗|𝑗𝑗|), where 
the origin stop is 𝑜𝑜𝑗𝑗 = 𝑠𝑠𝑗𝑗1 and the destination stop is 𝑑𝑑𝑗𝑗 = 𝑠𝑠𝑗𝑗|𝑗𝑗|. When travelling, passengers can make successive path 
choice decisions, which depend on the evolving public transport system conditions. The dynamic path choice model 
includes three decision steps: connection, boarding and alighting. A connection decision takes place when the traveller 
chooses the start and/or alighting point of the trip and depends on the features of alternative paths connecting each 
candidate stop with the traveller’s final destination stop. The traveller can choose to stay at the same stop for a 
connection or walk to a nearby stop and wait there for another transit service or walk directly to the final destination. 
A boarding decision takes place when travellers are waiting at a given stop. When the vehicle arrives, the traveller can 
decide whether to board it or stay at the stop and wait for another vehicle. Finally, once on-board the traveller makes 
an alighting decision, which may change depending on new information. The rating of alternative paths depends on 
traveller’s preferences and expectations, evaluated by using the concept of path utility. Traveller’s decisions are 
represented with a multinomial Logit model and the deterministic part of the utility of path i for passenger n, 𝑣𝑣𝑖𝑖𝑖𝑖, is 
defined as: 

 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖

𝑖𝑖𝑣𝑣𝑡𝑡(𝑡𝑡) + 𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑡𝑡𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛽𝛽𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  (1) 

where 𝑡𝑡𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑡𝑡𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 are the waiting time and in-vehicle time respectively; 𝑡𝑡𝑖𝑖𝑖𝑖
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the walking time; 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 is the 

number of transfers; 𝛽𝛽(.)  are the corresponding weights. More information on the dynamic route choice model 
including congestion effects are in Cats et al. (2016).  

2.1.3. Implementation 
The supply and demand models have been implemented by using an event-based mesoscopic traffic simulator – for 

both individual and transit transport systems – called BusMezzo (Toledo et al. 2010). BusMezzo simulates transit 
vehicles individually as objects characterized by specific attributes (length, number of seats, capacity, leaving rules 
from stops) and according to a list of scheduled trips. Trip chaining can also be modelled explicitly. Links are divided 
into two parts: a running part and a queuing part. Travel times on the running part are computed by speed-density 
functions. At the queuing (downstream) part of the link, queue servers process the arriving vehicles, which are forced 
to line up in single queues waiting to move out of the link according to a selected service time distribution. Separate 
queue servers with their corresponding capacities are used for turning movements to capture link connectivity and lane 
channelling. Passengers at stops are generated by following a Poisson arrival process with arrival rates specified in 
time-dependent OD matrices. As an event-based simulator, the time clock of the simulation progresses from one event 
to the next one according to a chronological list of events that refers to the relevant objects (vehicles). During the 
simulation, each object updates passenger loads and computes the maximum number of passengers that may board at 
each stop. 



1132	 Caterina Malandri  et al. / Transportation Research Procedia 27 (2017) 1129–1136
4 Caterina Malandri/ Transportation Research Procedia 00 (2017) 000–000 

2.2. Network resilience due to service disruptions 

The transit network resilience is measured as the change in the system generated by a disruption. Some performance 
indicators describe both the disrupted and the baseline states, by enabling the identification of the most suitable 
scenario able to adsorb the impacts caused by the disturbance – in terms of both magnitude and duration – i.e. the most 
resilient condition. More in detail, the resilience of the airport ground access transport network is studied by imposing 
the closure of a segment of the transit system serving the airport. Then, the impacts caused on air passengers, whose 
flight departing time imposes a tight constraint, are estimated. Three performance indexes have been set up for the 
transit network resilience analysis: delays on passengers (DEL), loss of convenience (or Inconvenience, INC) and 
change in volume-over-capacity ratio (VOC) throughout the network. The first two indexes measure impacts on 
passengers potentially leading to severe consequences (e.g., missing the flight), while the last one has been used to 
estimate the recovery time, i.e. the time the system needs to reach again a baseline working condition. 

DEL enables the estimate of the share of passengers who risk missing their flight. Delay experienced by passenger 
𝑛𝑛 using the transit system to reach the airport is computed as the difference between the total travel time in the disrupted 
scenario 𝑠𝑠𝑑𝑑 and the total travel time in the baseline scenario 𝑠𝑠𝑏𝑏: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑛𝑛(𝑠𝑠𝑑𝑑) − 𝑇𝑇𝑇𝑇𝑛𝑛(𝑠𝑠𝑏𝑏) (2) 

𝐼𝐼𝐼𝐼𝐼𝐼 reflects the discomfort perceived by users and is computed as the difference between the network generalized 
cost (GC) in the disrupted scenario 𝑠𝑠𝑑𝑑 and the baseline one 𝑠𝑠𝑏𝑏:  

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐺𝐺𝐺𝐺(𝑠𝑠𝑑𝑑) − 𝐺𝐺𝐺𝐺(𝑠𝑠𝑏𝑏) (3) 

The generalized cost for scenario 𝑠𝑠 is defined as:  

𝐺𝐺𝐺𝐺 = E[𝑡𝑡𝑛𝑛𝑖𝑖𝑣𝑣𝑡𝑡] + 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝐸𝐸[𝑡𝑡𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤] + 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ E[𝑡𝑡𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤] + 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ E[𝑡𝑡𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤] + 𝛾𝛾𝑡𝑡𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (4) 

where 𝐸𝐸[∙] is the expected value of time, averaged on all passengers; 𝑡𝑡𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the time spent waiting for the second 
transit vehicle, in case it is not possible to board the first one because of vehicles capacity constraints; 𝛾𝛾(.) are the 
trade-off values 𝛽𝛽(.)/𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖. Monetary costs have not been considered as it has been assumed that in case of unplanned 
disruptions air travellers are cost insensitive for the ground access part of their air journey. 

Finally, for vehicle 𝑚𝑚 moving on link 𝑒𝑒 at time 𝑡𝑡 in the scenario 𝑠𝑠, VOC is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚(𝑒𝑒, 𝑡𝑡|𝑠𝑠) =
𝑉𝑉𝑚𝑚(𝑒𝑒, 𝑡𝑡)
𝐶𝐶𝑚𝑚

 
(5) 

where 𝑉𝑉𝑚𝑚(𝑒𝑒, 𝑡𝑡) is the number of passengers riding vehicle 𝑚𝑚 (of capacity 𝐶𝐶𝑚𝑚) moving on link 𝑒𝑒 during time window 
𝑡𝑡. VOC measures the on-board link saturation level. High saturation levels cause on-board overcrowding and some 
passengers may experience denied boarding and thus prolonged waiting times. Impacts of link closure are evaluated 
by comparing VOC in the base scenario 𝑠𝑠𝑏𝑏 and in the disrupted one 𝑠𝑠𝑑𝑑 through the Actual Difference Ratio (ADR) 
measure: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡|𝑠𝑠𝑑𝑑) =
∑ ∑ (𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚(𝑒𝑒, 𝑡𝑡|𝑠𝑠𝑑𝑑) − 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚(𝑒𝑒, 𝑡𝑡|𝑠𝑠𝑏𝑏))𝑚𝑚∈𝑀𝑀𝑡𝑡𝑡𝑡𝑠𝑠𝑑𝑑𝑒𝑒∈𝐸𝐸

∑ 𝑀𝑀𝑡𝑡𝑡𝑡𝑠𝑠𝑑𝑑𝑒𝑒∈𝐸𝐸
 

(6) 

where 𝑀𝑀𝑡𝑡𝑒𝑒𝑒𝑒𝑑𝑑 is the whole number of vehicles travelling on link 𝑒𝑒 during time window 𝑡𝑡 in scenario 𝑠𝑠𝑑𝑑. ADR is used to 
estimate the recovery time. More in details, when the passenger queue – causing vehicle overloading with respect to 
the baseline scenario – has run out, then ADR is zero. The time needed to reach again the baseline condition measures 
the network recovery time from disruption. The shorter such time is, the more the network is resilient. 

The most resilient scenario is then defined as the one that produces the smallest impacts computed as the changes 
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between the baseline and disrupted situations. 

3. Application 

3.1. Ground access transit system description 

The described approach has been applied to Bologna “Guglielmo Marconi” Airport, a large regional airport in 
Northern Italy. Located 6 km far from Bologna Central Rail Station, it is served by an aero-bus service (Airport Bus 
Shuttle, BLQ), connecting the train terminal to the airport in approximately 25 minutes. At the end of 2018, the Airport 
Bus Shuttle is planned to be partially or totally replaced by an Automated People Mover (APM), a driverless elevated 
tram system connecting the station to the airport in about 7 minutes, with only one intermediate stop (Lazzaretto). 
Furthermore, the airport is served by a Bus Line (81), which takes almost 35 mins and stops 1 km far from the airport 
(15 mins walk). In this application, the three transit systems – included the planned one – are modelled, each one with 
its own vehicle type, operating speed, travel time variability and dwell time functions to reflect the differences in the 
service characteristics. Key attributes of each transport mode are shown in Table 1. Although monetary costs have not 
been considered in the choice model, Table 1 reports ticket prices to give complete information on the transport modes. 
Real demand, timetables and walking distances between stops are used to model the network with BusMezzo. Finally, 
the baseline scenario refers to the activation of the APM service, which substitutes the BLQ service.  

Table 1: Service features 

TYPE 
CAPACITY 
(pax/vehicle) 

FREQUENCY 
(vehicles/hour) 

SCHEDULED 
HEADWAY (min) 

PLANNED TRAVEL TIME  
(min) 

TICKET PRICE  
(€) 

APM 50 8 7.5 7.5 7.50 

BLQ 55 5 12 25 6.00 

81 60 4 15 35 1.50 

 
Real transit demand, in terms of passengers, refers to the airport busiest hour in the week. More in details, the whole 

air demand is computed by considering both the schedule of movements and aircraft capacity, with an average load 
factor of 0.85. The peak hour is on Friday, between 13:00 and 14:00, with a demand of 1600 air travellers. Transit 
users are assumed to be 15%, incremented by 5% in order to consider employees. As a result, 270 estimated passengers 
will arrive at the airport by transit systems in the considered time interval.  

According to real data kindly made available by Bologna airport, the majority of passengers arrives 60-90 minutes 
before their scheduled flights (about 75%), while the remaining percentage is distributed between very early arrivals 
(2 hours and more before the scheduled flight) and rather late arrivals (30 mins before the scheduled flight). According 
to data and based on arrival rates at the airport, we assumed that passengers depart from the Central Rail Station 
between 2.5 and 1.5 hours before the scheduled take-off of their flight, i.e. in the time interval 10:30-11:30 AM.  

The simulated disruption consists of downing the capacity to zero on the APM service between Lazzaretto 
intermediate stop and Airport for the entire simulation period. To allow passengers to arrive to the airport in any case, 
three different alternatives are considered to cope with the emergency. In the first one, an emergency shuttle is 
introduced between Lazzaretto and Airport stops (D1, Figure 1b); the second scenario simulates the re-introduction of 
the BLQ service between the Station and the Airport (D2, Figure 1c); in the last one both alternatives are considered 
(D3, Figure 1d). In all scenarios, the Bus Line service is functioning under normal operations. Note that the system is 
simulated at a time where the APM service has substituted BLQ and for such reason this latter is not operating in 
scenario D1. 

Passengers are assumed to be aware of any change in the system, so they know about the disruption and they can 
decide which alternative to take based on their preferences, assumed to be constant throughout the simulation period. 
The choice of alternatives has been modelled by a multinomial Logit. Although the utility function coefficients have 
not been specifically estimated for the case study, suitable values can be found in the literature (such as the ones in 
Guo and Wilson, 2011; Nuzzolo et al., 2012; Wardman, 2014, proposing a review of public transport value of time 
studies), which fit well for the examined socio-economic context. Particularly, the values estimated in Cats et al. 
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(2011), also in line with the ones in Wardman (2014), have been assumed proper for this case: 𝛽𝛽𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = −0.07, 
𝛽𝛽𝑎𝑎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = −0.07, 𝛽𝛽𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = −0.04, 𝛽𝛽𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −0.334. Although trip fare is not considered in this analysis, we assume 
that, according to some surveys, 4% of the demand uses the Bus Line because of cost savings.  

In order to allow a warm-up period, the supply is simulated from 9:30. For each scenario, 10 simulations are carried 
out to obtain a standard error of less than 5% for passenger travel time.  
 

 

Figure 1: Baseline scenario BC (a) and disrupted scenarios D1 (b), D2 (c) and D3 (d). In red: disrupted link 

3.2. Results 

In the baseline scenario (Figure 1a), the average passenger travel time is 8 minutes. The majority of transit 
passengers (65%) arrive between 11:00 and 12:00, i.e. 60 to 120 minutes before the flight departure (Figure 2a). After 
the disruption, passengers are forced to reroute and are affected by delays. In the disrupted scenario D2, the average 
passenger travel time increases by 13 minutes, but users are still able to reach the airport within acceptable time (Figure 
2c). Differently, the adoption of the Emergency Shuttle solution (D1) generates only a slight increase in the average 
travel time (8 mins), but vehicle capacity plays a key role and more than 60% of passengers are forced to wait at the 
stop for a second vehicle because the first one is full. Most passengers arrive after 12:00 AM and 15% of them arrives 
less than half an hour before the departure (after 12:30), risking to miss the flight (Figure 2b). Scenario D3 (Figure 2d) 
may avoid capacity problems but it is a more expensive alternative for the service provider. According to travellers’ 
preferences modelled by the discrete choice approach, BLQ is chosen by 51% of passengers while the remaining part 
chooses the Emergency Shuttle. However, also in this case some passengers arrive less than one hour before their 
flight departure.  
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To measure the magnitude of delays experienced by passengers, indicator 𝐷𝐷𝐷𝐷𝐷𝐷 (Eq. 2) has been computed. As 
Figure 3a shows, in scenario D1 delays are significantly higher and 30% of passengers experience more than one hour 
of delay. Conversely, in scenario D2 delays are in the range 10 - 30 minutes while scenario D3, providing both 
Emergency Shuttle and BLQ alternatives, generates almost the same average delay as scenario D2. 

The Inconvenience INC (Eq. 3) has been computed by assuming 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1.75, 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 2, 𝛾𝛾𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 2 and a 
transfer penalty 𝛾𝛾𝑡𝑡𝑡𝑡 equivalent to approximately 8 min in-vehicle time (according to Wardman, 2014). INC values 
confirm that scenario D1 is the one causing more difficulties to passengers (Table 2). Users perceive the availability 
of the Emergency Shuttle 5 time more uncomfortable than scenario D2. Then, from passengers’ point of view, it is 
better to have a unique service from the Station to the Airport (BLQ) than both alternatives as in D3. This apparently 
surprising result can be explained by considering that passengers consider transfers as journey interruptions, always 
poorly desirable due to the discomfort associated to carrying baggage, waiting time and potential queues at stops. 

For each scenario, figure 3b shows the ADR trend. Data are averaged over time slices of 10 mins. Trends have a 
similar pattern for all disruption scenarios. As the generation of passengers starts (10:30 AM), ADR increases. 
Afterward, the difference between the baseline scenario and the disrupted ones progressively decreases reaching zero. 
Scenarios D2 and D3 have almost the same trend, while scenario D1 shows considerable higher impacts. At the 
beginning of the simulation, impacts are reasonable, but they increase more and more after the end of the generation 
of passengers (value of 0.5). As pointed out before, this is linked to the limited capacity of the Emergency Shuttle 
service, which is not able to satisfy the demand and forces passengers to wait for a second vehicle. Figure 3b allows 
computing the recovery time (Table 2), that is the time required for the network to return to the undisrupted conditions 
(baseline scenario), i.e. the time at which ADR=0. For scenarios D2 and D3, the recovery time is 1.5 hours (12:00 
AM), computed from the generation of the first passenger. For scenario D1, the system is again standard operational 
3 hours after the beginning of passenger generation (1:30 PM). These results suggest that the aftermath of disruption 
lasts up to 4 times compared to other scenarios, thus confirming scenario D1 as the worst alternative.  

 

Figure 3: a) Delay  b) ADR index evolution for each scenario.  

Table 2: Indexes to measure resilience for scenarios D1, D2 and D3 

 D1 D2 D3 

INC (minutes) 116,1 22,5 29,6 

Recovery time (minutes) 180 90 90 

4. Conclusions 

The analysis proposed in this work focused on the estimation of several impacts produced by unplanned disruptions 
of the transit systems serving an airport. Estimates of passenger delays and costs, as well as the network recovery time, 
have been proposed to measure the transit network resilience. In fact, the main, desirable property that passengers – 
mainly air travellers – are asking when moving by transit systems is reliability, in addition to the opportunity offered 
to bypass road traffic congestion and plan a safe and comfortable journey to access the airport. When disruptions 
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prevent from arriving as planned, discomfort is very high particularly because air travellers have no other choices but 
to use another transit alternative or taxis – which is much more expensive. Furthermore, late arrivals generate high 
stress levels because the risk to miss the flight is high.  

The indexes proposed here to measure the transit network resilience have been tested on three scenarios simulating 
a disruption in one of the transit system leg. Particularly, for a given disruption, some possible transit system scenarios 
to cope with the emergency have been tested: a shuttle service from the disruption point to the airport; a direct aero-
bus service, which does not serve the disrupted point; the combination of both shuttle and aero-bus service. A standard 
bus service, with several intermediate stops, is also available for all scenarios. The starting hypothesis is that travellers 
are aware of the disruption when it begins. One interesting result is that the simplest solution– i.e. the introduction of 
a substitute service between the disrupted point and the airport, generally adopted by service providers – is the worst 
scenario. Recovery time is very high if compared to other solutions, as well as delays and costs for travellers. The 
other two scenarios are much better, by showing a higher resilience as measured by the proposed indexes. Particularly, 
although the scenario with both shuttle and aero-bus service provide a wider set of alternatives, its resilience is not 
better than the resilience of the system with only the aero-bus service. This confirms that passenger discomfort is very 
high when there are transfers, as in the shuttle solution where passengers have to transfer from the disrupted APM 
service to the shuttle one. The proposed analysis of transit system resilience helps identifying scenarios that produce 
fewer impacts on passengers and airports and can be used to provide guidelines for infrastructure and service 
investment decisions that reduce costs for both passengers and service providers. Future studies may consider the 
probability to miss the flight as a function of the arrival time and the inclusion of monetary costs in the utility function. 
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