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A B S T R A C T

Physiologically based kinetic (PBK) models in the 10 most common species of farm animals were identified
through an extensive literature search. This resulted in 39 PBK models, mostly for pharmaceuticals. The models
were critically assessed using the WHO criteria for model evaluation, i.e. 1) purpose, 2) structure and mathe-
matical representation, 3) computer implementation, 4) parameterisation, 5) performance, and 6) documenta-
tion. Overall, most models were calibrated and validated with published data (92% and 67% respectively) but
only a fraction of model codes were published along with the manuscript (28%) and local sensitivity analysis was
performed without considering global sensitivity analysis. Hence, the reliability of these PBK models is hard to
assess and their potential for use in chemical risk assessment is limited. In a risk assessment context, future PBK
models for farm animals should include a more generic and flexible model structure, use input parameters
independent on calibration and include assessment tools to assess model performance. Development and ap-
plication of PBK models for farm animal species would furthermore benefit from the setup of structured data-
bases providing data on physiological and chemical-specific parameters as well as enzyme expression and ac-
tivities to support the development of species-specific QIVIVE models.

1. Introduction

Chemical risk assessment in food and feed safety aims to set safe
levels of regulated compounds and contaminants to protect farm ani-
mals after exposure through feed, and to protect humans against carry
over and residues in animal products (e.g. meat, milk, eggs). Currently,
hazard and exposure metrics used in risk assessment for farm animal
species and humans are typically based on external exposure. Basing
such metrics on internal exposure provides opportunities to better ac-
count for interindividual and interspecies differences in physiology,
toxicokinetics and toxicity (Dorne and Fink-Gremmels, 2013).

PBK models integrate mathematical relationships that link key
physiological and anatomical parameters (e.g. blood flow, organ vo-
lumes) and biochemical parameters (e.g. partition coefficients, protein
binding), to dynamically predict absorption, distribution, metabolism
and excretion (ADME) processes of a chemical using differential mass
balance equations (WHO, 2010). Typically, PBK models consist of a
variable number of compartments representing different organs and

tissues (e.g. liver, kidney, gut, lung, and blood) and provide means to
simulate concentration-time profiles of chemicals and corresponding
metabolite(s) in these compartments (Bois et al., 2010; Chiu et al.,
2007) (Fig. 1). For this reason, PBK models are extensively applied in
the pharmaceutical industry in drug discovery and development (EMA,
2018; Jones and Rowland-Yeo, 2013). PBK models vary in complexity,
ranging from full PBK models where all of the distribution organs and
tissues are represented as separate perfused compartments to more
simplified PBK models in which tissues with similar kinetics are lumped
(Bois et al., 2010). While the simultaneous modelling of ADME pro-
cesses provides several advantages, complex PBK models have the
disadvantage of requiring many physiological and chemical-specific
data (Sager et al., 2015).

In literature, the term “physiologically based pharmacokinetic”
(PBPK) model is widely used. In the context of general chemical risk
assessment this term is not entirely correct (Clewell et al., 2008; Paini
et al., 2019). A more general term, such as PBK, covering the field of
pharmacokinetics (PK) as well toxicokinetics (TK), might be more
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appropriate. However, PBPK, PBTK, and PBK can be considered syno-
nyms of each other. Throughout this document, we will use the more
general term PBK model.

A recent survey across academia, industry and regulatory agencies
such as the European Food Safety Authority (EFSA), the European
Medicine Agency (EMA), the US Environmental Protection Agency (US
EPA), the US Food and Drug Administration (US FDA), and the
Organisation for Economic Co-operation and Development (OECD)
highlighted the importance of PBK models for regulatory risk assess-
ment (EFSA, 2014a; EFSA, 2014b; Paini et al., 2017). While the use of
PBK models in risk assessment is encouraged, there are also challenges,
such as the need for well-trained persons capable of model development
and to ensure model quality (Barton et al., 2007; Chiu et al., 2007; Tan
et al., 2018). The increasing use of PBK modelling in regulatory human
health risk assessment (HRA) has led to several guidance documents
facilitating good modelling practice and standardising their review,
acceptance and implementation (EMA, 2018; EPA, 2006; FDA, 2018;
WHO, 2010).

In the European Union, the chemical risk assessment for animal
health, including farm as well as companion animals, follows the same
principles as human health risk assessment (Alexander et al., 2012).
Main differences towards human health risk assessment are related to
species-specific and interspecies differences in kinetics, dose-dependent
toxicity and methodologies to estimate exposure to characterise the
chemical risk in each species (Dorne and Fink-Gremmels, 2013).

Furthermore, animal health risk assessment accounts for animal health
due to chemical exposure, as well as possible impacts on human health
due to transfer of chemicals into the food-chain (Alexander et al.,
2012). In the animal health and veterinary medicine area, several PBK
models have been developed in recent years, mostly for the prediction
of tissue residues and withdrawal intervals in farm animals (Henri et al.,
2017; Li et al., 2017; Zeng et al., 2017). While PBK models are relevant
for regulatory agencies that monitor chemical concentrations in animal
target tissues and animal products, e.g. meat, milk and eggs (Craigmill,
2003), as well as for the veterinary pharmaceutical industry, a specific
guidance document on their use in animal health risk assessment is
currently lacking.

A previous review on PBPK models for farm animal species focused
on their application in veterinary medicine (Lin et al., 2016a). How-
ever, several models specific for farm animals were not included and
the review did not assess the application potential of the PBK models for
risk assessment purposes. Therefore, the aim of the current paper is to
critically review existing PBK models for farm animals in order to de-
velop recommendations for their use in animal and human health risk
assessment. Existing models were identified through an extensive lit-
erature review and these models were characterised and assessed using
criteria set by WHO for practice in human PBK modelling (WHO, 2010).
Recommendations are proposed for the future development and appli-
cation of PBK models in farm animals in chemical risk assessment.

2. Materials and methods

2.1. Species selection

There are more than 40 domestic animal species, whereof 13 species
contribute to most of the world's food production or are of veterinary
relevance (Toutain et al., 2010). In Europe, cattle, sheep, swine,
chicken and salmonids are classified as major food-producing animals.
In contrast, other animals such as goat, horse, rabbit, deer/reindeer,
turkey, duck, goose, and non-salmonid fin fish species are classified as
minor food-producing animals (EMEA/CVMP, 2003). Based on this list
of food-producing animals in Europe, 10 species were selected for in-
clusion in this review, namely chicken, cattle, swine, sheep, goat, horse,
deer/reindeer, turkey, duck, and goose (Fig. 2). Fish species were ex-
cluded, since a review on PBK models in fish is available elsewhere
(Grech et al., 2017). Since the focus of this review is on farm animals,
test species used in human risk assessment, such as rabbit, mouse, rats
and companion animals (cat, dog) were excluded.

2.2. Search strategy

An extensive literature search (up to February 2019) was performed
in PubMed and Scopus to identify available PBK models for farm ani-
mals. Table 1 summarises the keywords applied. Peer reviewed pub-
lications in English were selected, with a focus on PBK modelling of
chemicals in the 10 species selected. Individual publications were then
assessed based on title and abstract, followed by further cross-referen-
cing of publications from the reference lists. In a second step, a grey
literature search was conducted by consulting websites of EFSA, US EPA
and the Dutch National Institute for Public Health and the Environ-
ment. Publications with a primary focus on preclinical studies for
human health were excluded.

2.3. Model description and assessment

The selected PBK models for farm animals were characterised and
assessed using the model features listed in guidance documents for the
evaluation and application of PBK models in HRA (EPA, 2006; WHO,
2010). We grouped these features in six categories: (1) purpose, (2)
structure and mathematical representation, (3) computer implementa-
tion, (4) parameterisation, (5) performance, and (6) documentation

Fig. 1. Scheme of a generic PBK model. Chemical uptake routes can be oral,
intravenous, inhalation, intramuscular, or subcutaneous. In this example, me-
tabolism is assumed to occur in the liver only (blue arrow). Elimination of the
chemical takes place via urinary excretion (kidney), egestion (gut lumen) and
exhalation (lung). Muscle, adipose tissue, and bone are included as storage
organs. The “Rest of body” compartment account for anatomically missing
organs. Other organs such as skin and spleen can be added as additional
compartments. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)
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(Table 2).

3. Model description

3.1. Purpose

Thirty-nine PBK models were identified through extensive literature
search, covering nine of the farm animal species included (Table 3).
Specifically, PBK models were available for cattle (n=10), swine
(n=17), chicken (n=6), sheep (n=1), goat (n=1), horse (n=1),
and turkey (n= 1) while two models included multiple poultry species,
i.e., chicken, goose, turkey and duck (Cortright et al., 2009;
MacLachlan, 2010). For deer and reindeer, no PBK models were found.
Most PBK models were developed for either juvenile or adult life stage,
with the exception of five models that included growth rates to simulate
lifetime exposure for cattle, swine and poultry (Henri et al., 2017;
Hoogenboom et al., 2007; MacLachlan, 2010; van Eijkeren et al., 1998;
Zeng et al., 2019) (Table 3). The vast majority of models were chemical-

specific and mostly developed for antibiotics and contaminants (e.g.,
melamine, PFOS) with the exception of four generic models developed
for lipophilic chemicals (Freijer et al., 1999; MacLachlan, 2009;
MacLachlan, 2010; van Eijkeren et al., 1998). The models were devel-
oped for specific scientific purposes, such as concentrations predictions
of a specific chemical in certain target tissues (e.g. liver, muscle) (Ap-
pendix S1).

3.2. Structure and mathematical description

All available publications provided a graphical representation of the
model structure, and 28 out of 37 articles provided mass balance
equations. The conceptual structures of the models ranged from two
compartments to ten compartments, showing a lack of harmonisation
across the published models. Model structures were mostly based on the
model purpose rather than on physiological differences between species
(Li et al., 2017; Lin et al., 2016b). PBK models with a focus on dis-
tribution of the metabolite had at least as many compartments for the
metabolite as for the parent compound (Huang et al., 2015; Yang et al.,
2014a). Furthermore, differences between model structures resulted
from a reduction in model complexity through “lumping” tissues with
similar blood flows (Buur et al., 2009), and from species-specific dif-
ferences such as the inclusion of a milk compartment for dairy cattle
(Leavens et al., 2014; Li et al., 2018) and an egg compartment for
chicken (Hekman and Schefferlie, 2011; MacLachlan, 2010; Schefferlie
and Hekman, 2016).

In cattle, the simplest model was structured into two compartments
(carcass and serum) (van Asselt et al., 2013) and more complex models
split liver, adipose tissue, and blood into separate compartments
lumping the remaining tissue as richly and poorly perfused (Derks et al.,
1994; Freijer et al., 1999; Hoogenboom et al., 2010; van Eijkeren et al.,
1998). In addition to the compartments cited above, Leavens et al.
(2014) published a comprehensive PBK model with separate compart-
ments for blood, liver, adipose tissue, kidney, muscle, lung, and richly
and poorly perfused tissue. Three models included all compartments
listed above, while all remaining tissues were aggregated in a “rest of
the body” lumped compartment, including richly and poorly perfused
tissues (Achenbach, 2000; Li et al., 2017; Lin et al., 2016b; MacLachlan,
2009). Another model included the gastrointestinal tract as a single
compartment (Lin et al., 2016b), and four models included milk/
mammary tissue compartments to take into account secretion from
plasma into milk for dairy lactating cattle (Derks et al., 1994; Leavens
et al., 2014; Li et al., 2018; MacLachlan, 2009). Finally, two models
accounted for metabolite formation through the inclusion of metabo-
lism rates (Leavens et al., 2014; Lin et al., 2016b).

For swine, 17 PBK models were available, with one model struc-
tured into two compartments (carcass, fat) (Hoogenboom et al., 2007)
and four models consisting of three compartments (liver, blood, rest of
the body) or as a lumped distinction between richly and poorly perfused
tissues (Buur et al., 2009; Yang et al., 2014a; Yang et al., 2015b; Zeng
et al., 2017). Other models included liver, blood, and kidney (Buur
et al., 2008), and a compartment for the rest of the body, or compart-
ments for muscle and adipose tissue (Buur et al., 2005; Buur et al.,
2006; Huang et al., 2015; Qian et al., 2017; Yang et al., 2012; Zhu et al.,
2017). Four models included the lung as an additional compartment
(Chen and Seng, 2012; Li et al., 2017; Lin et al., 2016b; Yuan et al.,
2011), whereas Qian et al. (2017) divided the lung in three sub-com-
partments. The anatomical most detailed models contained 8–10 com-
partments (Chen and Seng, 2012; Sjögren et al., 2012; Yuan et al.,
2011). In terms of exposure route, nine PBK models integrated oral
dosing modules consisting of either stomach and intestine or intestine
only (Buur et al., 2008; Buur et al., 2006; Huang et al., 2015; Lin et al.,
2016b; Yang et al., 2014a; Yang et al., 2012; Yang et al., 2015b; Zeng
et al., 2017; Zhu et al., 2017). In contrast, Yang et al. (2012) and Qian
et al. (2017) included a separate compartment for intramuscular in-
jection. With regards to metabolism, nine models integrated metabolite

Fig. 2. Major food producing animals: cattle (milk, meat), sheep (meat, milk),
swine (meat), and chicken (meat, eggs). Minor food-producing animals: goat
(milk, meat), deer (meat), horse (meat), avian species (meat, eggs).

Table 1
Keywords identified for extensive literature search.

Category Keywords

General keywords < chicken>
<cattle>
<pig OR swine>
< sheep>
<goat>
<horse>
<deer OR reindeer>
< turkey>
<goose>
<duck>

More complex tools and methods and full
biologically-based models

< pbpk OR pbtk>
<physiologically based kinetic
model>
<physiologically based
pharmacokinetic model>
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formation through implementing metabolism rates. The number of
compartments for the major metabolite was similar to the parent
compound ranging from three to seven compartments. In two models,
the metabolite was modelled using a more complex PBK model than
that for the parent compound (Yang et al., 2014a; Yang et al., 2015b).

For chicken, most PBK models had similar compartment numbers,
albeit with some variations. Exception to this, are two models with two
compartments (blood, fat/egg) (Hekman and Schefferlie, 2011; van
Eijkeren et al., 2006). In four models liver, blood, (leg) muscle and
kidney was included (Cortright et al., 2009; Yang et al., 2015a; Yang
et al., 2014b; Zeng et al., 2019), a lung compartment in two models
(Yang et al., 2015a; Yang et al., 2014b), and a compartment for adipose
tissue in four models (Cortright et al., 2009; Henri et al., 2017;
MacLachlan, 2010; Zeng et al., 2019). Oral dosing modules consisting
mainly of intestine, and sometimes including crop, were only im-
plemented in four models (Henri et al., 2017; Yang et al., 2015a; Yang
et al., 2014b; Zeng et al., 2019). MacLachlan (2010) incorporated egg
formation in a PBK model to account for partitioning from plasma into
eggs, while Hekman and Schefferlie (2011) split the egg into yolk and
white compartment. Metabolite formation was included in a model
describing the metabolism of monensin via Michaelis-Menten kinetics
(Henri et al., 2017). Metabolite formation for T-2 toxins was described
by a metabolism rate (Zeng et al., 2019). For other avian species
(turkey, duck, goose), two PBK models were identified (Cortright et al.,
2009; MacLachlan, 2010) with identical structures to those described
for chicken. One model was specifically developed for turkey, con-
sisting of four compartments, i.e. blood, liver, gastrointestinal tract, and
a compartment to lump the rest of the body (Pollet et al., 1985).

For sheep, goat, and horse, only one model per species was avail-
able. The PBK model for sheep consisted of six compartments, i.e.,
adipose tissue, muscle, kidney, liver, blood and a compartment to lump
the rest of the body. An intramuscular injection site was included as a
specific absorption compartment (Craigmill, 2003). In contrast, the
goat PBK model contained eight compartments, i.e., lung, adipose
tissue, muscle, liver, kidney, blood, richly perfused tissue, and poorly
perfused tissue (Leavens et al., 2012). The PBK model for horse in-
cluded four compartments, i.e., liver, blood, gastro intestinal circula-
tory system, and a compartment lumping the rest of the body (Abbiati
et al., 2017). This model also included metabolite formation and
elimination of tramadol through hepatic clearance.

3.3. Computer implementation

Most PBK models were written in the Advanced Continuous
Simulation Language (ACSL, 76%), a computer language designed for
modelling and evaluating the performance of continuous systems de-
scribed by time-dependent, nonlinear differential equations (Mitchell
and Gauthier Associates, 1981). 26% used other software (Berkley
Madonna, Excel). For 18% of models, information on computer im-
plementation was lacking.

3.4. Parameterisation

Parameters incorporated in PBK models can be divided into phy-
siological parameter (species-specific, e.g. body weight), chemical
parameters (chemical-specific, e.g. molecular weight), and biochemical
parameters (species- and chemical-specific, e.g. blood-tissue parti-
tioning, protein binding, clearance, absorption). Physiological para-
meters are dependent on the organisms modelled, e.g. small- or large-
sized animals, and are typically obtained from literature or the ex-
periment that is being simulated. Data on interindividual variation in
physiological parameters are needed to parameterise a typical in-
dividual for deterministic analyses (e.g., worst-case) or to perform
probabilistic analyses describing the variation in the population.

For most models, physiological and biochemical parameter values
were either derived for the species of interest from the literature or
using in vivo experiments conducted and described in the same paper
(Appendix S1). From the 29 PBK models available, 90% determined
some of the biochemical parameters, e.g. clearance and absorption, by
means of calibration, i.e. fitting model predictions to experimental data.
van Eijkeren et al. (1998) provided a quantitative structure activity
relationship (QSAR) to derive blood-tissue partition coefficient, and
Buur et al. (2008) and Yuan et al. (2011) extrapolated biochemical
parameter values form rats to pigs.

3.5. Performance

From the 39 PBK models available, 67% were validated against an
external dataset independent from the calibration dataset. 31% of the
PBK model applications included interindividual variability in bio-
chemical parameter values (blood-tissue partition coefficients,

Table 2
Model features used to characterize and assess PBK models.

Category Model feature

Purpose - What is the model purpose?
- What is the included species?
- What are the included chemicals?
- What age(s), life stage(s), sex, exposure window(s) is included?
- What exposure route(s), and dose metric(s) is/are modelled?
- What target organs or whole body?

Structure and mathematical representation - Is a graphical representation of the model available?
- What is the complexity in terms of number of compartments?
- Are steady-state or differential calculations used?
- Are the mass balance (ADME-) equations given?

Computer implementation - What software (package) is used for the implementation?
Parameterisation - Are physiological parameter values derived from experiments, literature, or predicted?

- Are physicochemical parameter values derived from experiments, literature, or predicted?
- Are biochemical parameter values derived from experiments, literature, or predicted?
- Has the model been calibrated with a dataset?
- Are the calibration data adequately reported?

Model evaluation of predictive ability - Has the model been validated against external data (i.e., not those used for calibration)?
- Are the validation data adequately reported?
- Is a variability analysis performed?
- Is a sensitivity analysis performed?
- Is a visual inspection of the adequacy of the model predictions possible (e.g., via concentration-time plots?)

Model documentation - Has the model been peer-reviewed?
- Are model codes and syntax available?
- Is the model publicly available?

L.S. Lautz, et al. Toxicology in Vitro 60 (2019) 61–70
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clearance, absorption rate), while some also included interindividual
variability in physiological parameters (Henri et al., 2017; Li et al.,
2017; Zeng et al., 2017; Zeng et al., 2019). Local sensitivity analysis
was performed for 54% of the models to assess the impact of variations
in a single input parameter on the model output. A global sensitivity
analysis investigating the interactions and the impact of simultaneous
variations in input parameters is lacking for all models.

3.6. Documentation

Most models were published in peer-reviewed literature (90%),
while others were available in reports only. Model codes were pub-
lished for 28% of the models.

4. Model assessment

In the previous section, an overview of the 39 PBK models for farm
animals identified in from the extensive literature was presented
(Table 3). In total, four PBK models were fully described and char-
acterised according to the WHO guidance document (Henri et al., 2017;
Li et al., 2017; Zeng et al., 2017), whereas all other models were
missing information. The aim of the present section is to assess their
potential usefulness for application in chemical risk assessment based
on the model features presented in Tables 2 and 3.

4.1. Scope and purpose of the model

None of the reviewed farm animal models were developed and ap-
plied to a risk assessment context for either animal or human health
purposes. Instead, most models were developed for a specific scientific
purpose, such as the predicting the concentrations of a specific chemical
in certain target tissues (e.g. liver or muscle). Consequently, these
models were unique, each tailored for a specific purpose, often focusing
on one particular substance in one particular species. These models can
be useful for substance- and species-specific risk assessments, but risk
assessors in practice have to deal with a diversity of substances and
species. Within this context, the development and application of sepa-
rate PBK models for each unique substance-species combination is in-
efficient and practically unfeasible (Punt et al., 2011). Risk assessors
need more generic PBK models that can simulate ADME processes for
multiple substances, and ideally also for multiple farm animal species.
The four models developed for lipophilic substances (Freijer et al.,
1999; MacLachlan, 2009; MacLachlan, 2010; van Eijkeren et al., 1998)
constitute a first step in the right direction since these models can si-
mulate multiple substances in one species. Grech et al. (2019) went one
step further by publishing an open source generic PBK model for four
fish species (rainbow trout, fathead minnow, zebra fish and European
stickleback) together with an anatomical and physiological database
and nine case studies to validate the models.

4.2. Model structure and mathematical description of ADME

Although the PBK models reviewed have many commonalities, each
model has its own specific structure, often reflecting the uniqueness of
the substance-species combination under study. The simplest model has
two compartments (van Asselt et al., 2013), whereas the most extensive
model has ten (Chen and Seng, 2012). As noted in the previous section,
risk assessors require generic PBK models which can be applied to
multiple substances and species. This triggers the question how these
generic models should be structured. A generic PBK model should be
sufficiently detailed to capture the diversity of processes relevant to a
multitude of chemicals and the diversity of organs that may potentially
be of interest to risk assessors. Liver, intestine and kidney should be
included as compartments because of their metabolic and excretory
functions. Muscle, adipose tissue, bone, milk and/or eggs should be
included because of their role as storage organs, which is important for

analysing tissue residues in food and feed safety. In addition, organs
critical to the oral route or inhalation should also be included, i.e.
gastrointestinal tract and lung respectively (EPA, 2006).

In terms of structure, some compartments are only relevant to
specific species because of specific traits including crop and egg com-
partment for birds and multiple stomachs for ruminants. In addition,
compartments can also be substance-specific including the subdivision
of the lung compartment into bronchioles, alveolae and mucosa to si-
mulate the so-called washin–washout principle for polar chemicals after
inhalation (Johanson, 1991). Overall, these species- and substance-
specific adaptations provide a challenge for generic PBK models and an
option would be to develop a flexible modelling structure that can be
adjusted based on the species and substances of interest. The basic
structure would then include compartments common to all species, e.g.
lungs, stomach, intestines, liver, kidney, bone and muscle, while spe-
cific compartments could be implemented as optional, i.e. switched on
or off to accommodate species- or substance-specific requirements.

4.3. Computer implementation

Application of PBK models in a risk assessment context for either
regulatory products of contaminants requires transparency and re-
producibility. These criteria can partially be met through im-
plementation of the model in an open source environment. However,
none of the reviewed models were implemented as such. The most
widely used computer language ACSL is of commercial nature and is no
longer available. Another type of software is Berkeley-Madonna, which
is non-commercial proprietary shareware but is not open source, since a
license is necessary for full access. A more promising trend is the de-
velopment of PBK models in R (Wambaugh et al., 2015). The R lan-
guage and environment was originally developed for statistical com-
puting and graphics, but is increasingly being used for dynamic
modelling. This language is freely available under the terms of the GNU
General Public License in source code form (Free Software Foundation,
2007). It compiles and runs on a variety of platforms, including UNIX,
Windows and MacOS. Recently, a methodology was published for
converting existing PBK models that were initially developed in acslX,
Berkeley Madonna to R (Lin et al., 2017).

4.4. Parametrisation

PBK models applied in chemical risk assessment must be para-
meterised transparently since the selection of input values have an
important impact on the results. The selected physiological parameters
should reflect the population of interest. This is highly relevant for farm
animals, since the variation in their physiology can be much larger
compared with humans. For example, the bodyweight of pigs can vary
between 100 kg and 300 kg depending on the breed. It is therefore
important that risk assessment includes a detailed and motivated de-
scription of the population of interest, and considers how variation in
physiology will be dealt with. For human physiology, a reference da-
taset has been compiled to parameterise PBK models (Brown et al.,
1997). Such datasets are largely lacking for farm animal species. Ad-hoc
parameterisation is inefficient and can potentially lead to incon-
sistencies between specific risk assessments. Hence, it is recommended
to develop peer reviewed reference datasets reporting physiologically
parameters for farm animal species.

In a risk assessment context, calibration of parameters such as
clearance and absorption will rarely be feasible because experimental
data on the species of interest are generally lacking, particularly for
new substances. In such cases, extrapolation across chemicals and
species may be an option, e.g. using QSAR-based approaches and al-
lometric scaling (Peyret and Krishnan, 2011; Sharma and McNeill,
2009). Although these methods can provide valuable input in data-poor
situations, uncertainty in prediction of kinetic parameters may be high
due to potential interspecies differences in metabolic and transporter
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activities. An alternative is to use in vitro data, e.g. for the prediction of
metabolism. Unfortunately, specific in vitro systems for farm animal
species are rarely available and the quantitative extrapolation of in
vitro results to in vivo conditions (QIVIVE) remains a challenge.
Therefore, data collection on abundance and expression of CYP en-
zymes and transporters in a variety of farm animal species can support
QIVIVE and the parameterisation of ADME processes in PBK models.
Insight in the quantitative differences in metabolism for key farm an-
imal species will allow to include relative expression and activity of
phase I (cytochrome P-450 isoforms, esterases, alcohol dehydrogenase
etc.), phase II (UDP-glucuronyltransferases, glutathione-s-transferases,
glycine conjugation, methyl-transferases etc.) and transporters (P-gly-
coprotein, organic anion transporter proteins etc.) (Dorne and Fink-
Gremmels, 2013; Fink-Gremmels, 2008; Giantin et al., 2008; Gusson
et al., 2006; Martinez et al., 2018). This will help to address three major
challenges in animal risk assessment: 1. Moving away from default test
species (rat, rabbit, mice, dog) by enabling species-specific assessments
for farm animals and other animal species (e.g., companion animals
such as cats and dogs), 2. Reducing and replacing animal testing, and
(3) future development of quantitative in vitro in vivo extrapolation
models.

4.5. Model performance

Before PBK models can be applied in a risk assessment context, it is
essential to assess their performance (EFSA, 2014b). Model predictions
should be sufficiently accurate to support risk assessment or regulatory
decision to be taken. The most obvious way to assess model perfor-
mance is by comparing predicted internal concentrations with mea-
sured ones under the same exposure scenario. Unfortunately, measured
data are rarely available for the substance and scenario under assess-
ment since this would make model application redundant. Model per-
formance should therefore be assessed based on other criteria, such as
the performance for other substances and scenarios, biological plausi-
bility, and a review of the model code. Variability, sensitivity and un-
certainty analysis can further support the assessment of model perfor-
mance. Uncertainty analysis should not only focus on the propagation
of input uncertainties, but also on uncertainties underlying model
equations and assumptions, e.g. the homogeneous distribution of sub-
stances within compartments and the estimation of absorption or par-
titioning coefficients based on Kow (Ragas et al., 1999).

In the context of the review, it is difficult to assess the performance
of the reviewed models since: 1) only local sensitivity analysis was
performed, 2) model validation was not performed systematically, and
3) codes for computer implementation were rarely published (Leavens
et al., 2014; MacLachlan, 2009; van Eijkeren et al., 1998). Local sen-
sitivity analysis does not allow to investigate interactions and si-
multaneous variations in input parameters and may give misleading
results (Hsieh et al., 2018). In terms of good modelling practice, global
sensitivity analysis has been demonstrated to be much more robust than
local sensitivity analysis, providing means to assess the variation of all
parameters simultaneously, their interactions and quantifying the re-
lative contribution of each parameter to the overall sensitivity of the
model (Hsieh et al., 2018; McNally et al., 2011; McNally et al., 2018).

4.6. Model documentation

Only a small part of the reviewed PBK models were appropriately
documented, i.e. published in peer-reviewed literature and publicly
available (model and underlying code). Appropriate documentation
contributes to transparency and reproducibility; two essential criteria
for application of PBK models in a regulatory context. It is a pre-
requisite for well-informed use of the models (McLanahan et al., 2012).

5. Conclusions and recommendations

The available PBK models for farm animal species have generally
been developed for specific purposes, often focusing on one particular
substance in a specific species. This approach of developing unique
models for each substance and each species is less suitable for a risk
assessment context because a risk assessor has to deal with multiple
regulated substances and a diversity of species. Most models also do not
meet the criteria for application in risk assessment, such as (1) im-
plementation in an open source environment, (2) parameterisation in
the absence of calibration data, (3) assessment of model performance in
the absence of validation data (e.g. uncertainty analysis), and (4) ap-
propriate model documentation. Future PBK models for farm animals to
be applied in a risk assessment context should therefore:

1) Have a generic and flexible model structure covering all relevant
target organs;

2) Be published in peer-reviewed literature, implemented in an open
source environment and publicly available (model & code);

3) Use input data that are not dependent on calibration, preferably
empirical data, or otherwise data estimated using techniques such as
allometric scaling, QSAR approaches and QVIVIVE, provided the
limitations of these techniques are accounted for;

4) Include tools to assess model performance, e.g. variability and un-
certainty analyses.

Development and application of PBK models for farm animal species
would furthermore benefit from the setup of structured databases
providing data on physiological parameters (e.g., body weight, organ
weights, and organ blood flow), ADME and chemical-specific para-
meters as well as data on enzyme expression and activities in farm
animal species to support the development of species-specific QIVIVE
models.
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