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Arturas Baziukas-Razinkovas2

1 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy, 2 Marine
Research Institute, University of Klaipeda, Klaipeda, Lithuania, 3 Optical Remote Sensing Group, CNR-IREA, Milan, Italy,
4 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy, 5 Department of Biology and Center
for Environmental Studies, Virginia Commonwealth University, Richmond, VA, United States

The Curonian Lagoon is Europe’s largest lagoon and one of the most seriously impacted
by harmful blooms of cyanobacteria. Intensive studies over the past 20 years have
allowed us to identify the major drivers determining the composition and spatial extent
of hyperblooms in this system. We summarize and discuss the main outcomes of
these studies and provide an updated, conceptual scheme of the multiple interactions
between climatic and hydrologic factors, and their influence on internal and external
processes that promote cyanobacterial blooms. Retrospective analysis of remote
sensed images demonstrated the variability of blooms in terms of timing, extension and
intensity, suggesting that they occur only under specific circumstances. Monthly analysis
of nutrient loads and stoichiometry from the principal tributary (Nemunas River) revealed
large interannual differences in the delivery of key elements, but summer months were
always characterized by a strong dissolved inorganic N (and Si) limitation, that depresses
diatoms and favors the dominance of cyanobacteria. Cyanobacteria blooms occurred
during high water temperatures, long water residence time and low-wind conditions. The
blooms induce transient (night-time) hypoxia, which stimulates the release of iron-bound
P, producing a positive feedback for blooms of N-fixing cyanobacteria. Consumer-
mediated nutrient recycling by dreissenid mussels, chironomid larvae, cyprinids and
large bird colonies, may also affect P availability, but their role as drivers of cyanobacteria
blooms is understudied.

Keywords: Curonian Lagoon, nitrogen, phosphorus, silica, fluxes, stoichiometry, remote sensing, cyanobacteria

INTRODUCTION

Human activities impact biogeochemical cycles, biological communities and ecosystem functioning
of inland and coastal waters on a global scale (Bernot and Dodds, 2005; Muhlolland et al., 2008;
Paerl, 2009; Han and Allan, 2012). Estuaries and lagoons have become enriched with nutrients
due to wastewater discharge, aquaculture, and agriculture (Galloway et al., 2008; Paerl, 2009).
Excess nutrients result in blooms, where algal biomass accumulates and exceeds the mineralization
capacity of the heterotrophic community (Valiela et al., 1997). In fresh-brackish waters, algal
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blooms may include one or more types of harmful cyanobacteria,
resulting in the presence of cyanotoxins. The development of
hypoxic or anoxic conditions can lead to die-offs of fish and
benthic organisms (Norkko and Bonsdorff, 1996; Ye et al.,
2011). In addition, changes in food web structure brought about
by invasive species may accelerate eutrophication by reducing
grazing pressure and allowing the proliferation of algae, including
toxic forms (Carpenter et al., 1998; Rabalais et al., 2002). The
alteration of nutrient stoichiometry (sensu Redfield) and changes
in climate (e.g., warmer temperatures, precipitation timing and
intensity) have also received attention as potential drivers of
harmful algal blooms (Cloern, 2001; Yunev et al., 2007; Moore
et al., 2008; Howarth et al., 2011). In this review, we analyze the
drivers of algal blooms in the Curonian Lagoon, a hypereutrophic
freshwater estuary. We discuss the relevance of nutrient loads and
their stoichiometry on algal blooms, we analyze how algal blooms
affect the ecosystem functioning (e.g., nutrient mass balances)
and provide a mechanistic interpretation for positive feedbacks
promoting the dominance of cyanobacteria.

THE CURONIAN LAGOON: GENERAL
FEATURES OF A HYPERTROPHIC
FRESHWATER ESTUARY

The Curonian Lagoon is a large (surface area = 1500 km2),
shallow (mean depth = 3.5 m) waterbody located along the
south-eastern portion of the Baltic Sea (Figure 1). The Curonian
Spit (a UNESCO heritage site) divides the lagoon from the
Baltic Sea. The main source of water and nutrients is the
Nemunas River, although the lagoon also exchanges water with
the Baltic Sea via the narrow Klaipeda Strait (Vybernaite-
Lubiene et al., 2017). Exchange of water through the strait is
episodic; during wind-driven forcing events, the salinity of the
lagoon rises to ∼7. The principal tributary (Nemunas River)
bisects the lagoon such that the northern lagoon is subject to
greater fluvial (and marine) influence, whereas the southern
portion of the lagoon is more lentic, and has a longer water
residence time (Umgiesser et al., 2016). The lagoon has a
relatively small hydrologic loading factor (ratio of watershed area
to surface area), which makes this system similar to a flow-
through reactor, and provides an opportunity for mass balance
studies (Bresciani et al., 2012; Zilius et al., 2014; Vybernaite-
Lubiene et al., 2017). Prior work by our multidisciplinary and
multinational team has included assessment of nutrient loads
from the Nemunas watershed, application of hydraulic models
to simulate water circulation in response to changing discharge
and wind conditions, investigation of seasonal dynamics of
biogeochemical cycles, and use of satellite remote sensing to
monitor phytoplankton blooms (Vaičiutė et al., 2015; Petkuviene
et al., 2016; Umgiesser et al., 2016; Vybernaite-Lubiene et al.,
2017, 2018). Our work at this site has also benefitted from long-
term monitoring carried out by the Marine Research Department
of the Lithuanian Ministry of Environment.

Data arising from these efforts have helped to guide
management of the Curonian Lagoon via a number of national
and international programs (HELCOM Baltic Sea Action Plan,

European Water Framework Directive, various habitat and bird
conservation initiatives). Despite the intensive studies carried
out in the lagoon, there remains the question whether and how
cyanobacteria blooms can be mitigated. These blooms extend
over large areas of the lagoon and negatively impact ecosystem
functions, including tourism and recreational activities, as well as
local fisheries (Giardino et al., 2010; Belykh et al., 2013; Šulčius
et al., 2015). The use of science for informing management
decisions is dependent upon the interpretation and integration
of available data, which is the focus of this paper.

SEASONAL SUCCESSION OF
PHYTOPLANKTON

Detailed studies of plankton communities in the Curonian
Lagoon have examined seasonal patterns, species interactions,
production of cyanotoxins and the role of phytoplankton in food
web energetics (e.g., Pilkaitytė and Razinkovas, 2006, Razinkovas,
2007; Lesutienė et al., 2014; Bukaveckas et al., 2017). Diatoms
dominate the spring phytoplankton community, after which,
following a short clear-water phase, cyanobacteria biomass
increases (Gasiunaitė et al., 2005; Pilkaitytė and Razinkovas,
2007). Fresh-brackish species dominate the phytoplankton
community of the Curonian Lagoon. Stephanodiscus hantzschii,
Diatoma tenuis, Aulacoseira islandica, Asterionella formosa are
the dominant diatom species during spring while the N-fixing
cyanobacteria Aphanizomenon flosaquae, Dolichospermum affine,
D. flosaquae, as well as other cyanobacteria such as Microcystis
aeruginosa, M. wesenbergii, M. viridis, and Planktothrix agardhii
contribute to the summer biomass peak (Pilkaitytė and
Razinkovas, 2007; Gasiunaitė et al., 2008). According to long-
term monitoring data (2001–2012), monthly average chlorophyll
a (chl-a) concentrations reach 47 ± 14 mg m−3 during the
spring diatom bloom and 96 ± 56 mg m−3 during the summer
bloom (Marine Research Department of the Lithuanian Ministry
of Environment).

WIND EFFECTS ON ALGAL BLOOM
DEVELOPMENT

Algal blooms in the Curonian Lagoon have been tracked since
the 1930’s via synoptic sampling (Schmidt-Ries, 1940). More
recently, satellite remote sensing has substantially improved our
ability to track the spatial and temporal dynamics of bloom
events and draw links to local weather conditions. The first
attempt to map algal blooms in the Curonian Lagoon utilized
the MEdium Resolution Imaging Spectrometer (MERIS) on
board the Envisat-1 satellite (Giardino et al., 2010; Bresciani
et al., 2012; Vaičiutė et al., 2015). The combination of high
spatial resolution (300 m) and short revisit time (2–3 days)
greatly enhanced our ability to map chl-a. More recently,
the Operational Land Imager (OLI, on board Landsat-8) and
Multispectral Instrument (MSI, on board Sentinel-2A/B) have
further enhanced spatial resolution (10–30 m) and allowed us
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FIGURE 1 | Maps of the Nemunas River watershed (right) and the Lithuanian part of the Curonian Lagoon (left). The lagoon map includes water sampling stations at
the lagoon inlet and outlet, and the main sediment sampling sites located at the confined muddy and transitional sandy areas. Color photos show the Curonian
Lagoon during a summer cyanobacteria bloom.

to investigate the patchy distribution of cyanobacteria blooms
(INFORM, 2017).

Results based on a large number of images from 2004 to 2016
revealed temporal variability and small-scale spatial patchiness
of chl-a (Bresciani et al., 2012, 2014; Vaičiutė et al., 2015).
The southern part of the lagoon exhibited high chl-a (up to
500 mg m−3) while the northern areas were characterized by
lower values (∼50 mg m−3) (Bresciani et al., 2012; Figure 2).
Differences between the northern and southern portions of the
lagoon were documented by earlier studies (Olenina, 1998; Krevs
et al., 2007). However, the use of satellite images allowed us
to identify hot spots of chl-a (up to 400 mg m−3) and the
presence of surface scums (e.g., Bresciani et al., 2014; Figure 2).
Highest concentrations were coincident with prevailing wind
conditions, suggesting that wind speed and direction was a
significant driver for spatial distribution of positively buoyant
cyanobacteria (Bresciani et al., 2014).

Wind speed affects not only the spatial distribution of
cyanobacteria, but also influences water column mixing. Wind
speeds less than 2 m s−1 are common and allow for the
development of transient (daytime) thermal gradients within
the water column (Zilius et al., 2014). The lagoon, though
shallow, is relatively turbid and it is thought that stagnant
conditions associated with low wind allow positively buoyant
cyanobacteria to obtain favorable, near-surface light conditions.
The combination of remote sensing, in situ biogeochemical
studies, and local meteorological data allowed us to investigate
these linkages over large spatial scales. Measurements of benthic
and pelagic oxygen metabolism along with spatial patterns of
MERIS-derived chl-a showed that 60–95% of the area of the

lagoon was vulnerable to transient hypoxia when blooms coincide
with calm conditions (Zilius et al., 2014).

HYDRODYNAMIC FACTORS AS
DRIVERS OF BLOOMS

Freshwater inputs to the lagoon are dominated by the Nemunas
River, which has an annual average discharge of 21.8 km3, and
accounts for 96% of total inputs (Jakimavičius and Kriaučiunienė,
2013). The Nemunas River discharges into the central part of
lagoon, dividing the system in a northern and a southern region
that differ in water renewal time (Umgiesser et al., 2016). The
northern part of the lagoon is characterized by strong riverine
influence and short renewal time ( < 80 days), which result
in limited accumulation of suspended matter (Ferrarin et al.,
2008; Remeikaitė-Nikienė et al., 2016). The southern part of
the lagoon has a longer water residence time ( > 190 days)
with minimal fluvial influence. The latest efforts to analyze the
water exchange within the Curonian Lagoon (Umgiesser et al.,
2016) revealed different seasonal patterns of residence time,
primarily driven by changes in hydrographic forcing by the
Nemunas River. During elevated spring discharge, the entire
lagoon is strongly flushed by Nemunas River. During summer,
river discharge decreases, resulting in increased water residence
time, particularly in the southern lagoon. Summer stagnation
has implications for water temperature, stratification, nutrient
availability and stoichiometry, and phytoplankton abundance
and composition. In summer, wind forcing appears to be the
most important factor influencing water column mixing and
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FIGURE 2 | Maps of Chl-a concentrations in the Curonian Lagoon from MERIS images (A) and cyanobacteria surface accumulations as retrieved by Landsat-8 OLI
and Sentinel-2 MSI during June-September 2013-2016 (B).

exchange between the southern and the northern part of the
lagoon (Umgiesser et al., 2016).

NUTRIENT LOADS AND THEIR
ECOLOGICAL STOICHIOMETRY

A study coupling the Curonian Lagoon with its watershed
was started in 2012 to better characterize the timing of
nutrient inputs and their stoichiometry. From 2012, on at
least a monthly basis and more frequent (weekly) during high
discharge periods, discharge and water chemistry (including
all dissolved and particulate forms of N, Si, and P ) were
monitored near the inflow of the Nemunas River to the lagoon
(Vybernaite-Lubiene et al., 2017; Figure 1). Discharge and
nutrient concentrations displayed strong seasonality. Nitrate and
reactive Si concentrations decreased by two orders of magnitude
from spring to summer (e.g., NO3

− from > 300 µM to < 1,
SiO2 from > 200 to < 1 µM) while reactive P concentrations
showed comparatively smaller changes (from 0.2 to 4 µM). These
seasonal patterns resulted in reduced DIN:DSi and DIN:DIP
ratios, which shift the lagoon from an excess of N and Si
in colder months, to P excess (DIN:DIP < 16) in warmer
months (Figure 3). These findings support the hypothesis that
cyanobacterial blooms are favored during summer by the limited

FIGURE 3 | The stoichiometric DIN:DIP and DIN:DSi ratios during 2012–2016
at the Nemunas River gaging station. Dashed lines indicate the theoretical
Redfield ratio (DIN:DSi = 16:15 and DIN:DIP = 16:1). Averages ± standard
deviations (n = 6) are reported.

N and Si supply via riverine inputs (Pilkaitytė and Razinkovas,
2007).

Our analyses of nutrient loads showed that recent (2012–
2016) N export from the Nemunas River basin is similar to
historical data (1986–2002), whereas P loads have declined by
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nearly 60 % as a result of sewage treatment plant improvements
(Vybernaite-Lubiene et al., 2018). Despite reductions in P loads,
the lagoon remains imbalanced with an excess of P relative to N,
thereby favoring the growth of N-fixing cyanobacteria. Further
P reductions are needed to promote- limitation or co- limitation
and thereby diminish the dominance of cyanobacteria. It is also
important to stress that despite strong N limitation in the lagoon,
hyperblooms of cyanobacteria do not occur every summer due to
the influence of other factors that regulate blooms.

SEDIMENTS AND BENTHIC PROCESSES
AS DRIVERS OF BLOOMS

The distribution of sediment types in the Curonian Lagoon
is determined by hydrodynamic factors and by contributions
from autochthonous and allochthonous materials (Pustelnikovas,
1994; Ferrarin et al., 2008). Curonian Lagoon sediments include
a broad spectrum of deposits, from sand-dominated in the
northern (riverine-influenced) sector to silt-dominated in the
southern (more lentic) area (Trimonis et al., 2003). Declines in
external (riverine) loads during the transition from spring to
summer enhances the importance of internal recycling from the
benthic compartment as a nutrient source for pelagic primary
production. Studies of sedimentary processes revealed a shift in
dominant microbial processes and benthic fluxes from spring
to summer (Zilius et al., 2012, 2014; Petkuviene et al., 2016).
For example, net N2 production suggests the dominance of
denitrification over N-fixation during spring; however N2 fluxes
are reversed during summer, suggesting net N import to the
benthic compartment (Zilius et al., 2018).

Since 2009, oxygen penetration depth, total and diffusive
sedimentary oxygen demand, pore water chemical environments,
sedimentary pools and benthic fluxes were measured or
calculated at sites representative of dominant sedimentary
environments including littoral, pelagic transitional and confined
zones (Zilius et al., 2012; Figure 1). In this turbid system,
benthic photosynthesis was measurable only in shallow littoral
illuminated sediments (∼1 m depth) representing a minor
fraction (5%) of the total lagoon surface (Benelli et al., 2018).
Here, benthic algae oxidize the upper sediment layer and
efficiently retain nutrients, thereby impeding regeneration to the
water column (Zilius et al., 2012; Benelli et al., 2018). Deeper sites
were always heterotrophic and their seasonal oxygen metabolism
and nutrient regeneration was driven by water temperature
and phytoplankton blooms; recently settled fresh phytoplankton
resulted in significantly higher oxygen uptake, limited oxygen
penetration in sediments ( < 1 mm), and high rates of anaerobic
to aerobic metabolism (Zilius et al., 2012, 2016).

The mechanisms underlying P release from sediments were
analyzed in detail, as they contribute to lower inorganic DIN:DIP
ratio in the water column and favor cyanobacteria (Zilius et al.,
2014, 2015, 2016; Petkuviene et al., 2016). The distribution of
sedimentary pools of P, Fe, Mn and S in the Curonian Lagoon
was related to riverine influence; sandy sediments adjacent the
Nemunas delta were oxidized and have a large geochemical buffer
capacity against the effects of anoxia, with limited accumulation

of free sulfide (Petkuviene et al., 2016). Muddy areas along the
western and southern portion of the lagoon had chemically
reduced sediments where the reduction of iron may result
in large P release (Petkuviene et al., 2016). In manipulative
experimental studies, simulated deposition of phytoplankton
material, primarily composed of cyanobacteria, resulted in an
increase of dissimilative nitrate reduction over denitrification and
large methane production, but with limited reactive P release
(Zilius et al., 2016). Experimental manipulations of intact cores,
targeting short-term effects of anoxia, revealed that pools of
detritial Ca bound P ( > 70 % of inorganic P) and oxidized
Fe and Mn, prevent or buffer redox-dependent reactive P
release from sediments (Zilius et al., 2015). However, seasonal
measurements of reactive P fluxes at sandy and muddy areas
revealed large summer P release at muddy sites coinciding
with the occurrence of cyanobacterial blooms, and the onset of
hypoxia and anoxia in the water column (Zilius et al., 2014;
Petkuviene et al., 2016). These events occurred under specific
conditions during prolonged stable weather, with no wind and
high water temperature. Benthic P release occurred when the
oxidized pools of metals within sediments were exhausted and
contributed to the imbalanced stoichiometry by further lowering
the DIN:DIP ratio. P regeneration from sediment, despite
occurring over short period, had a significant effect on the lagoon
P budget, resulting in a large export of P (Petkuviene et al., 2016).

TOP-DOWN DRIVERS OF BLOOMS

Zooplankton
The shift from diatom- to cyanobacteria- dominated
phytoplankton communities was accompanied by a decline
in relative zooplankton grazing. During the spring diatom
bloom, maximum consumption by zooplankton corresponded
to 34% of NPP (324 µgCL−1d−1), whereas during the summer
cyanobacteria bloom grazing decreased to 8 % of NNP
(470 µgCL−1d−1) (Figure 4). A similar pattern was observed
in the southern part of the lagoon where zooplankton grazing
declined from 60% of phytoplankton production during
spring to 4 % in summer (Semenova and Aleksandrov, 2009).
Despite reduced grazing rates, stable isotope studies show that
cyanobacteria blooms support secondary production in a diverse
group of benthic and pelagic consumers within the lagoon
(Lesutienė et al., 2014). Our studies also show that cyanotoxins
(microcystin) are found in tissues of fish and shellfish, indicating
that cyanobacteria production supports higher trophic levels in
this system (Bukaveckas et al., 2017).

Grazing by zooplankton may be an important driver of
cyanobacteria bloom development. During winter, ciliate growth
is limited by low biomass of phytoplankton. In the early
spring, when small-sized phytoplankton are dominant, the
ciliate assemblage was dominated by small naked oligotrichs
and prostomatids. After the late spring diatom bloom, the
ciliate assemblage shifted to medium sized tintinnids, which
feed on the same nano-fraction of phytoplankton or/and
heterotrophic flagellates as ciliates. The summer/autumn phase
was characterized by increased taxonomical and functional
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FIGURE 4 | Dynamics of net primary production and consumption by
zooplankton (NPP, consumption, µgCL−1d−1), and estimated grazed NPP
(%) by micro- and mesozooplankton during vegetative season in the Curonian
Lagoon.

diversity of ciliates indicating exploitation of a wide size
range of food. Small sized naked oligotrichs (Strobilidium
spp.) and peritrichs (Vorticella spp.) (mainly bacterivorous
ciliates) dominated in summer, indicating a shift from algal
food to bacteria (Grinienė, 2013; Grinienė et al., 2016). The
shift from large Daphnia to small-bodied Chydorus sphaericus
coincides with the dominance of cyanobacteria (Gasiunaitė and
Razinkovas, 2004; Figure 5). Chydorus graze on smaller algae and
therefore give an advantage to large cyanobacteria (Gasiunaitė
and Olenina, 1997). In addition, the presence of large filamentous
colonies and toxic strains may foster the dominance of bloom
forming cyanobacteria (Pilkaitytė and Razinkovas, 2007).

Macrofauna
Excluding the littoral zone, sediments of the Curonian Lagoon
host few macrofauna species due to high organic content
and poor oxygen conditions (Zettler and Daunys, 2007).
Among them, oligochaetes, chironomid larvae and freshwater
mussels, including native unionids and invasive dreissenids,
are dominant groups (Daunys, 2001). Chironomid larvae and
mussel aggregations may, due to their high densities, influence
phytoplankton composition and abundance (Dame et al., 1980;
Officer et al., 1982; Gili and Coma, 1998). We discuss here if and
under which circumstances macrofauna may favor the onset of
cyanobacterial blooms in the Curonian Lagoon.

In the lagoon, periods of short water residence time may
impede efficient removal of particulate matter by suspension
feeding. In spring (average residence time 7 days) only 10 %
of particulate matter was removed by zebra mussels, while
in summer (average residence time up to 15 days), the
proportion of particulate matter removed increased to 30%
(Daunys et al., 2006). Chironomid larvae and mussels may
exert a top-down control of pelagic primary production but

FIGURE 5 | Seasonal dynamics of zooplankton biomass in the Curonian
Lagoon.

they may simultaneously excrete large amount of nutrients.
Their activities also enhance the organic matter content of
sediment via biodeposition, stimulating microbial activity and
re-mineralization (Caraco et al., 1997; Stief, 2013; Ruginis
et al., 2014; Benelli et al., 2017). It is unclear whether the
net effect of phytoplankton removal via grazing is offset
by nutrient regeneration via excretion and whether these
processes have a specific benefit to cyanobacteria. Dreissena
polymorpha was intensively studied due to its top-down control
on phytoplankton and the possible management of its biomass
to reverse eutrophication. However, such top-down control
on pelagic primary production resulted to be site-specific and
context-dependent (e.g., in shallow, well-mixed environments
with low nutrient background more than in deep, stratified
ecosystems with high nutrient inputs) (Conroy et al., 2005;
Caraco et al., 2006). Furthermore, dreissenids excrete large
amounts of reactive P and different authors have suggested
that these mussels may change nutrient stoichiometry, via P
mobilization and by enhancing N removal via denitrification
(Zhang et al., 2008; Ruginis et al., 2014). The inability of zebra
mussels to graze on larger forms of cyanobacteria may provide a
competitive advantage over other algae, which, in combination
with increased rates of reactive P re-cycling, enhances the
potential for cyanobacteria blooms. These aspects need further
study, but suggest that the presence of dreissenids mussels on the
Curonian Lagoon may exacerbate the effects of nutrient loading,
and favor increased dominance by cyanobacteria.

Birds
The Curonian Lagoon hosts a large bird community, including
tufted ducks and common pochards with 24,500–54,700 and
1,800–41,000 individuals, respectively (Stanevičius et al., 2009),
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goosanders (Žydelis, 2001), cormorants, with more than 10,000
breading birds (Švažas et al., 2011; Dagys and Zarankaitë,
2013), mallards, geese (3,000–6,500 ind/day) and little and black-
headed gulls (1,000–1,500 ind./day). High densities of water birds
are vectors of seeds, invertebrates, bacteria and phytoplankton
(Tobiessen and Wheat, 2000), and also contribute to nutrient
loads (Manny et al., 1994; Hahn et al., 2007; Green and Elmberg,
2014; Han et al., 2017).

During nesting, breeding and roosting periods, water birds
enrich the water with guano (Klimaszyk et al., 2015). In enclosed
aquatic ecosystems bird feces may contribute 50–69%, 27–
40%, and 70–75% of total C, N, and P loads, respectively
(Manny et al., 1994; Post et al., 1998; Boros et al., 2008;
Gwiazda et al., 2014). Bird feces have low N:P, implying that
water bird excretions may strengthen N limitation and promote
cyanobacteria blooms (Rönicke et al., 2008; Han et al., 2017).
Birds also have indirect effects on nutrient cycling by removing
macrophytes, invertebrates and fish. Herbivorous birds, by
removing plants, remove those elements that trap nutrients in
the benthic compartment, provide shelter for zooplankton and
allow sediment oxidation via radial oxygen loss. While grazing
on macrophytes, birds resuspend sediments and mobilize pore

water nutrients (Klimaszyk et al., 2015; Klimaszyk and Rzymski,
2016). Furthermore, a large fraction of macrophyte-associated
P is released to the water column in the reactive form and
is readily available to phytoplankton. The mechanisms that
regulate P mobility in sediments are redox-dependent such that
the removal of roots and macrofauna, together with particle
resuspension, has the potential to mobilize sediment sources
of P. In the Curonian Lagoon herbivorous birds represent the
second largest water bird group, peaking in spring and distributed
throughout the Nemunas River deltaic area and the littoral
zone.

Benthivorous birds, feeding on macrofauna, produce an effect
on the benthic system similar to that of fishes, removing
animals that may keep the sediment oxidized and resuspending
sediments and nutrients (Werner et al., 2005; Sánchez et al.,
2006; Rodríguez-Pérez et al., 2007; Matuszak et al., 2014).
Piscivorous birds convert fish-associated P into reactive P (Putys
and Zarankaitė, 2010). Large colonies of cormorants have their
peak activity during summer. The large bird community in the
Curonian Lagoon may therefore affect by various direct and
indirect mechanisms the cycling of nutrients and that of P in
particular.

FIGURE 6 | Drivers of cyanobacterial blooms in the Curonian Lagoon during the transition from spring to summer. The lower panel on the right represents a
hyperbloom event, leading to water anoxia.
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Fish
Benthivorous fish, including carp, roach, bream and perch,
represent the dominant fish component in the Curonian Lagoon
(Cline et al., 1994; Persson and Svensson, 2006; Lithuanian
Environmental Protection Agency (EPA), 2008; Adámek and
Maršálek, 2013). Fish may produce both top-down (e.g., removal
of grazers and competitors) and bottom-up effects (nutrient
mobilization) that favor eutrophic conditions and cyanobacterial
blooms (Shormann and Cotner, 1997; Roozen et al., 2007).
The diet of benthivorous fish in the Curonian Lagoon includes
mussels, chironomidae larvae, detritus, zooplankton and plants
(Bubinas and Ložys, 2000). Benthivorous fish may impact
the water quality, leading to nutrient accumulation and algal
growth, by suspending the sediments and by feeding on filter-
feeding zooplankton, burrowing macrofauna and macrophytes
(Zambrano and Hinojosa, 1999; Williams et al., 2002; Parkos
et al., 2003). Sediment resuspension by the benthic fish
community increases water turbidity, limits light penetration
and rooted macrophytes and favors P release and cyanobacteria
growth (Hellström, 1991; Breukelaar et al., 1994). By removing
invertebrates from the sediments, benthivorous fishes mobilize
nutrients from the pore water (Tarvainen et al., 2002; Phan-Van
et al., 2008). Resuspension itself may oxidize sediments, but this
is a short-term and local effect, while reductions in invertebrate
abundance impacts N removal via denitrification and P
sequestration. Moreover, fish predation reduces zooplankton
populations, resulting in low grazing on phytoplankton (Jeppesen
et al., 1999). Fish excretions are very soluble and rich in N
and P which stimulate periphyton growth and negatively affect
macrophytes (Tarvainen et al., 2002; Williams et al., 2002).
Excreted nutrients are dispersed horizontally and vertically and
from littoral to pelagic areas (Schindler et al., 1996; Persson and
Svensson, 2006).

SYNTHESIS

Cyanobacterial blooms in the Curonian Lagoon arise from
multiple interacting factors, which include external forcing
(riverine discharge and wind conditions) and internal processes
(consumer-mediated nutrient cycling and sediment-water
nutrient exchange). We summarize the information discussed in
this review through a graphical representation of the multiple
mechanisms that drive cyanobacterial blooms in the Curonian
Lagoon (Figure 6).

During spring, the lagoon is diatom-dominated due to a
combination of low water temperatures, high river discharge and
availability of inorganic N and Si, in excess to P. The system
alternates phases with clear and turbid water depending on the
intensity of the spring diatom bloom and the occurrence of
wind-associated sediment resuspension events. During spring,
light penetration may attain 1–2 m and grazers exert appreciable
control of algal biomass accrual. The water column is generally
well mixed and normoxic; under these circumstances the upper
sediment layer is oxidized and acts as a nutrient sink.

The spring-summer transition is marked by a decline in
discharge of the Nemunas River, which is accompanied by

the depletion of N and Si within the lagoon. Reductions
in external loadings, together with processes occurring
within the lagoon (high spring denitrification rates and Si
sequestration via uptake and accumulation in sediment),
result in the onset of N and Si limitation. Cyanobacteria
become dominant, resulting in a series of cascade effects
that include increased algal-associated turbidity and water
stratification. Positive feedbacks arise as large colonies of
cyanobacteria limit the capacity of grazers to control biomass
accrual and high respiration rates promote oxygen under-
saturation. Climatic conditions, which are highly variable,
play an important role, as low wind conditions may further
push the system toward hyperbloom events, with extensive
surface scums (Figure 7). Water column respiration, not
sediment oxygen demand, promote oxygen depletion in the
system, due to the large availability of labile organic matter
from decaying algal cells. By this mechanism, hyperblooms
promote their persistence as hypoxia results in sediment
P release. Other factors that may contribute to these large
periodic outbreaks include the presence of waterbirds. Large
colonies of cormorants settle in spring along the Curonian
Spit and have their most intense period of activity during
summer. Cormorants, through the production of guano,
make large amounts of P available in surface water. Besides
cormorants, colonies of seagulls, swans and duck have large
numbers and may contribute to make fish or macrophyte
P pools readily available to cyanobacteria. Other biological
agents supporting algal blooms include the invasive freshwater
mussel (D. polymorpha), which excretes large amounts of
reactive P relative to the native unionid mussels and may
therefore contribute to the low DIN:DIP ratio in the lagoon.

FIGURE 7 | Cyanobacteria hyperbloom with scum formation in the Curonian
Lagoon, August 2013.
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MANAGEMENT POLICIES AND
PERSPECTIVES

The Curonian Lagoon ecosystem provides a number of
provisioning and cultural ecosystem services, most directly linked
to the main economic activities in the lagoon area – recreation
and fishery (Rashleigh et al., 2012; Razinkovas-Baziukas et al.,
2012). The lagoon also provides ecosystem services of relevance
to the Baltic Sea region such as denitrification and phosphorus
burial. Management efforts to improve water quality in the
Curonian Lagoon have targeted reductions of nitrogen loads
by 15 % and phosphorus by 8%. Model simulations (Ertürk
et al., 2016) revealed that reductions of nitrogen loads by
14 % and phosphorus loads by 6%, will bring about a
10% reduction in the abundance of cyanobacteria (Razinkovas
et al., 2008). Further reductions in riverine nutrient loads
(40% decrease in both N and P) produced only a 10%
decrease in peak chl-a concentrations (Razinkovas et al., 2008).
Further efforts to improve water quality may require within-
system bioengineering solutions (biomanipulations, mussels,
reed harvesting).

Climate change projections for the Curonian Lagoon
(Jakimavičius et al., 2018) indicate an increase of average
water temperature up to 1.7–2◦C by the middle of this
century, consistent with trends observed during the last
three decades (Dailidienë et al., 2011). According to this
modeling study, the increase in water temperature was mostly
confined to the summer-early autumn period, which may
therefore favor the development of cyanobacteria blooms.
Biogeochemical cycles of the Curonian Lagoon will be affected
by changes in the water balance of the lagoon. A decline in
contributions from Nemunas River coupled with an increase
in Baltic water intrusions (due to sea level rise) will alter
the water balance during the winter–spring period. A shift
in the timing of peak discharge from spring to winter,
as observed in recent decades (Dailidienë et al., 2011),
may diminish algal blooms if a larger proportion of the
nitrogen load from the Nemunas River passes through the
Curonian Lagoon during the period of low phytoplankton
productivity. However, the predicted decrease of ice cover
is expected to reduce winter hypoxia, which would result
in reductions in denitrification. Despite the intensive studies
of this system, we are not able to predict whether climate
change will exacerbate or mitigate cyanobacteria blooms.
However, it is apparent that further management actions
are needed to reduce nutrient loads and restore ecosystem
services. There is a need for additional studies, both
at the watershed-scale and the lagoon scale, to facilitate
science-based management decision. At the watershed scale,
long-term monitoring is needed to better understand the
effectiveness of improved agricultural practices and water
treatment on N, Si, and P export from the Nemunas
basin to the Curonian Lagoon. Watershed practices may
differentially affect the three elements further modifying their
ecological stoichiometry, with implication for algal blooms

(Yunev et al., 2007; Bresciani et al., 2014; Vybernaite-Lubiene
et al., 2017).

CONCLUSION

This review analyzes the available information on the
mechanisms driving cyanobacterial blooms in the Curonian
Lagoon. Results from our analysis suggest that blooms are
a consequence of multiple, interplaying factors, producing a
cascade of processes and positive feedbacks. The hot moment
for cyanobacteria blooms is the summer, due to combination
of favorable nutrient stoichiometry (N and Si limitation),
elevated water temperature, low wind speed, unbalanced internal
recycling (P > N) and low grazing pressure. The hot spots of
cyanobacteria are stagnant areas where limited water circulation
and stratification provide these organisms a competitive
advantage. These hot spots may serve as bloom initiation areas
from which cyanobacteria are dispersed by prevailing winds.
Ecological interactions among aquatic organisms, and how these
respond to changes in climate and to species invasions remain
understudied. The combination of satellite remote sensing,
traditional monitoring of environmental parameters, detailed
analysis of processes at the macro and microscale and the
application of ecological network models, have proved to be
useful tools for understanding the mechanisms underlying the
development of cyanobacteria blooms. Our further efforts seek
to improve our capacity to predict the occurrence and severity of
algal blooms and guide prevention measures.
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