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Abstract—An easy-to-implement hole mobility model, which
accurately predicts low-field mobility in bulk MOSFETs and
ultrathin-body (UTB) silicon-on-insulator FETs with different
crystal orientations, is developed. The model accounts for the
influence of the surface orientation and the inplane current-flow
direction on effective masses, subband repopulation, and scatter-
ing rates. The effects induced by extremely small silicon thick-
nesses are also addressed. A good agreement with the experimental
mobilities of bulk and UTB FETs with silicon thicknesses from
60 nm to values as small as about 2.7 and 2.3 nm is demonstrated
for devices with (100) and (110) substrates, respectively.

Index Terms—Crystal orientation, mobility model, silicon-
on-insulator (SOI) MOSFETSs, ultrathin silicon.

I. INTRODUCTION

HE AGGRESSIVE downscaling of CMOS devices is

reaching intrinsic limitations and needs new technological
solutions. Ultrathin-body (UTB) devices such as fin-shaped
FETs, trigate FETs, and silicon nanowires are the most promis-
ing candidates for fabricating sub-50-nm devices [1]. Among
their features, they usually exhibit a sidewall transport on the
(110) crystallographic planes [2], [3]. Thus, a deep compre-
hension of the physical details related with the different crys-
tallographic orientations is required. The study of the device
performance requires predictive physical models for the carrier
transport. To this purpose, both low-field mobility models [4]
and enhanced drift-diffusion models, which account for the
quasi-ballistic transport, have been proposed [5]. It has been ex-
perimentally demonstrated that the low-field electron and hole
mobilities are sensitive functions of the silicon-body thickness,
particularly when tg; is below 5 nm [6], [7]. On one hand,
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the electron mobility in UTB MOSFETS has been extensively
investigated, and a technology computer-aided design (TCAD)
model has been recently proposed in [8] and [9]. On the other
hand, to the authors’ knowledge, a number of experimental
investigations can be found on UTB single-gate silicon-on-
insulator (SG-SOI) p-MOSFETs, along with theoretical mi-
croscopic analyses accounting for full-band structures and the
most relevant scattering mechanisms [10]-[12], but a physically
based analytical model for the hole low-field mobility is still
missing.

The aim of this paper is to derive a TCAD mobility model
suitable for device simulation tools, which accurately predicts
the low-field hole mobility in bulk and UTB FETs with different
surface and channel orientations, and silicon thicknesses from
bulk-like to values as small as 2.3 nm. As the low-field mobility
concept implies a uniform device subject to a vanishing electric
field in the current-flow direction, the investigation carried out
in this paper is focused on long-channel FETs. The analysis of
the role played by the effective mobility in short-channel FETs
is beyond the scope of this paper [13].

In the following, a complete description of the model is
provided, and its validation against experiments is illustrated.
The mobility formulation is given in Section II. The model-
ing of the scattering contributions, namely, the acoustic- and
optical-phonon, coulomb, surface-roughness, and interface-
state scattering, is described in Section IIl. An accurate an-
alytical description of the energy subbands is reported in
Section IV. The additional effects needed for ultrathin SOI
are shown in Section V. A review of the complete model is
reported in Section VI, and the conclusions are finally drawn in
Section VII.

II. GENERALIZED MOBILITY MODEL

Consider a silicon film on a substrate with one of the three
crystallographic orientations indicated in Fig. 1 (bottom). The
z-axis is set parallel to the structural confinement direction,
whereas the carrier transport occurs along the x-axis. The
inversion-layer quantization, due to the combined effects of
the structural confinement and the application of a transverse
electric field, causes the formation of energy subbands split
in three different groups: 1) heavy hole (HH); 2) light hole
(LH); and 3) split-off subbands. The latter ones have not been
considered in this paper because of their lower energy, which
makes them practically unpopulated [10]. The complex shape
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Fig. 1. (Top) Orientation of the reference axes. (Bottom) Inplane minima
projections for (100), (110), and (111) surface orientations. The most relevant
inplane current flow directions are also indicated.

of the valence-band valleys makes the analytical calculation
of the principal effective masses quite problematic. Therefore,
a simplified approach has been followed. The masses m,
along the quantization direction for the (100)-, (110)-, and
(111)-oriented wafers have been extracted by comparing the
valley edges calculated by means of a six-band k - p approach
reported in [10] with the well-known analytical expression
determined for a triangular well by Stern and Howard [14],
which reads

3/ 9 /9 3 h2q2
By, = (\/;—F \/l) ..
where £ is the reduced Planck constant, ¢ is the elementary
charge, Fog is the transverse effective field, and m,, is the
quantization mass relative to the vth valley. In the following,
v = 1 and v = 2 indicate the LH and HH valleys, respectively.
The comparison of (1) with the k - p results is illustrated in
Fig. 2, while the extracted quantization masses are reported in
Table I. In order to calculate the 2-D density-of-state effective
masses, different approaches have been used for the three con-
sidered crystallographic orientations. More specifically, in the
(100) and (111) orientations, circular parabolic inplane bands
for the HH and LH valleys have been assumed. Within such ap-
proximation, the HH and LH density-of-state effective masses
have been extracted by comparing the analytical calculations
of the relative-valley populations as functions of the effective
field with the numerical data reported in [10]. For the analytical
calculations, the Boltzmann statistics has been assumed, i.e.,

mq, exp(—Ev, /kpT)

Pv = (2)
Zilzl ma,, exp(—Ey,, /kT)

EY? (1)

where kp is the Boltzmann constant and 7’ the lattice tempera-
ture. The comparison of the analytical p,, with numerical results
is reported in Fig. 3.

Different from the cases described above, in the (110) case,
a clear inplane anisotropic energy distribution can be observed
[see Fig. 1 (bottom)]. In this case, elliptical parabolic inplane
bands for the HH and LH valleys have been used, and the ef-
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Fig. 2. Energy of the valley edges as a function of the effective field for (100),
(110), and (111) wafers. (Symbols) Numerical computations from [10]. (Solid
lines) Equation (1) with a shift of —44 meV.

fective masses along the transport m,, and the device width m,,
directions have been extracted by a comparison with the band
calculations reported in [15], as shown in Fig. 4. The extracted
effective masses are reported in Table I. Finally, the density-
of-state effective masses in the (110) case have been calculated
as mq, = /My, My, , and their values have been validated by
comparing the analytical p,, with the corresponding numerical
results shown in [10] (see Fig. 3).

The inplane transport is generally described by a 2-D tensor-
ial effective mobility, which retains the anisotropy of the single-
valley effective mobilities, i.e.,

2
,aeff - vaﬂv- (3)
v=1

A similar formulation is already available in 3-D drift-diffusion
transport simulation tools, which handle bulk piezoresistivity
and, in general, material anisotropy (see, e.g., [16]). Such tools
can be also directly used in this case, given that the out-of-
plane (normal to the interface) mobility component plays no
role and provided that the inplane effective mobility model (3)
is implemented. Unfortunately, this approach is unpopular in
commercial tools because the effective mobility dependence
on integral (nonlocal) carrier concentration and electric field
may lead to numerical problems. As an alternative, a local
mobility tensor i, which depends on the local normal electric
field £, (z) and the hole concentration n(z), can be defined,
satisfying the following equation:

o (n(2) = no(2)) o (n, B (2)) dz
¥ (n(2) — no(2)) d=

“

ﬂcf‘f -

where (n(z) — no(z)) is the excess carrier concentration in the
inversion layer. It should be noted that the experiments measure
only the xzx component of the mobility tensor. We follow a
two-step procedure in the model development. In the first step,
we define an analytical model for the effective mobility (3) as
a function of E.g and the inversion-charge concentration per



SILVESTRI et al.: LOW-FIELD MOBILITY MODEL FOR BULK AND UTB SOI p-MOSFETs

3289

TABLE 1
EFFECTIVE MASSES FOR A 2-DHG IN (100)-, (110)-, AND (111)-ORIENTED SAMPLES
(Wafer)/<channel > my My My mgq valleys
(100) 025 mg | 0.245 mg | 0.245 mo 0.245 mg 1 (LH)
0.29 mg 0.43 mg 0.43 mo 0.43 mg 2 (HH)
(110)/(110 023 mo | 0274 mo | 0348 mo | /ey = 0.309 mo 1 (LH)
1.8 mg 0.122 mg 0.215 mg Mgy = 0.162 mg 2 (HH)
(110)/(100) 023 mo | 0348 mo | 0274 mg | \/maziy, — 0309 mg | 1 (LH)
1.8 mo 0.215 mg 0.122 mg My = 0.162 mg 2 (HH)
(111) 041 mo | 0.244 mg | 0.244 mg 0.244 mg 1 (LH)
0.67 mgo | 0.454 mg | 0.454 mg 0.454 mo 2 (HH)
©(100) ' approach needs to be followed when a thin silicon film is
:EH%) addressed, as will be shown in Section IV. Following [17], the
] Lines: model single-valley mobility tensor is modeled as
S 7 / 0
T 0.8 A o= ot ot = 0/ M, 6
2 fro = Hotihe ! 0 mo/my, ©
& 06} |
% 0al where my is the free-electron mass and 77,1 is the inverse
° ’ normalized mass tensor of a 2-D hole gas (2-DHG), defined
0.2} for each valley v to account for the anisotropy effects induced
ol by different inplane crystal directions. Note that, when (100)
or (111) samples are considered, m,, = m,, = mgq,. Finally,
0 05 ] 15 1, 1s calculated by accounting for the different scattering

Effective field (MV/cm)

Fig. 3. Relative-valley populations as a function of the effective field for
(100), (110), and (111) wafers. (Symbols) Numerical calculations by [10].
(Solid lines) Equation (2).
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Fig. 4. Energy dispersion relations in (110) wafers obtained using (symbols)
the k - p approach [15] and (lines) the parabolic band approximation. (110)
and (100) inplane crystal directions have been used to separately extract my
and my,.

unit area, calibrating the parameters on the experiments. Feg is
calculated as

Jy* (n(2) = no(=)) By (2)dz
fotSi (n(z) —no(2)) dz

In the second step, a local mobility model, which depends on
E, (z) and n(z), is provided, as described in Section VI. As
far as the relative-valley populations are concerned, (2) is used.
In (2), the subband edges Ey, can be calculated as given by
(1) when a bulk MOSFET structure is considered. A different

Eeg = ®)

mechanisms combined via Matthiessen’s rule, i.e.,

q
USSR S 7
S e )

In (7), 7, represents the average momentum relaxation time
(MRT) due to the jth scattering mechanism for the vth valley.
The average MRTs are illustrated in the next sections.

III. SCATTERING CONTRIBUTIONS

Following the approach in [8], the acoustic-phonon-limited
inverse MRT relative to the vth valley is calculated as

1 - C’Umdv
= W,

®)

TAC, v

where W, is the effective width of the hole distribution in
the vth valley and C, is a constant related to the intravalley
acoustic-phonon scattering parameters. Intervalley scattering
is not considered in view of the low-field regime (vanishing
longitudinal electric field), which is close to the equilibrium.
The average effective widths W, are modeled as in [8], and
their calibration has been carried out against the numerical
predictions of the Schrodinger—Poisson solver [18], generalized
to SG-SOI FETs with different crystal orientations. The eigen-
functions are zero at the Si/SiOs interfaces. Neumann boundary
conditions for the potential are applied to the bottom edge of the
buried oxide in SG-SOI FETs.

The (110) phonon-limited mobility both from numerical
calculations [10] and experiments [7] showed a trend in Feg,
which differs significantly from the usual E_;/* (see Fig. 5).
At low temperatures, such a trend is indeed no longer observed.
This may suggest that optical phonons can limit mobility at
low E.g values and high temperatures when the two lowest
HH bands and the first LH band are close enough to allow
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Fig. 5. Phonon-limited hole mobility versus effective field for the
(110)/(110) surface extracted (symbols) from experiments in [7] and (lines)
from our model. (Inset) upg versus Njp, from simulations in [10].

intersubband transitions assisted by the absorption of optical
phonons to play a role. On the contrary, when the confinement
induced by E.g becomes stronger, this process is weakened
by the distance of the energy levels, and the phonon-limited
mobility increases until a usual decreasing trend with E.g is
recovered again [10]. In order to model this effect, the optical-
phonon-limited inverse MRT relative to the HH band in (110)
wafers has been accounted for as

1 Eogo )¢
= Cop md2< ﬁ“) )

where ¢ = 0.31 has been extracted from calculations in [10]
[see Fig. 5 (inset)] and Cop is a fitting parameter. The phonon-
limited mobility relative to the HH valley has been calculated
by combining the scattering term in (9) with (8) via (7). In
Fig. 5, the calculated total phonon-limited mobility curves
are compared with those extracted from experiments in [7]
with different tg; values. The details on the modeling of the
optical-phonon scattering as a function of tg; are discussed in
Section V.

The coulomb and surface-roughness scattering terms are
modeled as in [8], and the fitting parameters have been ex-
tracted by comparing the analytical model with a large set
of experiments for bulk MOSFETs in the three considered
crystallographic orientations (see Fig. 6). Finally, a mobility
degradation with respect to the universal bulk-mobility curve
is experimentally observed at low—medium FE.g for (110)-
oriented SG-SOI FETs with tg; = 32 nm even if the device
is essentially undoped (see Fig. 12). Recently, a number of
publications reported the amount of interface states in devices
with different orientations (e.g., [23], [24]) and indicated that
(110)-oriented devices have an interface state density about
three times larger than (100)-oriented devices. Moreover, it is
known that the buried-oxide interface can influence mobility in
UTB SOI-FETs [25]. Thus, when considering SOI-FETs, it is
appropriate to model an additional contribution, which accounts
for the mobility reduction induced by interface states, i.e.,

1 Nit NinvO <
= Oy, [
Tit, v Nito Niny

(10)
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Fig. 6. Hole mobility in (100), (110), and (111) bulk MOSFETsS versus effec-
tive field for various substrate doping concentrations. (Symbols) Experiments
of (100) from [19], (110) from [20], and (111) from [21] and [22]. (Solid lines)
Our model.

where Ny = 5 x 10'° cm™2, ¢ = 0.5 as reported in the lit-
erature, and Cj¢, is a constant extracted from the comparison
with experiments. A value of 1.5 x 10! cm~2 (similar to that
experimentally shown in [26]) has been used to reproduce the
experiments by Tsutsui ef al. [7]. Considering that, in a (100)-
oriented device, Nj; is typically of the order of 5 x 10'° cm—2
[26], the above scattering contribution is found to be effective
only in the (110) case. Nj; should be considered an effective
interface state density also accounting for the back interface
defects.

Different from electrons [9], the hole mobility curves at low
temperature reported in [7] are independent of tg; down to
9 nm. Thus, no dependence on tg; has been modeled in (10).
For tg; < 9 nm, additional physical effects become relevant and
contribute to degrade mobility, as explained in the following.

IV. BAND STRUCTURES AND REPOPULATION EFFECTS

In order to calculate the relative populations of the LH and
HH valleys in samples with different tg; values and different
orientations, we developed an analytical function based on
physical considerations. Due to the lack of experimental data
on (111) substrates, the mobility analysis is limited to the (100)
and (110) ones. For zero normal electric field (quantum well),
the analytical solution of the Schrodinger equation provides the
expression for the energy levels. The relative distance between
the LH and HH valley edges reads

hr)? 1 1
(2t2) < — ) . (1D
Si mz1 mz.2

The separation between the energy minima of the two valleys
increases with the reduction of ts;, and holes mostly populate
the HH valley.

— Byt =
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At large normal electric fields, the energy edges can be
theoretically calculated, assuming a triangular potential well
as in (1), and their difference is indicated with A Evg below.
Finally, adopting the same formulation used for the conduction-
band edges in [8], the difference between the valley edges at
high normal fields A E'y- can be expressed as

Y8 (12

AEy = AByr [1 + (AEve/AEyt)”]
where 5 = 3.5. In order to validate (12), the relative-valley
populations for (100) FETs have been calculated by using (2) as
a function of tg; and compared with those reported in [10] (see
Fig. 7). A clear repopulation effect is evident at about tg; =
7 nm. The HH valley, i.e., the unprimed one, which exhibits
the higher transport effective mass (see Table I), turns out to be
repopulated for ¢g; < 7 nm, with a negative effect on mobility.
This effect contributes to the monotonic mobility degradation
with decreasing tg;, as shown in Section V. As far as the (110)
orientation is concerned, the same formulation in (12) has been
used. However, in this case, the repopulation effect does not
remarkably influence the hole mobility since the HH valley is
almost entirely populated even at very thick silicon films and
bulk MOSFETs (see Fig. 3).

V. MODEL ENHANCEMENTS FOR tg; < 5 nm
A. (100) Substrates

1) Scattering Induced by Silicon-Thickness Fluctuations:
The measured (100) mobility for ¢g; < 5 nm exhibits a strong
degradation that was ascribed to the scattering induced by
ts; fluctuations [27]. The formulation in [9] is used here to
reproduce the experiments available at 25 K [6], as shown in
Fig. 8 (top).

2) Suppression of Intersubband Phonon Scattering: This
effect should not take place in (100) FETs because the energy
difference between the HH and LH valleys is lower than the
energy of the f-type phonons even at high F.g (see Fig. 2),
thus forbidding the suppression of the intersubband phonon
scattering. This is confirmed by the experimental mobility in
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lines) Coulomb + phonon + surface-roughness limited mobility. (Long dashed
lines) Coulomb + phonon + surface-roughness + thickness-fluctuation limited
mobility. (Solid lines) Coulomb + phonon + surface-roughness + thickness-
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(100) substrates reported in Fig. 9 (bottom), where the curve
monotonically decreases by shrinking tg;.

3) Surface Optical Phonons: In order to reproduce the mo-
bilities of devices thinner than 3 nm at 300 K, we introduced the
surface-mode optical-phonon scattering contribution [4]. The
effects of the above scattering terms are highlighted in Fig. 9

(top).
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B. (110) Substrates

1) Scattering Induced by Silicon-Thickness Fluctuations:
The same model has been used for the (110) case as
well, with parameters extracted by the comparison with ex-
periments carried out at 40 K by Tsutsui et al. [7] [see
Fig. 8 (bottom)].

As explained in Section III, when the (110) p-FET is
considered, the impact of optical-phonon scattering becomes
nontrivial, and its dependence on tg; should be correctly mod-
eled. In [7], the phonon-scattering limited mobility has been
extracted by means of Matthiessen’s rule and by assuming that
only the phonon contribution would remarkably change with
temperature. However, this is incorrect because the scattering
induced by thickness fluctuations varies with temperature as
well. Indeed, the phonon-limited mobility extracted in [7] for
ts; < 5 nm results to be negative for Ny, < 10*2 cm™2. Here,
the temperature dependence of the MRTs relative to tg; fluctua-
tions has been assumed to be equal in the (100) and (110) FETs.
Thus, in order to correctly model the phonon-limited mobility
in the ultrathin (110) SOI, the latter has been reextracted from
the experiments and used as a reference for the model validation
[see open symbols in Fig. 10 (top)].

2) Suppression of the Intervalley Phonon Scattering: As
anticipated in Section III, the absorbtion of optical phonons
between the lowest HH and LH subbands plays a role at
low fields, whereas it is suppressed at high F.g values. The
simplest way to introduce the suppression of intervalley phonon
scattering is to model a reduction of the inverse MRT (9) as a
function of AEy, i.e.,

L L - samy).

TOP,2

; (13)
Top,2
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Fig. 11. Hole mobility in (100) FETs versus effective field for a wide range
of silicon thicknesses at 300 K. (Solid lines) Effective mobility model. (Dashed
lines) Simulation results obtained using the local mobility model. (Symbols)
Measurements from [6] and [28].

By exploiting the subband structure model presented in
Section IV, f(AFEYy ) in (13) is modeled as

_ Jo
f(AEV) T + exp [—(AEV — AEV())/Civ]

(14)

where fy, AFEyv, and C}, are the fitting parameters calibrated
on the experiments by [7] at Ny,, = 3 X 10" cm™2, as de-
picted in Fig. 10 (bottom). Thus, the mobility enhancement
observed in [7] can be nicely reproduced by the above ap-
proach. f(AFEy) becomes significantly different from zero
for AEy > 60 meV. Another important observation is that,
according to (13) and (14), the mobility enhancement in the
(110) samples is expected to increase as F.g increases because
of the AFEy growth with E.g (see Fig. 2). However, in very
thin-film FETs (below 5 nm), additional scattering mechanisms
limit the carrier mobility, i.e., the scattering induced by tg;
fluctuations (presented in Section IV) and the scattering with
surface optical phonons (described below).

3) Surface Optical Phonons: The same expression for the
conventional orientation is also used in this case. The model
parameters are calibrated directly on the experiments at 300 K.
The effects of this scattering term is shown in Figs. 10 (top)
and 12.

VI. REVIEW OF THE COMPLETE MOBILITY MODEL

All the scattering terms described above need to be ac-
counted for in (7) to calculate the effective mobility. When bulk
MOSFETs are considered, 1/7; ,, should be neglected. Figs. 11
and 12 compare the predictions of the complete mobility model
with the complete set of measurement data. For implementation
reasons, drift-diffusion device simulators require a mobility
model dependent on the local carrier concentration n and
transverse electric field E |, rather than the nonlocal inversion-
layer carrier density and effective field. To this purpose, Niyy
and FE.g are simply replaced by n and E, in our model, and
the fitting parameters are reextracted by the comparison with



SILVESTRI et al.: LOW-FIELD MOBILITY MODEL FOR BULK AND UTB SOI p-MOSFETs

@ Tsutsui 32 nm
| Tsutsui 9nm [
@ Tsutsui 5.2 nm
A Tsutsui 3.6 nm
L «Tsutsui 2.7 nm| |
v Tsutsui 2.3 nm

400

Mobility (cm? /Vs)

100 - 1

10° 10°
Effective field (V/cm)

Fig. 12. Hole mobility in (110)/(110) FETs versus effective field for a wide
range of silicon thicknesses at 300 K. (Solid lines) Effective mobility model.
(Dashed lines) Simulation results obtained using the local mobility model.
(Symbols) Measurements from [7].

the experiments. Figs. 11 and 12 show the comparison between
the measurements and the local model (dashed lines) for the
complete set of measurement data in [6], [7], and [28] for SG-
SOI FETs as a function of E.g and tg;. The effective mobility
is also shown with solid lines. The performance of the local
mobility model is good, the maximum relative error being 13%.
This partly confirms the qualitative results obtained in [29].

VII. CONCLUSION

A low-field hole mobility model suitable for device-
simulation tools in (100) and (110) UTB SOI MOSFETS has
been developed and calibrated on a wide set of experimental
data. The model accounts for the main physical effects related
to the quantum—mechanical structural confinement and trans-
poses them into simple analytical formulations. The inclusion
of silicon-thickness fluctuations and surface-phonon scattering
extends the validity of the model to very small silicon thick-
nesses. Moreover, accounting for the scattering induced by
interface states and the impact of the suppression of intervalley
optical-phonon scattering, the model is able to reproduce (100)
and (110) mobilities.

The experimental data on the (100) and (110) cases are repro-
duced in the model with a maximum error of about 10%—15%.
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