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Abstract In this article we want to present a meeting ground between rather different
mathematical topics from numerical analysis to index theory and symplectic geometry.
The unifying idea is that of linear representation of tori inside which the combinatorics,
analysis and geometry is developed.
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1 Introduction

In 1968 appears the fundamental work of Atiyah and Singer on the index theorem of
elliptic operators, a theorem formulated in successive steps of generality [3–7].

This theorem is the crowning point of a long sequence of ideas starting from the the-
ory of algebraic functions of Riemann and passing through the theory of De Rham and
Hodge on cohomology on manifolds. The index theorem generalizes the Riemann–
Roch theorem of Hirzebruch, a cornerstone in modern algebraic geometry [25].

What is an index? Recall that the index i(A) of a linear operator, when defined,
is i(A) := dim(ker A) − dim(ker A∗), where ker(A) is the space of solutions of the
homogeneous equation Au = 0 and A∗ denotes the adjoint.

• The linear operators consider by Atiyah and Singer are differential
(or rather pseudodifferential) operators on manifolds.

• Precisely they operate not simply on functions but, as usual in global geometry, on
sections of vector bundles.

The condition of being elliptic (like the Laplace operator) is needed to insure that the
index is well defined and a finite integer. The index theorem produces a formula for
the index through cohomological data associated to the operator, the manifold and the
bundles involved (Chern character and Todd class).

The need for K -theory
An essential step in the index theory is given by the construction of a generalized

cohomology theory, called K -theory.
Then the index theorem passes through several steps:

• to an operator one associates the symbol �, which is a (matrix valued) function on
the cotangent bundle.

• to the symbol an element of a suitable group of K -theory, the index can be computed
this way.
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Splines and index theorem 59

• Alternatively from K -theory one passes to cohomology using the Chern character
ch(�) of �.

• The final formula is proved by showing enough properties of all these steps which
reduce the formula to some basic cases.

One general and useful setting is for operators on a manifold M which:

(i) satisfy a symmetry with respect to a compact Lie group G
(ii) are elliptic in directions transverse to the G-orbits.

In this case the values of the index are generalized functions on G. In fact in this
case the kernel of A or of A∗ is no more finite dimensional, but it is a particularly
well behaved representation ρ : G → U (H), called of trace class, from the group of
symmetries G to unitary operators on a Hilbert space. This means that we can inte-
grate the C∞ functions of G to operators T f := ∫

G f (g)ρ(g) which have a trace and
f �→ T r(T f ) is a distribution.

Being of trace class implies that both spaces of solutions are

• a (possibly infinite) direct sum of irreducible representations of G each with finite
multiplicity

• the multiplicities have some moderate growth so that they can be interpreted as
Fourier coefficients of generalized functions (distributions) on G.

The analytic index of the operator A is the virtual trace class representation of G,

obtained as difference of the spaces of solutions of A and its adjoint A∗ in an appro-
priate Sobolev space. This is equivalently described by an integral valued function on
the set of irreducible representations, the index multiplicity.

The main topological ingredient of the theory is the group K 0
G,c(T

∗
G M) of equivari-

ant K -theory with compact support, which is defined in a topological fashion.
If T ∗M is the cotangent bundle. we denote by T ∗

G M the closed subset of T ∗M,

union of the conormals to the G orbits. Using a Riemannian metric we may replace
the cotangent bundle with the tangent bundle, and then conormal is replaced with
orthogonal.

Example 1.1 G = S1 acting by rotations on the plane R
2, the orbits are the circles

centered at the origin, we identify T ∗M = R
4 with pairs of vectors.

A pair of vectors (a, b) ∈ R
2 × R

2 is in T ∗
S1 M if either a = 0, in this case its orbit

reduces to 0 and b arbitrary, or a �= 0 its orbit is a circle and b is orthogonal to the
orbit, that is it is proportional to a.

Assume first that M is compact. The condition of being transversally elliptic is
expressed by the fact that the symbol � is invertible on T ∗

G M minus the zero sec-
tion. So one repeats the analysis for the index, substituting to K -theory equivariant
K -theory.

This index depends only of the class defined by � in K 0
G,c(T

∗
G M), so that in the end

the index defines a R(G) module homomorphism from K 0
G,c(T

∗
G M) to virtual trace

class representations of G.
Alternatively, from equivariant K -theory one passes to equivariant cohomology

with compact supports using the equivariant Chern character ch(�)of �. This is an ele-
ment of a suitable G-equivariant cohomology group, with compact supports, of T ∗

G M .
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60 C. Procesi

In his Lecture Note describing joint work with I.M. Singer, Elliptic operators and
compact groups, [1], Atiyah explains how to reduce general computations to the case
in which

• G is a torus, e.g. G = (S1)s, Ĝ = Z
s its character group.

• The manifold M is a complex linear representation MX = ⊕a∈X La,

• X ⊂ Ĝ = Z
s is a finite list of characters and La denotes the one dimensional

complex line where G acts by the character a ∈ X .

He then computes explicitly in several cases and ends his introduction saying “…for
a circle (with any action) the results are also quite explicit. However for the general
case we give only a reduction process and one might hope for something explicit. This
probably requires the development of an appropriate algebraic machinery, involving
cohomology but going beyond it.”

A solution to this question is given in the paper Vector partition functions and index
of transversally elliptic operators, by C. De Concini, C. Procesi, M. Vergne [20].

In this paper I want to give an idea of the algebraic machinery which provides
a complete solution to this question. This turns out to be a spinoff of the theory of
splines, a developement of the classic Theory of Schoenberg, [31] as in the classic
book [15] by de Boor, Höllig, and Riemenschneider. For most of this material the
reader can consult the recent book by De Concini, and Procesi Topics in hyperplane
arrangements, polytopes and box-splines [23].

The main goal is to describe explicitly the map induced by the index, from
K 0

G,c(T
∗
G M) to virtual trace class representations of G. This is described combinato-

rially.
Once we identify the character group of G with the free abelian group Z

s we have,
as values of the index, a space of integer valued functions on Z

s . Our main result is
for a linear representation MX associated to a list of characters X in Z

s :

• We identify the space of functions, image of the index, for M = MX .
• We prove that the index is an isomorphism between K 0

G,c(T
∗
G M) and its image in

the space of functions.

We need the basic notion of Partition function for a list X of vectors in Z
s .

If there is a linear form φ so that 〈φ | a〉 > 0, ∀a ∈ X we have a Z valued function
PX (b) on Z

s defined as:

PX (b) := #

{

(t1, . . . , tm) ∈ N
m
∣
∣
∣
∣

m∑

i=1

ti ai = b

}

.

The function PX (b) is best expressed via its generating series

∑

b∈Zs

PX (b)eb =
∏

a∈X

1

1 − ea
.

If X is the list of characters of a linear representation MX the partition function can
be viewed as the trace of the representation of Ss in the symmetric algebra S(MX ).
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Splines and index theorem 61

Atiyah-Singer constructed a “pushed” ∂ operator on MX , with index the partition
function.

For a general list X consider a linear function φ which is non-zero on each element
of X, then X is divided into two parts A where φ is positive, and B respectively where
φ is negative. We may thus consider the partition function PA,−B .

Lemma 1.2 The function PA,−B depends only on the chamber F, of the hyperplane
arrangement defined by X in the dual space, in which φ lies and will be denoted P F

X .

Each of these partition functions can be viewed as multiplicity index of a “pushed”
∂ operator on MX by changing the complex structure.

Integer valued functions on Z
s are a module (using translation) over the group

algebra Z[Zs] (also denoted by R(T ), if T is the torus with character group T̂ = Z
s).

We can thus consider the Z[Zs] module F̃(X) of functions on Z
s generated by all the

partition functions PA,−B for all the chambers.
The main Theorem 1 states that the index induces an isomorphism between

K 0
G,c(T

∗
G MX ) and F̃(X). Moreover there is a very precise description of the group

F̃(X).

1.2.1. The case S1. For s = 1, or G = S1 we denote by t the basic character of
S1 := {t | |t | = 1}, so that R(S1) = Z[t, t−1]. We write generalized functions by
their generating series

∑
n∈Z antn .

When S1 acts by homotheties on C
k+1 we have C

k+1 = MX and X =
[t, t, . . . , t], k + 1 times. We start by describing Theorem 1 in this special case.

By the “pushed” ∂ operator we get the generalized function

�X (t) :=
∞∑

n=0

(
n + k

k

)

tn

where
(

n + k

k

)

= (n + k)(n + k − 1) . . . (n + 1)

k! , n ≥ 0

is the partition function for X = {1, . . . , 1}
︸ ︷︷ ︸

k+1

.

In this case we only have two chambers and the other partition function

(−n + k

k

)

, n ≤ 0

for X = {−1, . . . ,−1}
︸ ︷︷ ︸

k+1

.

The map n �→ (n+k
k

)
is a polynomial function on Z which, for any n positive or

negative, represents the dimension of a virtual space, the alternate sum of the coho-
mology spaces of the sheaf O(n) on k-dimensional projective space.
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62 C. Procesi

One easily sees that this function gives the Fourier coefficients of a generalized
function θk(t) := ∑∞

n=−∞
(n+k

k

)
tn, on S1 supported at t = 1. In fact for k = 0

the generalized function θ0(t) := ∑∞
n=−∞ tn, is the Fourier expansion of the delta

function δ1 and we obtain θk(t) by applying suitable derivatives to θ0(t).
One can prove that the tangential Cauchy–Riemann operator, on the unit sphere

S2k+1 of C
k+1, is a transversally elliptic operator with index θk(t).

Proposition 1.3 The index map is an isomorphism from K 0
S1,c

(T ∗
S1 MX ) to the space

F̃(X) of generalized functions on S1 generated by �X and θX = θk(t) under multi-
plication by elements of R(S1) = Z[t, t−1].
In fact the R(S1) module generated by �X is free over R(S1).

The R(S1) module generated by θX is the torsion submodule.

• This submodule is the module of polynomial functions on Z of degree at most k so
it is a free Z-module of rank k + 1.

• It corresponds to indices of operators on C
k+1 − {0}, the set where S1 acts freely

• It is the space of solutions of the difference equation ∇k f = 0, where we define
the operator ∇ by (∇ f )(n) = f (n) − f (n − 1).

1.3.1. Higher dimension. In higher dimensions, the single difference equation ∇k f =0
must be replaced by a system of difference equations, discovered by Dahmen–Mic-
chelli as the natural generalization of a system of differential equations associated to
splines in approximation theory.

We need a basic definition of combinatorial nature. Consider a sequence X of
integral vectors (i.e. weights of a torus G with character group 	).

Definition 1.4 We say that a sublist Y ⊂ X is a cocircuit, if the elements in X\Y do
not span V and Y is minimal with this property.

For an integral vector a ∈ 	 (often identified with Z
s) define the translation oper-

ator τa and the difference operator ∇a by

τa( f )(x) := f (x − a), ∇a = 1 − τa .

These operators act on functions on Z
s . For a list Y of integral vectors we set ∇Y :=∏

a∈Y ∇a and introduce thus the system of difference equations ∇Y f = 0 associated
to cocircuits Y of X ⊂ Z

s . The space of solutions is denoted by DM(X). There is a
beautiful Theory of this space which we will in part recall presently (cf. Definition
7.5).

Recall the Z[Zs] module F̃(X) of functions on Z
s generated by all the partition

functions PA,−B for all the chambers.

Theorem 1 The index induces an isomorphism between K 0
G,c(T

∗
G MX ) and F̃(X).

Moreover there is a very precise description of the group F̃(X).
The main result is about the open set M f

X of MX where G acts with finite stabilizers.
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Splines and index theorem 63

Theorem 2 The index map induces an isomorphism between K 0
G,c(T

∗
G M f

X ) and the
space DM(X).

For the general case we need some associated spaces of functions, generalizing
DM(X). We thus introduce the spaces F̃i (X) associated to the orbit types in MX .

Any linear subspace r generated by vectors in X is called a rational subspace, we
denote by SX the set of all rational subspaces. We define:

F(X) := { f | ∇X\r f is supported on r for every rational subspace r}.

Clearly DM(X) is contained in F(X).
One can show that F̃(X) is the space of functions generated by F(X) under trans-

lations by integral vectors.
Denote by S(i)

X the subset of subspaces r ∈ SX of dimension i . Define the spaces

Fi (X) := ∩
t∈S(i−1)

X
ker ∇X\t ∩ F(X).

Denote by F̃i (X) the space of functions generated by Fi (X) under translations by
integral vectors. Set M≥i as the open set of points in MX with the property that the
orbit has dimension ≥ i .

Theorem 3 For each s ≥ i ≥ 0, the index multiplicity map indm gives an isomor-
phism between K 0

G(T ∗
G M≥i ) and the space F̃i (X).

Finally one has very explicit descriptions of DM(X) and of the spaces F̃i (X) which
are built from various spaces DM(Xi ).

We then investigate the formulas allowing us to pass from equivariant K -theory to
equivariant cohomology.

In order to understand these explicit formulas in [18] we have introduced the infini-
tesimal index, called for short “infdex”, a map from the equivariant cohomology, with
compact supports, of the zeroes of the moment map to distributions on g∗.

We have proved several properties for this map which, at least in the case of the
space T ∗

G M, in principle allow us to reduce the computations to the case in which G
is a torus and the manifold is a complex linear representation MX of G. Where X is a
list of characters as before.

The equivariant cohomology of the open sets MX,≥i can be computed from the
structure of the algebra S[g∗][(∏a∈X a)−1] as a module over the Weyl algebra studied
in [17].

The equivariant cohomology with compact supports H∗
G,c(T

∗
G M f in

X ) of T ∗
G M f in

X
is isomorphic, as a S[g∗]-module, to a remarkable finite dimensional space D(X) of
polynomial functions on g∗, where S[g∗] acts by differentiation. The space D(X) is
the continuous analogue of DM(X) and it is defined as the space of solutions of a set
of linear partial differential equations combinatorially associated to X and has been
of importance in approximation theory (see for example [13,14]). In fact in a natural
way D(X) is a component of DM(X)C and it coincides with DM(X)C in the special
case of X unimodular 7.2.
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64 C. Procesi

At this point the notion of infinitesimal index comes into play. One can show,
Theorem 34, that the infinitesimal index gives an isomorphism between H∗

G,c(T
∗
G M f in

X )

and D(X). After this one shows that, for each i, the infinitesimal index establishes an
isomorphism between H∗

G,c(T
∗
G MX,≥i ) and a space of splines G̃i (X), introduced in

[19] and analogous to the arithmetic spaces F̃i (X), and generalizing D(X).
Then Theorem 37 is a deconvolution formula which allows us to compute the func-

tion indm(A) in function of the distribution infdex(ch(�)) by applying to it a Todd
operator.

In order to develop this formula one needs results obtained by Dahmen–Micchelli
in the purely combinatorial context of the semi-discrete convolution with the Box
spline.

In this paper we do not give details for the proofs which can be found in the papers
quoted.

Part 1. Polytopes and splines

2 Polytopes

Polytopes play a special role in the Theory. A convex polytope can be defined as the
convex envelop of finitely many points or by finitely many linear inequalities. We take
this second point of view and study polytopes which vary into families.

2.1 From a list of vectors

We start from a real, sometimes integer n × m matrix X . We always think of X :=
(a1, . . . , am) as a list of vectors in V = R

n, its columns. We assume that 0 is NOT in
the convex hull of its columns.

From A we make several constructions, algebraic, combinatorial, analytic etc.
Many people have contributed to the Theory from various branches of mathematics.

From numerical analysis: A.A. Akopyan; Ben-Artzi, Asher; C.K. Chui, C. De Boor,
W. Dahmen, H. Diamond, N. Dyn, K. Höllig, C. Micchelli, Jia, Rong Qing, A. Ron,
A.A. Saakyan.

From geometry and combinatorics: In fact a lot of work originated from the
seminal paper of Khovanskiı̆, Pukhlikov, who interpret the counting formulas as
Riemann–Roch formulas for toric varieties. We should also mention Orlik and Solo-
mon on cohomology, Baldoni, Brion, Szenes, Vergne, Jeffrey and Kirwan, on partition
functions, polytopes etc.

From enumerative combinatorics: A.I. Barvinok, Matthias Beck, Sinai Robins,
Richard Stanley.

From X we produce first a system of linear equations:

m∑

i=1

ai xi = b, or X x = b, X := (a1, . . . , am) (1)
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Splines and index theorem 65

The columns ai , b are vectors with n coordinates a j,i , b j , j = 1, . . . , n.
As in Linear Programming Theory we deduce and want to study the, convex and

bounded, variable polytopes:

�X (b) := {x | X x = b, xi ≥ 0, ∀i}, �1
X (b) := {x | X x = b, 1 ≥ xi ≥ 0, ∀i}.

The variable polytope �X (b) is empty unless b belongs to C(X) := {∑m
i=1 xi ai ,

xi ≥ 0}, the cone of positive combinations of the ai . The hypothesis that 0 is NOT in
the convex hull of the ai implies that C(X) is pointed, i.e. there is a linear function φ

with φ(ai ) > 0 for all i so that φ(ai ) > c > 0/ In other words φ is strictly positive on
all non zero points of C(X).

The property of being bounded is trivial for �1
X (b) while for �X (b) depends on

the fact that

∑

i

xi ai = b �⇒
∑

i

xiφ(ai ) = φ(b) �⇒
∑

i

xi < φ(b)c−1.

The polytopes �1
X (b) are sections of a hypercube,

The object of study are two basic functions

• Set TX (x), BX (x) to be the volume of �X (x),�1
X (x).

• If X, b have integer coordinates set PX (x) to be the number of solutions of the
system in which the coordinates xi are non negative integers.

• In other words PX (x) is the number of integral points in the variable polytope
�X (x).

Up to a multiplicative normalization constant: TX (x) is the Multivariate-spline,
BX (x) the Box-spline, PX (x) is called the partition function. We are interested in
computing the three functions TX (x), BX (x), PX (x) and describe their qualitative
properties.

We shall discuss applications of these functions to arithmetic, numerical analysis,
Lie theory and Index Theory.
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66 C. Procesi

An important example is when X is the list of positive roots of a root system, e.g. B2:

X =
∣
∣
∣
∣
−1 1 1 0
1 0 1 1

∣
∣
∣
∣

The associated cone C(X) has three big cells (cf. Sect. 2.9):

In the literature of numerical analysis the Box spline associated to the root system B2
is called the Zwart–Powell or ZP element, 2TX is 0 outside the cone and on the three
cells (Fig. 1):

The computation of the box-spline has some geometric, combinatorial and alge-
braic flavor. It appears as a piecewise polynomial function on a compact polyhedron.
From simple data we get soon a complicated picture! (Fig. 2).

2.2. The partition function

When X, b have integer entries, it is natural to think of an expression like: b =
t1a1 +· · ·+ tmam, with ti not negative integers, as a partition of b with the vectors ai ,

Fig. 1 The area and the shape as b = (x, y) varies in the cone
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Splines and index theorem 67

Fig. 2 The box spline 2BX , ZP element

in t1 + t2 + · · · + tm parts, hence the name partition function for the number PX (b),

thought of as a function of the vector b.
Of special interest is the case when the ai are numbers. Given positive integers

h := (h1, . . . , hm), the problem of counting the number of ways in which a positive
integer n can be written as a linear combination

∑n
i=1 ki hi , with the ki again positive

integers, is a basic question in arithmetic. Denote by Ph(n) this number.

Example 2.3 m = 2, n = 1, X = {2, 3}. In how many ways can you write a number
b as: b = 2x + 3y, x, y ∈ N? The answer depends on the class of n modulo 6

n

6
+ 1,

n

6
− 1

6
,

n

6
+ 2

3
,

n

6
+ 1

2
,

n

6
+ 1

3
,

n

6
+ 1

6

A function on a lattice 	 which is a polynomial on each coset of some sublattice
M of finite index is called a quasi-polynomial.
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Fig. 3 The partition function for A2

For the root system A2 we may take X =
∣
∣
∣
∣
1 0 1
0 1 1

∣
∣
∣
∣. The corresponding partition

function PX is piecewise polynomial with top degree coinciding with TX (Fig. 3).

Example 2.4 In Lie theory the Kostant partition function counts in how many ways
can you decompose a weight as a sum of positive roots.

This is used in many computations.

2.4.1. The case of integers. The number Ph(n) of ways in which n is written as
combination of m numbers hi is already studied by Euler and called by Sylvester a
denumerant. The first results on denumerants are due to Cayley and Sylvester, who
proved that such a denumerant is a polynomial in n of degree m − 1 plus a periodic
polynomial of lower degree called an undulant. A different approach is also developed
by Bell in (1943). One starts with

Lemma 2.5 Ph(n) is the coefficient of xn in the power series expansion of:

Sh(x) :=
m∏

i=1

1

1 − xhi
=

∞∑

n=0

Ph(n)xn .

In order to compute for a given n ≥ 0, the coefficient Ph(n) of xn in Sh(x) we can
use two essentially equivalent strategies:

1. Develop Sh(x) in partial fractions.
2. Compute the residue

1

2π i

∮
x−n−1

∏
i 1 − xhi

dx

around 0.
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In both cases first we must expand in a suitable way the function Sh(x). Given k

let us denote by ζk := e
2π i

k , a primitive kth root of 1; we can write

Sh(x) =
m∏

i=1

hi −1∏

j=0

1

1 − ζ
j

hi
x
. (2)

Let μ be the least common multiple of the numbers hi , and write μ = hi ki . If
ζ = e2π i/μ, we have ζhi = ζ ki therefore we have

Lemma 2.6

Sh(x) =
∏

i

1

1 − xhi
=

m∏

i=1

hi −1∏

j=0

1

1 − ζ ki j x
=

μ−1∏

�=0

1

(1 − ζ �x)b�

where the integer b� is the number of ki which are divisors of �.

In particular the function x−n−1Sh(x), n ≥ 0 has poles at 0 and at the μth roots of
1 (but not at ∞).

The classical method starts from the fact that there exist numbers ci for which:

μ−1∏

i=0

1

(1 − ζ i x)bi
=

μ−1∑

i=0

bi∑

k=1

ci,k

(1 − ζ i x)k
. (3)

We then use the simple formula:

1

(1 − t)k
=

∞∑

h=0

(
k − 1 + h

h

)

th (4)

to get:

μ−1∏

i=0

1

(1 − ζ i x)bi
=

μ−1∑

i=0

bi∑

k=1

ci,k

[ ∞∑

h=0

(
k − 1 + h

h

)

(ζ i x)h

]

. (5)

We have thus obtained a formula for the coefficient

Ph(n) =
μ−1∑

i=0

ζ in

⎡

⎣
bi∑

k=1

ci,k

(
k − 1 + n

n

)
⎤

⎦ .

Let us remark now that

(
k − 1 + n

n

)

= (n + 1)(n + 2) · · · (n + k − 1)

(k − 1)!
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is a polynomial of degree k −1 in n, while the numbers ζ in depend only from the coset
of n modulo μ. Given an 0 ≤ a < μ and restricting us to the numbers n = μk + a,

we have:

Theorem 4 The function Ph(mk + a) is a polynomial in the variable k of degree
≤ max(bi ), that can be computed.

The fact that Ph(n) is a polynomial on every coset means that it is a quasi-polynomial
or a periodic polynomial.

Second method: computation of residues
Here the strategy is the following: shift the computation of the residue to the

remaining poles, taking advantage of the fact that the sum of residues at all the poles
of a rational function is 0.

From the theory of residues we have:

1

2π i

∮ ∏

i

x−n−1

1 − xhi
dx = −

μ−1∑

j=1

1

2π i

∮

C j

μ∏

t=1

x−n−1

(1 − ζ t x)bt
dx

where C j is a small circle around ζ− j . In order to compute the term

1

2π i

∮

C j

μ∏

t=1

x−n−1

(1 − ζ t x)bt
dx (6)

we perform the change of coordinates x = w + ζ− j obtaining:

1

2π i

∮

C j −ζ− j

μ∏

t=1

(w + ζ− j )−n−1

(1 − ζ t− j − ζ tw)bt
dw.

Finally we have that (6) equals:

(−1)b j

2π i

∮

C j −ζ− j

ζ j (n+1−b j )

( ∞∑

k=0

(−1)k
(

n + k

k

)

ζ jkwk

)( ∞∑

h=0

a j,hwh

)

w−b j dw

= (−1)b j ζ j (n+1−b j )
∑

k+h=b j −1

(−1)kζ jk
(

n + k

k

)

a j,h .

Summing over j we obtain an explicit formula for Ph(n), again as a quasi-
polynomial.

Remark that, in order to develop these formulae it suffices to compute a finite
number of coefficients a j,h .

In these formulae roots of unity appear while the final partition functions are clearly
integer valued. An algorithmic problem remains. We need to know how to manipulate
these expressions involving roots on 1.
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This is an elementary but computationally very complex problem on cyclotomic

polynomials. Set ζk := e
2π i

k a primitive root of 1. Define:

ψ(k, x) := trQ(ζk)

Q
(ζ x

k ), x ∈ Z.

This is a periodic integral valued function, computable through the Möbius function
and the Euler φ function. One can use these functions in order to find explicit formulas
for the partition function. For instance:

Example 2.7 (X = 2, 3, 4, 4, 6, 9, 10, 40).

• The formula is over all the roots of 1 of order a divisor of an element in X .
• The 10 Galois orbits of primitive roots correspond to the divisors 2, 3, 4, 5, 6, 8, 9,

10, 20, 40.
• The quasi-polynomial associated to the partition function, decomposes according

to the divisors.

This has been computed with Mathematica and it is:
1262093963
2985984000 + 252100403 x

2508226560 + 81263 x2

2457600 + 3303691 x3

995328000 + 27443 x4

199065600 + 1639 x5

597196800 + 13 x6

497664000 +
x7

10450944000+ 1173757 ψ(2,x)
4096000 + 483129 x ψ(2,x)

4096000 + 26273 x2ψ(2,x)
2457600 + 1621 x3ψ(2,x)

4423680 + 13 x4ψ(2,x)
2457600 +

x5 ψ(2,x)
36864000 + 1009 ψ(3,x)

5832 − 11 x ψ(3,x)
4374 − x2 ψ(3,x)

8748 − 149 ψ(3,1+x)
972 − 13 x ψ(3,1+x)

729 −
x2 ψ(3,1+x)

4374 + 81 ψ(4,x)
1280 + 39 x ψ(4,x)

10240 + x2 ψ(4,x)
20480 + 117 ψ(4,1+x)

10240 + 3 x ψ(4,1+x)
10240 + 89 ψ(5,x)

10000 +
x ψ(5,x)

5000 + 123 ψ(5,1+x)
10000 + 3 x ψ(5,1+x)

10000 + 111 ψ(5,2+x)
10000 + 3 x ψ(5,2+x)

10000 + 67 ψ(5,3+x)
10000 +

x ψ(5,3+x)
5000 − ψ(6,x)

648 + ψ(6,1+x)
324 − ψ(8,1+x)

640 − 2 ψ(9,x)
81 + ψ(9,2+x)

81 − ψ(9,3+x)
81 − ψ(9,4+x)

81 +
13 ψ(10,x)

10000 + 169 ψ(10,1+x)
10000 + x ψ(10,1+x)

2000 − 221 ψ(10,2+x)
10000 − x ψ(10,2+x)

2000 + 13 ψ(10,3+x)
10000 +

ψ(20,1+x)
200 − ψ(20,2+x)

200 + ψ(20,3+x)
400 + ψ(20,4+x)

400 + ψ(20,5+x)
400 − ψ(20,6+x)

200 + ψ(20,7+x)
200 −

3 ψ(40,3+x)
80 − ψ(40,4+x)

80 − ψ(40,5+x)
80 − ψ(40,6+x)

20 − ψ(40,7+x)
40 − ψ(40,9+x)

20 − ψ(40,11+x)
40 −

ψ(40,12+x)
20 − ψ(40,13+x)

80 − ψ(40,14+x)
80 − 3 ψ(40,15+x)

80

2.8 Main objects associated to X

We now go back to the general case of a list X = {a1, . . . , am} of vectors. We think
of the elements ai as linear equations defining hyperplanes in the dual space U = V ∗.
This is a central hyperplane arrangement.

One way to study this arrangement is to study the algebra of rational functions
which have poles only on this arrangement. That is we consider the algebra

RX := S[V ]
[

m∏

i=1

a−1
i

]

of polynomials S[V ] localized at
∏m

i=1 ai .
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The algebra RX consists of those rational functions which have at the denominator
a product of powers of the linear forms ai . It is clearly a module under the Weyl
algebra of differential operators with polynomial coefficients and we analyze in depth
the module structure.

When the coordinates of the elements ai = (ai,1, . . . , ai,s) are integers we take
instead a multiplicative point of view and think of ai as a character

∏s
j=1 x

ai, j
j .

This defines a subgroup of the torus (C∗)s the points in which the character is 1 or
where 1 −∏s

j=1 x
ai, j
j vanishes.

This is call a central toric arrangement (by the exponential map this corresponds
in fact to a periodic hyperplane arrangement).

One way to study this arrangement is to study the algebra of Laurent polynomials
S[x±1

1 , . . . , x±1
s ] localized at

∏m
i=1(1 −∏s

j=1 x
ai, j
j ) that is the algebra

S[x±1
1 , . . . , x±1

s ]
⎡

⎢
⎣

m∏

i=1

⎛

⎝1 −
s∏

j=1

x
ai, j
j

⎞

⎠

−1
⎤

⎥
⎦ .

We study also this as a module over the algebra of differential operators with coef-
ficients Laurent polynomials.

2.9 The theorems

There are several general formulas to compute the previous functions which are
obtained by a mixture of techniques.

A main geometric notion that plays a role is that of big cells. Assume that X spans V .

• The singular points Csing(X) are the points in the cone C(X) lying in some cone
C(Y ) for any sublist Y of X which does NOT span the ambient space.

• The other points are called regular.
• A big cell is a connected component of the set or regular points.

In other words, take all the hyperplanes H spanned by sublists of X and then the cones
C(H ∩ X). The union of all these cones forms the set of singular vectors.

It is easy to see that the big cells are convex polyhedra.
Take all bases b extracted from X, for each basis consider the cone C(b) generated

by b. Its boundary is made of singular points.
A standard fact of polyhedra is that C(X) = ∪bC(b) so if a point p ∈ C(X) is

regular it lies either in the interior
◦
C (b) of outside each C(b). It follows that the big cell

c in which p lies is the intersection of all the
◦
C (b) containing it: c = ∩

b | p∈ ◦
C(b)

◦
C (b).

Example 2.10 The positive roots of type A3 are α1, α2, α3, α1 + α2, α2 + α3, α1 +
α2 + α3.

We want to decompose the cone C(X) into big cells and see its singular and regular
points. We do this on a transversal section (Fig. 4).
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Fig. 4 The 7 big cells for type A3 in cross section

2.10.1. Towards the Jeffrey–Kirwan formula. Assume X spans R
n . Let m(X) denote

the minimum number of columns that one can remove from X so that the remaining
columns do not span R

n .

(i) TX (x) has support on the cone C(X).
(ii) TX (x) is of class m(X) − 2.

(iii) TX (x) coincides with a homogeneous polynomial of degree m − n on each big
cell.

In order to compute TX (x) we need to

(i) Determine the decomposition of C(X) into cells.
(ii) Compute on each big cell the homogeneous polynomial of degree m − n coin-

ciding with TX (x).

One can find explicit polynomials pb,X (x), indexed by a combinatorial object
called unbroken bases (see Sect. 3.1) and characterized by certain explicit differential
equations so that, given a point x in the closure of a big cell c we have the (cf. Sect.
9.6.1)

Jeffry–Kirwan residue formula TX (x) =
∑

b | c⊂C(b)

| det(b)|−1 pb,X (−x).

From TX one computes BX . For a given subset S of X define aS := ∑
a∈S a; the

basic formula is:

BX (x) =
∑

S⊂X

(−1)|S|TX (x − aS).

So TX is the fundamental object.
Notice that the local pieces of BX are no more homogeneous polynomials.
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3 Combinatorics

3.1 Unbroken bases

We now explain some ideas relating unbroken bases with cells.
From the theory of matroids to cells.
Let c := ai1 , . . . , aik ∈ X, i1 < i2 · · · < ik, be a sublist of linearly independent

elements.

Definition 3.2 We say that ai breaks c if there is an index 1 ≤ e ≤ k such that:

• i ≤ ie.
• ai is linearly dependent on aie , . . . , aik .

Example 3.3 Take as X the list of positive roots for type A3.

X = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

We have 16 bases 10 broken and 6 unbroken, all contain necessarily α1:

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3.

The overlapping theorem states that, by overlapping the cones generated by the unbro-
ken bases one obtains the entire decomposition into big cells!!

PROBLEM: Describe the previous pictures for root systems. For type An the unbro-
ken bases are known and can be indexed by certain binary graphs or by permutations
of n elements. The decomposition into cells is unknown.

3.3.1. The zonotope. The box spline BX (x) is supported in the compact polytope:
called the zonotope:

B(X) :=
{

m∑

i=1

ti ai

}

, 0 ≤ ti ≤ 1, ∀i.

When X is the set of positive roots of a root system and ρ := 1/2
∑

a∈X a we have:

Theorem 5 B(X) − ρ is the convex envelop of the orbit of ρ under the action of the
Weyl group.
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The zonotopes associated to the root system A3 B3

We now want to describe the faces of B(X). Consider a sublist A of X spanning a
hyperplane H0 and such that A = H0 ∩ X .

Take a linear equation φH0 for H0 and set

B = {a ∈ X |〈φH0 | a〉 > 0}, C = {a ∈ X |〈φH0 | a〉 < 0}.

Let A, B be two disjoint sublists of X such that A does not span V and B(A) its
associated zonotope. Let

B(X)A,B :=
∑

ai ∈A

ti ai +
∑

b∈B

b, 0 ≤ ti ≤ 1 = B(A) + λB

with λB := ∑
b∈B b.

Proposition 3.4 • B(X)A,B and B(X)A,C are exactly the two codimension one faces
in B(X) parallel to H0.

• All codimension 1 faces occur in this way.

Let HX be the real hyperplane arrangement defined, in dual space, by the vectors
of X thought of as linear equations.

Theorem 6 • There is an order reversing 1–1 correspondence between faces of
B(X) and faces of HX .

• To a face G of the hyperplane arrangement we associate the set of points in B(X)

where any element f ∈ G takes its maximum value.
• This is the face B(X)A,B where A := {x ∈ X | 〈x | f 〉 = 0} and B := {x ∈

X | 〈x | f 〉 > 0}.
The zonotope B(X) has a nice combinatorial structure, proved by Shephard, it can

be paved by a set of parallelepipeds indexed by all the bases which one can extract
from A!

123



76 C. Procesi

Example 3.5 In the next example

X =
∣
∣
∣
∣
1 0 1 −1 2 1
0 1 1 1 1 2

∣
∣
∣
∣

we have 15 bases and 15 parallelograms.

X =
∣
∣
∣
∣
1 0 1 −1 2 1
0 1 1 1 1 2

∣
∣
∣
∣

This can be constructed stepwise adding a vector at a time.

=
∣
∣
∣
∣
1 0 1 −1 2 1
0 1 1 1 1 2

∣
∣
∣
∣

START WITH

X =
∣
∣
∣
∣
1 0
0 1

∣
∣
∣
∣
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Then

∣
∣
∣
∣
1 0 1
0 1 1

∣
∣
∣
∣

∣
∣
∣
∣
1 0 1 −1
0 1 1 1

∣
∣
∣
∣

and so on.

4 Splines

By Fubini’s Theorem the volume VX (x), of the variable polytope �X (x), is√
det X Xt TX (x). The function TX (x) called multivariate spline is characterized by

the formula:

∫

Rn

f (x)TX (x)dx =
∫

R
m+

f

(
m∑

i=1

ti ai

)

dt,

where f (x) is any continuous function with compact support.
In general TX (x) is a tempered distribution, supported on the cone C(X), only

when X has maximal rank TX (x) is a function.
While the function TX (x) is the basic object, the more interesting object for

numerical analysis is the box spline, that is the function BX (x) characterized by the
formula:
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Fig. 5 The function b5(x)

∫

Rn

f (x)BX (x)dx =
∫

[0,1]m

f

(
m∑

i=1

ti ai

)

dt,

where f (x) is any continuous function.

Example 4.1 The bm-spline of Schoenberg X = {1, 1, . . . , 1}, m +1-times is of class
Cm−1, it is supported in the interval [0, m + 1], and given by the formula:

bm(x) :=
k∑

i=0

(−1)i
(

m + 1

i

)
(x − i)m

m! , ∀x ∈ [k, k + 1].

4.1.1. Properties of box-splines.

∫

Rn

BX (x)dx = 1, B[X,v](x) =
1∫

0

BX (x − tv)dt

In the case of integral vectors, we have that the translates BX (x − λ), as λ runs over
the integral vectors form a partition of 1 (Fig. 5).

4.2 Approximation theory

The box spline, when the ai are integral vectors, can be effectively used in the finite
element method to approximate functions.

We define the Cardinal spline space as in [31].

SX :=
{
∑

i∈Zs

BX (x − i)ai

}

The function ai on Z
s is called a mesh function.

Define D(X) to be the space of polynomials contained in SX .
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For a function f we have the semi-discrete convolution

f �→ BX ∗′ f :=
∑

i∈Zs

BX (x − i) f (i)

The theory of Dahmen–Micchelli consists of several Theorems.
The basic results are:

• Semi-discrete convolution maps D(X) into D(X).
• The dimension of D(X) equals the number of bases which one can extract from X .
• D(X) contains all polynomials of degree < m(X) (m(X) is the minimum length of

a cocircuit).
• D(X) is the space of solutions of the differential equations DY f = 0 as

(i) Y runs over the cocircuits of X .
(ii) DY := ∏

a∈Y Da

(iii) Da is the directional derivative relative to a.

Example 4.3 The cardinal spline space associated to bm(x) is the space of all functions
of class Cm−1 which, on each interval [n, n + 1], n ∈ Z coincide with a polynomial
of degree ≤ m.

5 Algebra

How to compute TX ? or the partition function PX ? We use the Fourier–Laplace trans-
form L f (u) := ∫

V e−〈u | v〉 f (v)dv which will change the analytic problem to one in
algebra.

In coordinates u = (y1, . . . , ys), v = (x1, . . . , xs) we have

L f (y1, . . . , ys) :=
∫

Rs

e−∑s
i=1 yi xi f (x1, . . . , xs)dx1 . . . dxs .

5.0.1. Basic properties. Given p ∈ U, w ∈ V, write p, Dw for the linear function
〈p | v〉 and the directional derivative on V . We then have:

L(Dw f )(u) = wL f (u), L(p f )(u) = −Dp L f (u), L(ep f )(u) = L f (u − p),

L( f (v + w))(u) = ew L f (u).

An easy computation gives the Laplace transforms:

L BX =
∏

a∈X

1 − e−a

a
, LTX =

∏

a∈X

1

a
.
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We need to rewrite LTX = ∏
a∈X a−1, for this we need to develop a theory of partial

fractions in several variables, in this case for the algebra

S[V ]
[
∏

a∈X

a−1

]

.

We do this using non commutative algebra.
Set W (V ), W (U ) be the two Weyl algebras of differential operators with polyno-

mial coefficients on V and U . Both algebras are generated by V ⊕ U with the same
relations so there is an algebraic Fourier isomorphism between these two algebras, so
any W (V ) module M becomes a W (U ) module, denoted by M̂ .

5.0.2. D-modules in Fourier duality. The Laplace transform gives rise, using the
previous construction, to an isomorphism of two modules under the two algebras
W (V ), W (U ).

1. The D-module DX := W (V )TX generated, in the space of tempered distributions,
by TX under the action of the algebra W (V ) of differential operators on V with
polynomial coefficients.

2. The algebra RX := S[V ][∏a∈X a−1] = W (U )d−1
X obtained from the polynomials

on U by inverting the element dX := ∏
a∈X a. The algebra RX is the coordinate ring

of the open set AX complement of the union of the hyperplanes of U of equations
a = 0, a ∈ X . It is a cyclic module under W (U ) generated by d−1

X .

It is well known that, once we invert an element in a polynomial algebra, we get a
holonomic module over the algebra of differential operators (cf. [12]).

In particular RX is holonomic, cyclic and it has a finite composition series. In
order to understand this composition series we observe that for each subspace W of
U we have an irreducible module NW (over W (U )) generated by the δ function of
W ( f �→ ∫

W f (w)dw).
To be explicit, take coordinates x1, . . . , xn ∈ V so that W = {x1 = x2 = · · · =

xk = 0}. NW is generated by an element δW satisfying: xiδW = 0, i ≤ k, ∂
∂xi

δ, i > k.

NW is free of rank 1 generated by δW over: C[x1, x2, . . . , xk,
∂

∂xk+1
, . . . , ∂

∂xn
].

In particular the composition factors of RX are of the form NW as W runs over the
subspaces of the hyperplane arrangement, in U, given by the equations ai = 0, ai ∈ X .
In order to explain this we exhibit an explicit filtration.

5.0.3. The filtration of RX by polar order

Definition 5.1 We denote by RX,k the span of all the fractions f
∏

a∈X a−ha , ha ≥ 0
for which the set of vectors a, with ha > 0, spans a space of dimension ≤ k.

• RX is filtered by the W (U )-submodules RX,k .
• We have RX,s = RX .

• For all k we have that RX,k/RX,k−1 is semisimple.
• The isotypic components of RX,k/RX,k−1 are of type NW as W runs over the sub-

spaces of the arrangement of codimension k.
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• The space RX,s/RX,s−1 is a free module over

S[U ] = C

[
∂

∂x1
, . . . ,

∂

∂xs

]

.

In fact a more precise statement holds. Denote by Rs
X the linear span of all the fractions

∏m
i=1 a−hi

i , hi ≥ 0 so that the ai with hi > 0 span the space.
Rs

X is a complement of RX,s−1 in RX,s and it is a free module over

S[U ] = C

[
∂

∂x1
, . . . ,

∂

∂xs

]

.

It is important to choose a basis.

Theorem 7 A basis for Rs
X ≡ RX,s/RX,s−1 over S[U ] is given by the elements∏

a∈b a−1 as b runs over the set of unbroken bases.

Denote by NB the unbroken bases extracted from X .
We have in particular an expansion of d−1

X = ∏
a∈X a−1

d−1
X =

∏

a∈X

a−1 =
∑

b∈NB
pb

∏

a∈b

a−1, pb ∈ S[U ] = C

[
∂

∂x1
, . . . ,

∂

∂xs

]

.

Example 5.2 A2 also called Courant element in the Theory of splines.

X = [x + y, x, y] = [x, y]
∣
∣
∣
∣
1 0 1
1 1 0

∣
∣
∣
∣

1

(x + y) x y
= 1

x (x + y)2 + 1

y (x + y)2 = − ∂

∂y

(
1

x (x + y)

)

− ∂

∂x

(
1

y (x + y)

)

Example 5.3 B2 also called ZP element in the Theory of splines.

X = [x + y, x, y,−x + y] = [x, y]
∣
∣
∣
∣
1 0 1 −1
1 1 0 1

∣
∣
∣
∣

1

(x + y) x y (−x + y)
= 1

(x + y)3x
+ 4

(x + y)3(−x + y)
− 1

(x + y)3 y

=1/2

[
∂2

∂2 y

(
1

(x + y)x

)

+
(

∂

∂x
+ ∂

∂y

)2 ( 1

(x+y)(−x+y)

)

− ∂2

∂2x

(
1

(x+y) y

)]
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We now need the basic inversion. Let X = {a1, . . . , an} be a basis, d :=
| det(a1, . . . , as)| and χC(X) the characteristic function of the positive quadrant C(X)

generated by X .

L(d−1χC(X)) =
n∏

i=1

a−1
i

We want to invert

d−1
X =

∑

b∈NB
pb,X

(
∂

∂x1
, . . . ,

∂

∂xs

)∏

a∈b

a−1.

From the basic example and the properties we get

L−1d−1
X =

∑

b∈NB
pb,X (−x1, . . . ,−xs)d

−1
b χC(b).

Inverting

1/2

[
∂2

∂2 y

(
1

x (x+y)

)

+
(

∂

∂x
+ ∂

∂y

)2 ( 1

(x + y)(−x + y)

)

− ∂2

∂2x

(
1

y (x + y)

)]

we get

1/2

[

y2χC((1,0),(1,1)) + (x + y)2

2
χC((1,1),(−1,1) − x2χC((0,1),(1,1))

]

.

The same analysis for the ZP element leads to Fig. 1.

5.4 The theory of Dahmen–Micchelli

Given a vector a denote by Da the directional derivative, a first order operator. For a
list Y of vectors set DY := ∏

a∈Y Da, a differential operator of order |Y | with constant
coefficients.

We now fix, as usual, a list X of vectors spanning V .
For a given unbroken basis b, consider the element Db := ∏

a /∈b Da . The polyno-
mials pb,X are characterized by the differential equations

DY p = 0, ∀Y, a cocircuit in X, Db pc,X (x1, . . . , xs) =
{

1 if b = c

0 if b �= c
.
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5.4.1. A remarkable space of polynomials.

D(X) := {p | DY p = 0, ∀Y, a cocircuit in X}

By a theorem of Dhamen Micchelli dim D(X) equals the total number of bases
extracted from X, the polynomials pb,X form a basis for the part of top degree m − n
of D(X).

The graded dimension of D(X) is given by HX (q) = ∑
b∈B(X) qm−n(b). The num-

ber n(b) (called external activity in the Theory of Matroids) is the number of elements
of X breaking b.

For A3 the graded dimension is: 6q3+6q2+3q+1. Remark that for all polynomials
in three variables the generating function for the dimension is: . . .+10q3+6q2+3q+1.

6 Approximation

The aim of this section is to explain some motivations, for the study of box-splines,
coming from numerical analysis.

6.1 The Strang–Fix conditions

The interest of the space of polynomials D(X) comes in approximation theory from the
problem of studying the approximation of a function f (x), on R

s, by the finite element
method (cf. Strang and Fix [33]). Using a box-spline we construct the approximations:

BX ∗′ f := f (x) �→
∑

i∈Zs

BX (x − i) f (i), semi-discrete convolution.

Or at order n ∈ N:

f (x) �→
∑

i∈Zs

BX (nx − i/n) f (i/n).

In general, given a function M(x) with compact support (as BX ) we want to find
optimal weights ci (n) in order to approximate f by f (x) �→ ∑

i∈Zs M(nx−i/n)ci (n)

and determine a constant k ∈ N so that on any given bounded region there is a constant
C, independent of n with:

∣
∣
∣
∣
∣
∣

f (x) −
∑

i∈Zs

M(nx − i/n)ci (n)

∣
∣
∣
∣
∣
∣
≤ Cn−k, ∀n.

The maximum k is the approximation power of M(x).
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Given a spline M(x) on R
s, with compact support one may define the cardinal

spline space to be the space SM of all (infinite) linear combinations:

SM :=
⎧
⎨

⎩

∑

i∈Zs

M(x − i)ci

⎫
⎬

⎭
.

The approximation power of M(x) is related to two questions:

1. For which polynomials f (x) we have that
∑

i∈Zs M(x − i) f (i) is a polynomial?
2. Which polynomials lie in the cardinal spline space?

Theorem 8 A polynomial f (x) is in the cardinal spline space of BX if and only if

DY f = 0, ∀Y ⊂ X | the span of X\Y is not V

In other words DY f = 0, ∀Y ⊂ X which are cocircuits.
The Strang–Fix conditions is a general statement:
The approximation power of a function M is the maximum r such that the space of

all polynomials of degree ≤ r is contained in the cardinal space SM .
For the cardinal spline space in the case BX (x) with X integral we have:

1. D(X) is characterized as the space of polynomials f (x) which reproduce, i.e. map
to polynomials under the semi-discrete convolution.

2. D(X) is also characterized as the space of polynomials lying in the cardinal spline
space.

The power of approximation by discrete convolution is measured by the maximum
degree of the space of polynomials which reproduce under discrete convolution.

6.1.1. Superfunctions. Consider the following algorithm applied to a function g:

gh :=
∑

i∈	

F(x/h − i)g(hi), h = 1, 2, . . . .

There are functions F in the cardinal spline space such that this transformation is
the identity on polynomials of degree < m(X), these are the super-functions. For
such functions the previous algorithm satisfies the requirements of the Strang–Fix
approximation

Theorem 9 We have, under the explicit algorithm previously constructed that, for any
domain G:

|| fh − f ||L∞(G) = O(hm(X)).

For every multi-index α ∈ N
s with |α| ≤ m(X) − 1, we have:

||∂α fh − ∂α f ||L∞(G) = ||∂α( fh − f )||L∞(G) = O(hm(X)−|α|).
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Theorem 10 When p ∈ D(X) we have that also BX ∗′ p ∈ D(X).
This defines a linear isomorphism F of D(X) to itself, given explicitly by the invert-

ible differential operator
∏

a∈X
1−e−Da

Da
.

• If R is any difference operator inverting BX ∗′ − on D(X) then RBX is a super-
function.

• We can then take as R a truncation of

Q :=
∏

a∈X

( ∞∑

i=0

∇ i
a

i + 1

)

.

Let us give as example some cases of the function sm(x) obtained by this procedure
from bm(x).
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Part 2. Arithmetic and combinatorics

7 Arithmetic

7.1 The partition function

The partition function is a quasi polynomial on each big cell, in fact on the larger
neighborhood c − B(X) of the big cell c.

We think of the partition function PX (b) = #{t1, . . . , tm ∈ N | ∑m
i=1 ti ai = b}

as a distribution
∑

λ∈	 PX (λ)δλ with Laplace transform
∑

λ∈	 PX (λ)e−λ =
∏

a∈X
1

(1−e−a)
.

There are explicit formulas relating the partition function PX with the multivariate
splines TA, A ⊂ X . One could derive the Formula of Example 2.7 in this way.

We used hyperplane arrangements in order to study multivariate splines, for parti-
tion functions we use toric arrangements.

7.2 The toric arrangement

Let T be the torus of character group 	, X a list of characters u X = ∏
a∈X (1 − ea)

and SX = C[	][u−1
X ] is the coordinate ring of the open set PX ⊂ T complement of

the union of the subgroups of T of equations ea = 1, a ∈ X . If a ∈ Z
s is a vector of

coordinates (n1, . . . , ns) we also write ea = ∏s
i=1 xni

i .
The toric arrangement is the finite set consisting of all the connected components of

the subvarieties obtained by intersecting the subgroups of T of equations ea =1, a ∈ X .
EXAMPLE s = 1, T = C

∗, X = {5, 3}
The arrangement consists of the connected components of the variety x5 = 1 or

x3 = 1, i.e. of the five, fifth roots of 1 and the three third roots of 1.
The elements of the toric arrangement are ordered by reverse inclusion, particu-

lar importance is given to the points of the arrangement, P(X) which are the zero-
dimensional, i.e. points, elements of the arrangement.

A very special case is when P(X) reduces to the point 1, this is the unimodular
case. For root systems the only unimodular case is An .

Each point p ∈ P(X) determines a sublist:

X p := {a ∈ X | ea(p) = 1}.

EXAMPLE ZP

X =
∣
∣
∣
∣
1 1 0 −1
1 0 1 1

∣
∣
∣
∣

The subgroups are

xy = 1, x = 1, y = 1, x−1 y = 1.
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We have two points in P(X)

(1, 1), (−1,−1).

X(1,1) = X, X(−1,−1) =
∣
∣
∣
∣
1 −1
1 1

∣
∣
∣
∣ .

7.3 The filtration

The formulas we are aiming at are built from basic functions. These are analogues, in
the discrete case, of the Laplace transforms of the characteristic functions of the cones
generated by bases extracted from X . Given a basis b of V = 	⊗ R, contained in 	,

we introduce the set

Rb =
⎧
⎨

⎩
λ ∈ 	 | λ =

∑

b∈b

pbb, with 0 ≤ pb < 1

⎫
⎬

⎭
. (7)

Notice that this is a set of coset representatives of 	 ∩ 〈b〉/	b. Given a character
φ : 	 → C

∗ which is 1 on b set

ξφ :=
∑

v∈	∩C(b)

e〈φ | v〉δv.

ξφ is a tempered distribution supported on the cone C(b) and its Laplace transform
has an analytic meaning and we get:

Proposition 7.4 The Laplace transform of ξφ equals

| det(b)| e(φ)
∏

a∈b(1 − e−a)
.

e(φ) :=
∑

λ∈Rb
e〈φ | λ〉e−λ

| det(b)| (8)

We filter SX by polar order that is SX,k is formed by all fractions which have at the
denominator a product

∏
a∈X (1 − ea)ha so that the a with ha > 0 span a subspace of

dimension ≤ k.
A connected component of the toric arrangement is of the form pP for some

subtorus P . For each connected component pP we have an irreducible module gen-
erated by the delta function.
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Concretely, if pP has codimension k we construct a copy NpP,b in SX,k/SX,k−1

as generated by the class of an element | det(b)| e(φ)
∏

a∈b(1 − e−a)
as b is a basis for

the span of the sublist X pP of the elements in X which are 1 on pP .

Theorem 11 SX,k/SX,k−1, decomposes as direct sum of the modules NpP,b as pP
runs over all components of the arrangement of codimension k and b over the unbroken
bases on pP.

For each pP, FpP is the isotypic component of type NpP .

Take the space of polar parts SP X := SX/SX,s−1, its isotypic components are Fφ

indexed by points of the arrangement.

SP X := SX/SX,s−1 = ⊕
φ∈P̃(X)

Fφ, Fφ = ⊕b∈NBXφ
Nb,eφ .

Let us consider the element vX , in SP X , class of the function
∏

a∈X (1 − e−a)−1.
Decompose it uniquely as a sum of elements vXφ in Fφ, each one of these elements
is uniquely expressed as a sum

vXφ =
∑

b∈NBXφ

qb,φωb,φ

for suitable polynomials qb,φ ∈ S[UC]. Thus:

vX =
∑

φ∈P̃(X)

∑

b∈NBXφ

qb,φωb,φ. (9)

The main formula that one can effectively use for computing the partition
function PX :

Theorem 12 Let � be a big cell, B(X) the box associated to X. For every x ∈
� − B(X),

PX (x) =
∑

φ∈P̃(X)

e〈φ | x〉 ∑

b∈NBXφ
| �⊂C(b)

|det (b)|−1qb,φ(−x). (10)

Finally we compute the contributions by residues.
The isotypic components appearing in grade k correspond to the connected com-

ponents of the toric arrangement of codimension k.
For the top part SX,n/SX,n−1 d we have a sum over the points of the arrangement

P(X).
The isotypic component associated to a point eφ decomposes as direct sum of

irreducibles indexed by the unbroken bases in Xφ := {a ∈ X | e〈a | φ〉 = 1}.
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7.4.1. Local structure of PX . The previous formula shows in particular, that the par-
tition function is on each cell a quasi polynomial, as for the case of the multivariate
spline:

The quasi polynomials appearing in the formula for PX satisfy special difference
equations.

Denote by C[	] the abelian group of Z-valued functions on 	.
If a ∈ 	, the difference operator ∇a( f )(x) := f (x) − f (x − a) acts on C[	].

Given X a list in 	 spanning the ambient space we define

Definition 7.5

DM(X) :=
{

f ∈ C[	] | ∇Y f =
∏

a∈Y

∇a f = 0

}

as Y runs over all cocircuits of X .

7.5.1. Second Theorem of Dahmen–Micchelli. The dimension of DM(X) is the
Volume δ(X) of the box B(X):

δ(X) =
∑

b∈B(X)

| det(b)|. (11)

This follows from a more precise statement.

Theorem 13 If r is a regular vector δ(r | X) := r − B(X) ∩ 	 has cardinality δ(X).
The restriction of DM(X) to Z valued functions on δ(r | X) is an isomorphism.

In other words the values on δ(r | X) of a function in DM(X) determine uniquely
this function and in particular DM(X) is a free abelian group of rank δ(X).

Example 7.6 (The binomial coefficients) X = {1, 1, . . . , 1}
︸ ︷︷ ︸

m+1

the zonotope B(X) =

[0, m + 1] is the interval.

In this case we only have one equation

∇1 f (x) = f (x) − f (x − 1), ∇m+1
1 f = 0.

The space of solutions has as integral basis the elements

(
x + k

m

)

= (x + k)(x + k − 1) . . . (x + k − m + 1)

m! , k = 0, . . . , m.

Take a regular point close to 0, 0 < a < 1 then

δ(a | X) = a − [0, m + 1] ∩ Z = [−m − 1 + a, a] ∩ Z = [−m, . . . , 0].
(

i + k

m

)

= 0, i ∈ [−k, . . . , m − 1 − k],
(

m − k + k

m

)

= 1.
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The partition function is
(x+m

m

)
. The matrix of the values of

(x+i
m

)
for i ∈ [0, m] at the

points 0,−1, . . . ,−m are given by the matrix, invertible over Z and establishes the
isomorphism of Theorem 13:

m = 10,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

92378 43758 19448 8008 3003 1001 286 66 11 1 0
43758 19448 8008 3003 1001 286 66 11 1 0 0
19448 8008 3003 1001 286 66 11 1 0 0 0
8008 3003 1001 286 66 11 1 0 0 0 0
3003 1001 286 66 11 1 0 0 0 0 0
1001 286 66 11 1 0 0 0 0 0 0
286 66 11 1 0 0 0 0 0 0 0
66 11 1 0 0 0 0 0 0 0 0
11 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Formula (11) has a strict connection with the paving of the box.

Example 7.7 Let us take

X =
∣
∣
∣
∣
0 1 1 −1
1 0 1 1

∣
∣
∣
∣

See that δ(X) = 1 + 1 + 1 + 1 + 1 + 2 = 7 is the number of points in which the
box B(X), shifted generically a little, intersects the lattice!

7.8 Combinatorics

	 is a lattice in a real vector space V and X a list of vectors in 	. In coordinates
V = R

s, 	 = Z
s . Assume that X generates a pointed cone C(X). We have already

seen in Sect. 2.9 the notions of singular, regular points and big cells. We now extend
these notions as follows:
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(i) The translates Csing(X) + 	 give a periodic hyperplane arrangement.
(ii) The union of the hyperplanes of this periodic arrangement is called the cut locus

and each connected component of its complement a chamber.
(iii) Each chamber of this arrangement is the interior of a bounded polytope.
(iv) The function BX is a polynomial on each chamber.
(v) The set of chambers is invariant under translation by elements of 	.

Example 7.9 X =
∣
∣
∣
∣
1 1 0 −1
1 0 1 1

∣
∣
∣
∣ ,

When we translate we have:

We draw the zonotope and the cut-locus

If X is a basis of the lattice 	 we have that the chambers are open parallelepipeds.
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8 Difference theorem

One of the main results of the Theory is the fact that a partition function PX is a
quasi-polynomial on the regions � − B(X), for each big cell �.

The fact that PX is a quasi-polynomial not just on the big cells but in fact in the larger
regions � − B(X) may be considered as a discrete analogue of the differentiability
properties of the multivariate spline TX . In this section we discuss some properties of
the quasi-polynomials describing PX .

• PX on � − B(X) coincides with an element of DM(X).
• The element is uniquely determined by its initial values, that is the values it takes

on δ(u | X) where u ∈ � is close to zero.
• In this case δ(u | X)∩C(X) = {0} so that, in order to coincide with PX on �− B(X)

we must have that f (0) = 1 while f (a) = 0 for all non-zero elements of δ(u | X).

• These are the defining initial conditions.

An idea of a possible proof will be given in Sect. 9.20.
Let us start to explain why the system of difference equations gives a system of

recursion which allow to determine the values of a function f ∈ DM(X) by the values
that it takes in a set δ(u | X). To begin notice that

τaτb = τa+b �⇒
m∏

i=1

∇ai =
∑

S⊂{1,...,m}
(−1)|S|τ(

∑
i∈S ai ).

Thus the recursive formula for a function f (x) satisfying
∏m

i=1 ∇ai f = 0.

f (x) =
∑

S⊂{1,...,m}, S �=∅
(−1)|S|+1 f

(

x −
∑

i∈S

ai

)

. (12)

Example 8.1 X = {2, 3}, ∇2 = 1 − τ2, ∇3 = 1 − τ3, so

∇2∇3 f (x) = f (x) − f (x − 2) − f (x − 3) + f (x − 5)

easily implies that a function satisfying ∇2∇3 f (x) = 0 is determined by the values
that it takes on the interval [−4, 0].

The partition function P2,3 for the list 2, 3 is characterized by the fact that:
for every number i > −5, the function P2,3 coincides with the unique function
f (x) which satisfies the difference equation ∇2∇3 f (x) = 0 and which takes values
0, 0, 0, 0, 1 on −4,−3,−2,−1, 0.

A function f satisfying ∇Y f = for all cocircuits Y extracted from X is determined
by the values on a set δ(c0 | X) where c0 is a given chamber.
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• First 	 = ∪cδ(c | X) as c runs over all chambers.
• Next we want to prove that if f vanishes on a given δ(c | X) for a chamber c then

it also vanishes on δ(g | X) for a chamber g which is adjacent to c.
• Then we go by recursion.

The fact that the values of a function f ∈ DM(X) are determined by the values it
takes on a single set δ(c | X) comes from a wall crossing formula when we pass from
δ(c | X) to δ(g | X) for a chamber g which is adjacent to c.

8.2 Arithmetic

8.2.1. Connection between DM(X) and D(X). There is a formal machinery which
allows us to interpret, locally around a point, difference equations as restriction
to the lattice of differential equations, we call it the logarithm isomorphism. We
have this for any module over the periodic Weyl algebra C[ ∂

∂xi
, exi ] as soon as for

algebraic reasons (nilpotency) we can deduce from the action of exi also an action
of xi .

The main point is that the ideal JX generated by the elements
∏

a∈Y (1−ea) as Y runs
over the cocircuits defines (as a scheme) the set P(X) of points of the arrangement.

Thus

C[	]/JX = ⊕p∈P(X)C[	]/JX (p).

Where C[	]/JX (p) is a local algebra supported at p.
This implies that the dual of C[	]/JX which is the complexified form

DMC(X) = DM(X) ⊗ C,

decomposes as direct sum of contributions at the various points in P(X).
Choose representatives P̃(X) for P(X):

DMC(X) = ⊕
φ∈P̃(X)

e〈φ | v〉Dφ (13)

where Dφ is the space of polynomials f such that e〈φ | v〉 f ∈ DMC(X).

Proposition 8.3 The space Dφ is the differentiable Dahmen–Micchelli space D(X p),

p = eφ .

This explains why DM(X) is formed by quasi-polynomials.

• if v ∈ V, the difference operator ∇v and the differential operator ∂v satisfy ∇v =
Tv∂v with Tv = 1−e−∂v

∂v
.

• Tv is invertible on the space of polynomials and commutes with all the ∇a .
• Hence ∇Y = ADY where A is invertible on polynomials.
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• The equations ∇Y f = 0 are equivalent to DY f = 0 for polynomials.
• Thus we obtain that e〈φ | v〉 f ∈ DMC(X) if and only if f ∈ D(X p).

DMC(X) = ⊕
φ∈P̃(X)

e〈φ | v〉D(Xeφ )

• In particular the contribution of the point 1 to DMC(X) is the space of polynomials
D(X).

• In the unimodular case DMC(X) = D(X).
• In general we also have the contribution of the other points, that will be denoted

by

E(X) := ⊕p∈P(X), p �=1e〈φ | v〉D(X p). (14)

8.3.1. Supports. We want now to explain the nature of DMC(X) as Fourier coefficients
of distributions on the compact torus T, supported at the points of the arrangement.

For this we consider the space D(X) (or D(X p)) as a space of polynomial differ-
ential operators on U and hence also on T with constant coefficients.

The Haar measure on T of total mass 1. This allows us to identify generalized
functions on T and distributions on T .

Call D̂M(X) the space of distributions on T of which DMC(X) gives the Fourier
coefficients.

We deduce

Proposition 8.4 D̂M(X) is the direct sum of the spaces of distributions D(X p)δp as
p ∈ P(X).

In particular we see that D̂M(X) is supported at the finite set P(X).

9 Residues

9.1 Wonderful models

There is an approach to compute the partition function based on residues (as for num-
bers in Sect. 2.4.1), also in higher dimension.

In order to define multidimensional residues we need divisors with normal cross-
ings. That is we consider functions which, in some coordinates xi , have poles only on
the hyperplanes xi = 0, i = 1, . . . , s. The residue is the coefficient of

∏
i x−1

i .
The construction of these divisors with normal crossings follows [16] and in our

case starts with a

Definition 9.2 Given a subset A ⊂ X := {x1, . . . , xs} the list A := X ∩ 〈A〉 will be
called the completion of A. In particular A is called complete if A = A.

The space of vectors φ ∈ U such that 〈a|φ〉 = 0 for every a ∈ A will be denoted
by A⊥. Notice that clearly A equals to the list of vectors a ∈ X which vanish on A⊥.
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From this we see that we get a bijection between the complete subsets of X and
subspaces of the arrangement defined by X .

A central notion in what follows is given by

Definition 9.3 Given a complete set A ⊂ X, a decomposition is a decomposition
A = A1 ∪ A2 in non empty sets, such that:

〈A〉 = 〈A1〉 ⊕ 〈A2〉.

Clearly the two sets A1, A2 are necessarily complete.
We shall say that: a complete set A is irreducible if it does not have a non trivial

decomposition.

Theorem 14 Every set A can be decomposed as A = A1 ∪ A2 ∪ · · · ∪ Ak with the
Ai irreducible and:

〈A〉 = 〈A1〉 ⊕ 〈A2〉 ⊕ · · · ⊕ 〈Ak〉.

This decomposition is unique up to order.

A = A1 ∪ A2 ∪ · · · ∪ Ak is called the decomposition into irreducibles of A.

Example 9.4 An interesting example is that of the configuration space of s-ples of
point in a line (or the root system As−1). In this case X = {zi − z j |1 ≤ i < j ≤ s}.

In this case, irreducible sets are in bijection with subsets of {1, . . . , s} with least 2
elements. If S is such a subset the corresponding irreducible is IS ={z j −z j |{i, j}⊂ S}.

Given a complete set C, the irreducible decomposition of C corresponds to a family
of disjoint subsets S1, . . . , Sk of {1, . . . , s} each with at least 2 elements.

Definition 9.5 A family S of irreducibles Ai is called nested if, given elements
Ai1 , . . . , Aih ∈ S mutually incomparable we have that C := A1 ∪ A2 ∪ · · · ∪ Ai

is complete and C := A1 ∪ A2 ∪ · · · ∪ Ai is its decomposition into irreducibles.

Consider the hyperplane arrangement HX and the open set

AX = U/(∪H∈HX H)

complement of the union of the given hyperplanes.
Let us denote by I the family of irreducible subsets in X .
We construct a minimal smooth variety Z X containing AX as an open set with

complement a normal crossings divisor, plus a proper map π : Z X → U extending
the identity of AX .

For any irreducible subset A ∈ I take the vector space V/A⊥ and the projective
space P(V/A⊥).

Notice that, since A⊥ ∩ AX = ∅ we have a natural projection πA : AX →
P(V/A⊥). If we denote by j : AX → U the inclusion we get a map The model

i := j × (×a∈I πA) : AX → U × (×a∈I P(U/A⊥))
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Definition 9.6 The model Z X is the closure of i(AX ) in U × (×a∈IP(U/A⊥)).

There is a very efficient approach to computations by residue at points at infinity
in the wonderful compactification of the associated hyperplane arrangement.

Points at infinity correspond to maximal nested sets. Around each such point one
can consider a s-dimensional torus and its class in homology

A basis of the homology or of the corresponding residues corresponds to the tori
around special points indexed by unbroken bases.

9.6.1. The non linear coordinates. We now apply the previous Theory to the mul-
tivariate spline or the partition function associated to a list X . One can find explicit
polynomials pb,X (x) (given in Formula (16)), indexed by the points at infinity asso-
ciated to the maximal nested set generated by unbroken bases so that, given a point x
in the closure of a big cell c we have Jeffrey–Kirwan residue formula [26].

TX (x) =
∑

b | c⊂C(b)

| det(b)|−1 pb,X (−x).

There is a parallel theory for the partition function, as a result we can compute a
set of polynomials qb,φ(−x) (given in Formula (17)) indexed by pairs, a character φ

of finite order and a unbroken basis in Xφ = {a ∈ X | φ(ea) = 1}.
The analogue of the Jeffrey–Kirwan formula is:

Theorem 15 Given a point x in the closure of a big cell c we have a Residue formula
for partition function

PX (x) =
∑

φ∈P(X)

eφ
∑

b∈NBXφ
| c⊂C(b)

qb,φ(−x)

Finally one can deduce the partition function from some combinatorics and multi-
variate splines (with parameters):

Theorem 16 For the points x in the interior of big cells c we have

PX (x) =
∑

φ∈P(X)

Q̂φTXφ,φ(x)

Qφ =
∏

a /∈Xφ

1

1 − e−a

∏

a∈Xφ

a − 〈φ | a〉
1 − e−a+〈φ | a〉

9.6.2. Residues. The polynomials building the multivariate spline and the partition
functions are residues.

Given a MNS S choose a basis b := b1, . . . , bs from X so that if Xi is the minimal
element of S containing bi we have all the Xi distinct.
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Construct new coordinates z A, A ∈ S using the monomial expressions:

bA :=
∏

B∈S, A⊆B

zB . (15)

The residue at the point 0 for these coordinates is denoted by resb.

pb,X (−y) = det (b)resb

(
e〈y|x〉

∏
a∈X 〈x | a〉

)

Spline. (16)

qb,Xφ (−y) = det (b)resb,φ

(
e〈y|z〉

∏
a∈X (1 − e−a(z)−〈φ | a〉)

)

Partition function.

(17)

Theorem 17 (Brion–Vergne [10]) For every h = ∑
b ∈ NB(X) qb,X d−1

b with
qb,X ∈ S[U ]. We have:

qb,X (−y) = det (b)resb(e
〈y|x〉h(x)). (18)

The proof is easy applying formal properties of the residue.
This gives a simple algorithm to compute the polynomials qb,X .

(i) First make the non-linear change of coordinates bi =∏i
j=1 zi in the function h.

(ii) You get a Laurent series in the variables zi with coefficients polynomials in the
variables y.

(iii) The polynomial qb,X (−y) appears now as the coefficient of
∏s

i=1 z−1
i .

9.7 The abelian group F(X).

We denote by C[	, r ] the subgroup in C[	] consisting of the elements supported in
	 ∩ r . The following abelian group will play a key role in what follows

Definition 9.8

F(X) := { f ∈ C[	] | ∇X\r f ∈ C[	, r ], for all r ∈ SX }. (19)

Notice that if f ∈ F(X) then f must in particular satisfy the relation corresponding
to the space r = {0}) that is

∇X f = cδ0

or the equivalent relation

∏

a∈X

(1 − ea)L f = c.
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with c ∈ Z. In particular F(X) ⊂ R (the rational elements) and Lr (F(X)) ⊂ C(	)

is the one dimensional abelian group spanned by

∏

a∈X

1

1 − e−a
.

Example 9.9 Let us give a simple example. Let 	 = Z, and X = [2,−1]. Then it is
easy to see that F(X) has as integral basis

θ1 =
∑

n∈Z
δn, θ2 =

∑

n∈Z
nδn,

θ3 =
∑

n∈Z

(
n

2
+ 1 − (−1)n

4

)

δn, θ4 =
∑

n≥0

(
n

2
+ 1 − (−1)n

4

)

δn .

Here θ1, θ2, θ3 is an integral basis of DM(X).

Proposition 9.10 F(X) is a free abelian group whose rank equals the number of
integral points in the Zonotope B(X).

Recall that, in Lemma 1.2 we have defined the partition functions P F
X associated

to the faces of the hyperplane arrangement given by X .
The first important fact on this abelian group is the following:

(i) If F is a regular face for X, then P F
X lies in F(X).

(ii) The abelian group DM(X) is contained in F(X).

Proof (i) Indeed, ∇X\r P F
X = P F

X∩r ∈ C[	, r ].
(ii) is clear from the definitions.

��
Each P F

X is a partition function. In particular, if X generates a pointed cone, then
the partition function PX equals P F

X for the face F which is positive on X .

9.10.1. Some properties of F(X). Let r be a rational subspace and Fr be a regular
face for X\r .

Proposition 9.11 (i) The map g �→ P
Fr

X\r ∗ g gives an injection from F(X ∩ r) to
F(X). Moreover

∇X\r (P
Fr

X\r ∗ g) = g, ∀g ∈ F(X ∩ r). (20)

(ii) ∇X\r maps F(X) surjectively to F(X ∩ r).

(iii) If g ∈ DM(X ∩ r), then ∇X\t (P
Fr

X\r ∗ g) = 0 for any rational subspace t such
that t ∩ r �= r .
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Recall that S(i)
X the set of rational subspaces of dimension i . Define the abelian

groups

F(X)i := ∩
t∈S(i−1)

X
ker(∇X\t ) ∩ F(X).

Notice that by definition F(X){0} = F(X), that F(X)dim V is the abelian group
DM(X) and that F(X)i+1 ⊆ F(X)i .

Choose, for every rational space r , a regular face Fr for X\r .

Let r ∈ S(i)
X .

(i) The image of ∇X\r restricted to F(X)i is contained in the abelian group
DM(X ∩ r).

(ii) If f is in DM(X ∩ r), then P
Fr

X\r ∗ f ∈ F(X)i .

Theorem 18 With the previous choices, we have:

F(X) = ⊕r∈SX P
Fr

X\r ∗ DM(X ∩ r). (21)

Definition 9.12 A collection F = {Fr } of faces Fr ⊂ r⊥ regular for X\r , indexed by
the rational subspaces r ∈ SX will be called a X-regular collection.

Given a X -regular collection F, we can write, using Theorem 18, an element
f ∈ F(X) as

f =
∑

r∈SX

fr with fr ∈ P
Fr

X\r ∗ DM(X ∩ r).

This expression for f will be called the F decomposition of f . In this decomposition,
we always have FV = {0}, P FV

X\V = δ0 and the component fV is in DM(X).

9.13 Localization theorem

There is a more restricted notion than that of big cell, it is the notion of tope by this we
mean a connected component of the complement of the union of all proper rational
subspaces generated by subsets of X .

In this section we are going to discuss the fact that every element f ∈ F(X) coin-
cides with a quasi-polynomial on the sets (τ − B(X)) ∩ 	 as τ varies over all topes
(we simply say f is a quasi-polynomial on τ − B(X)).

Definition 9.14 Let τ be a tope and r be a proper rational subspace. We say that a
regular face Fr for X\r is non-positive on τ if there exists ur ∈ Fr and x0 ∈ τ such
that 〈ur , x0〉 < 0.

Given x0 ∈ τ, it is always possible to choose a regular face Fr ⊂ r⊥ for X\r such
that x0 is negative on some vector ur ∈ Fr , since the projection of x0 on V/r is not
zero.
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Fig. 6 The partition function of X := (a, b, c)

Definition 9.15 Let F = {Fr } be a X -regular collection. We shall say that F is non-
positive on τ if each Fr is non-positive on τ .

Let f ∈ F(X) and let f = ∑
fr be the F decomposition of f .

The following result is quite similar to Paradan’s localization theorem [29].

Theorem 19 (Localization theorem) Let τ be a tope. Let F = {Fr } be a X-regular
collection non-positive on τ .

The component fV of the F decomposition f = ∑
r∈SX

fr is a quasi-polynomial
function in DM(X) such that f = fV on (τ − B(X)) ∩ 	.

Example 9.16 Figure 6 describes the partition function PX for X := (a, b, c) with
a := ω1, b := ω2, c := ω1 + ω2 in the lattice 	 := Zω1 ⊕ Zω2. Figure 7 describes
the F decomposition relative to the tope containing x0. Notice how the choice of F has
the effect of pushing the supports of the elements fr (r �= V ) away from τ .

A quasi-polynomial is completely determined by the values that it takes on
(τ − B(X)) ∩ 	. Thus fV is independent on the construction so:

Definition 9.17 We shall denote by f τ the quasi-polynomial coinciding with f on
(τ − B(X)) ∩ 	.

The open subsets τ − B(X) cover V, when τ runs over the topes of V (with
possible overlapping). Thus the element f ∈ F(X) is entirely determined by the
quasi-polynomials f τ .

If f ∈ F(X), the element ∇X\r f is in F(X ∩ r) and coincides with a
quasi-polynomial (∇X\r f )τ ∈ DM(X ∩ r) on each tope τ for the system X ∩ r .

Theorem 20 Let β ∈ V be generic with respect to all the rational subspaces r . Let
Fβ

r be the unique regular face for X\r containing pr⊥β.
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Fig. 7 F decomposition of the partition function of X := (a, b, c) for F non-positive on τ

Then

f =
∑

r∈SX

P
−Fβ

r

X\r ∗ (∇X\r f )τ(pr β).
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Fig. 8 Two adjacent topes of X := (a, b, c, d)

9.17.1. Wall crossing formula. We first describe a general formula of how the func-
tions f τ change when crossing a wall. This formula implies that the partition function
PX is a quasi-polynomial on � − B(X), where � is a big cell.

Let H be a rational hyperplane and u ∈ H⊥ a non zero element. Then the two
open faces in H⊥ are half-lines FH = R>0u and −FH . If q ∈ DM(X ∩ H), then
w := (P FH

X\H − T −FH
X\H ) ∗ q is an element of DM(X).

Remark 9.18 In [11], a one-dimensional residue formula is given for w allowing us
to compute it.

Assume that τ1, τ2 are two adjacent topes, namely τ 1 ∩ τ 2 spans a hyperplane H .
The hyperplane H is a rational subspace. Let τ12 be the unique tope for X ∩ H such
that τ 1 ∩ τ 2 ⊂ τ12.

Example 9.19 Let C be the cone generated by the vectors a :=ω3 +ω1, b :=ω3 +ω2,

c := ω3 − ω1, d := ω3 − ω2 in a 3-dimensional space V := Rω1 ⊕ Rω2 ⊕ Rω3.
Figure 8 represents the section of C cut by the affine hyperplane containing a, b, c, d.
We consider X := (a, b, c, d).

On the left of the picture we show the intersection of C with the two topes τ1, τ2
adjacent along the hyperplane H generated by b, d and, on the right, that with the
tope τ12. The list X ∩ H is [b, d]. The closure of the tope τ12 is “twice bigger ” than
τ 1 ∩ τ 2.

Let f ∈ F(X). The function ∇X\H f is an element of F(H ∩ X), thus there exists a
quasi-polynomial (∇X\H f )τ12 on H such that ∇X\H f agrees with (∇X\H f )τ12 on τ12.

Theorem 21 Let τ1, τ2, H, τ12 be as before and f ∈ F(X). Let FH be the half line
in H⊥ positive on τ1. Then

f τ1 − f τ2 = (P FH
X\H − P−FH

X\H ) ∗ (∇X\H f )τ12 . (22)

In the case in which f = PX we deduce Paradan’s formula [28, Theorem 5.2]

Pτ1
X − Pτ2

X = (P FH
X\H − P−FH

X\H ) ∗ Pτ12
X∩H . (23)
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9.20 The partition function

We assume that C(X) is a pointed cone. Let us now consider a big cell �. Given a big
cell �, let τ1, . . . , τk be all the topes contained in �. Then:

� − B(X) = ∪k
i=1(τi − B(X)).

Now in order to prove the statement for big cells, we need to see what happens when
we cross a wall between two adjacent topes by the previous formulas one has

Theorem 22 On (� − B(X)) ∩ 	, the partition function PX agrees with a quasi-
polynomial P�

X ∈ DM(X).

This theorem was proven [14] by Dahmen–Micchelli for topes, and by Szenes–
Vergne [34] for cells. In many cases, the sets � − B(X) are the maximal domains of
quasi-polynomiality for TX .

There is an important point of the theory of Dahmen–Micchelli that we point out.

Theorem 23 Let � be a big cell contained in C(X). Then P�
X is the unique element

f ∈ DM(X) such that f (0) = 1 and f (a) = 0, ∀a ∈ δ(c | X), a �= 0.

Part 3. Index theory

10 The Atiyah–Singer index theorem

10.1 Equivariant K -theory

We briefly review the notations for K -theory that we will use, for a systematic treat-
ment see Atiyah [2] and Segal [32]. Let G be a compact Lie group acting on a locally
compact space N .

• One has the notion of the equivariant topological K -theory group K 0
G(N ).

• If N is compact K 0
G(N ) is the Grothendieck ring of equivariant vector bundles.

• For a point p it is the character ring R[G] of G.
For N locally compact set Ṅ = N ∪ ∞ be the one point compactification.

• One sets K 0
G(N ) to be the kernel of the restriction of K 0

G(Ṅ ) to K 0
G(∞)

• K 0
G(N ) is then a contravariant functor for proper maps and covariant for open

embeddings.

Remark 10.2 Notice that, when G is abelian, the character ring R[G] equals the group
ring Z[Ĝ] of itd character group Ĝ.

Representatives of the K -theory group K 0
G(N ) can be described in the following

way.
Given two G-equivariant complex vector bundles E0, E1 on N and a G-equivariant

bundle map f : E0 → E1, the support supp( f ) of f is the set of points where
fx : E0

x → E1
x is not an isomorphism.

123



104 C. Procesi

A G-equivariant bundle map f with compact support defines an element [ f ] of
K 0

G(N ). All elements can be described this way.
Let f : E0 → E1 and g : F0 → F1 be two G-equivariant bundle maps. Using

G-invariant Hermitian metrics on the bundles Ei , Fi we can define:

f " g : E0 ⊗ F0 ⊕ E1 ⊗ F1 → E1 ⊗ F0 ⊕ E0 ⊗ F1

by

f " g :=
(

f ⊗ 1 −1 ⊗ g∗
1 ⊗ g f ∗ ⊗ 1

)

.

The support of f " g is the intersection of the supports of f, g thus f " g induces
an element in K 0

G(N ) as soon as one of the two f, g has compact support.
In particular this defines a product [ f ][g] := [ f " g] on K 0

G(N ).
If N = pt is a point, K 0

G(pt) is isomorphic to the Grothendieck ring R(G) of finite
dimensional representations of G.

In general take the projection π : N → pt, given τ ∈ R(G) and σ ∈ K 0
G(N ), we

have that [π∗(τ ) " σ ] ∈ K 0
G(N ) and this gives a R(G) module structure to K 0

G(N ).

10.2.1. Clifford action. Let W be a Hermitian vector space and let E = ∧
W .

For w ∈ W, consider the exterior multiplication m(w) : E → E and the Clifford
action

c(w) = m(w) − m(w)∗, m(w)(ω) := w ∧ ω (24)

of W on
∧

W .
We have c(w)2 = −‖w‖2, so that c(w) is an isomorphism, if w �= 0. We shall use

this as follows:

10.2.2. Bott symbol and Thom isomorphism. If p : W → M is a G-equivariant
complex vector bundle over a G-space M, the fiberwise Clifford action c(wx ) :∧even Wx → ∧odd Wx defines a morphism cW : p∗∧even W → p∗∧odd W of
vector bundles over W, called the Bott symbol.

Take a bundle map f : E → F of complex equivariant vector bundles on M
which is an isomorphism outside a compact set, and denote still by f its pull back
f : p∗E → p∗F . Then f " cW is a bundle map of bundles over W, which is an
isomorphism outside the support of f embedded in W via the zero section. We set

Thom isomorphism CW : K 0
G(M) → K 0

G(W ), CW ([ f ]) = [ f " cW ]. (25)

The map [ f ] �→ CW ([ f ]) = [ f " cW ] is the Thom isomorphism between K 0
G M

and K 0
G W .
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10.2.3. Bott periodicity. The Bott periodicity is the Thom isomorphism when
W = M × C = M × R

2. We then define inductively the groups

K i+1
G (N ) := K i

G(N × R).

One has K 0
G(R) = K 1

G(pt) = 0.
There is a natural isomorphism K i

G(N ) → K i+2
G (N ) = K i

G(N × R
2) given by

Bott periodicity.

10.2.4. A long exact sequence. If F is a G-invariant closed subset of N , denote by
i : F → N the closed embedding and j : N\F → N the open embedding. There is
a long exact sequence of R(G) modules:

· · · → K i
G(N\F)

j∗→ K i
G(N )

i∗→ K i
G(F)

δ→ K i+1
G (N\F) → · · · (26)

10.3 Transversally elliptic operators

Consider a manifold M with an action of a compact Lie group G. We then have
the notion of transversally elliptic operator between two equivariant complex vector
bundles E, F on M .

Such an operator is a pseudo-differential operator A : 	(M, E) → 	(M, F) from
the space 	(M, E) of smooth sections of E to the space 	(M, F) of smooth sections
of F, which commutes with the action of G, is elliptic in the directions transversal to
the orbits of G and is “trivial ” at infinity.

Let T ∗M denote the cotangent bundle of M and p : T ∗M → M the canonical
projection.

Definition 10.4 By a symbol, one means a smooth section on T ∗M of the bundle
hom(p∗(E), p∗(F)): in other words, for each point (x, ξ), x ∈ M, ξ ∈ T ∗

x M, we
have a linear map σ(x, ξ) : Ex → Fx .

Inside T ∗M, there is a special closed subset denoted by T ∗
G M (the zero set of the

moment map cf. Sect. 13.3). Its fiber over a point x ∈ M is formed by all the cotan-
gent vectors ξ ∈ T ∗

x M which vanish on the tangent space to the orbit of x under G,

in the point x . Thus each fiber (T ∗
G M)x is a linear subspace of T ∗

x M . In general the
dimension of (T ∗

G M)x is not constant and this space is not a vector bundle.
Assume first that M is a compact manifold. To the pseudo-differential operator A,

one associates its principal symbol σp which is defined outside the zero section of
T ∗M . The operator A is said to be G-transversally elliptic if its principal symbol
σp(x, ξ) is invertible for all (x, ξ) ∈ T ∗

G M such that ξ �= 0.
Using a G- invariant function χ on T ∗M identically equal to 1 in a neighborhood of

M and compactly supported, then σ(x, ξ) := (1 − χ(x, ξ))σp(x, ξ) is defined on the
whole space T ∗M . Furthermore σ(x, ξ) restricted to T ∗

G M is an isomorphism outside
a compact G-invariant subset of T ∗

G M .
Thus, by restriction to T ∗

G M, the symbol σ defines a K -theory class [σ ] in the
topological equivariant K -theory group K 0

G(T ∗
G M).
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This class does not depend of the choice of χ . We still say that this class σ is the
symbol of A.

Let Ĝ be the set of equivalence classes of finite dimensional irreducible representa-
tions of G, and letC[Ĝ]be the group of Z-valued functions on Ĝ. Letχτ (g) = Tr(τ (g))

be the character of the representation τ ∈ Ĝ of G. We associate to an element f ∈ C[Ĝ]
a formal (virtual) character �( f ) = ∑

τ f (τ )χτ , that is a formal combination of the
characters χτ with multiplicities f (τ ) ∈ Z. When f (τ ) satisfies certain moderate
growth conditions, then the series �( f )(g) = ∑

τ f (τ )χτ (g) converges, in the dis-
tributional sense, to a generalized function on G.

The index map associates to a transversally elliptic operator A an element of C[Ĝ]
constructed as follows. For every τ ∈ Ĝ, the space homG(τ, ker(A)) is finite dimen-
sional of dimension m(τ, A). Thus m(τ, A) is the multiplicity of τ in the space ker(A)

of smooth solutions of A. We choose a G-invariant metric on M and G-invariant
Hermitian structures on E, F . Then A∗ : 	(M, F) → 	(M, E) is also transversally
elliptic.

Definition 10.5 The index multiplicity of the pseudo-differential operator A is the
function indm(A) ∈ C[Ĝ] defined by

indm(A)(τ ) := m(τ, A) − m(τ, A∗).

It follows also from Atiyah-Singer [1] that the series
∑

τ m(τ, A)χτ (g) defines a
generalized function on G. Thus we may also associate to A the generalized function

ind(A)(g) =
∑

τ

indm(A)(τ )χτ (g)

on G with integral Fourier coefficients. One of the main points in the index theory
consists in showing that the index factors through the symbols and defines a homo-
morphism of R(G) modules from K 0

G,c(T
∗
G M) to C[Ĝ].

If j : U → M is an open G-invariant set of a compact G manifold M, we still
denote by j the corresponding open embedding from T ∗

GU to T ∗
G M . Then j∗ defines

a map from K 0
G(T ∗

GU ) to K 0
G,c(T

∗
G M). The index of σ ∈ K 0

G(T ∗
GU ) is defined to be

the index of j∗(σ ). The excision property of the index shows that this is independent
of the choice of the open embedding j and thus allows us to define the index map also
for manifolds which can be embedded as open sets of compact ones.

In particular, if V is a vector space with a linear action of a compact group G, then
V is diffeomorphic to the sphere, minus a point. Thus we can define the index of any
σ ∈ K 0

G(T ∗
G V ). More generally, if U is an open G-invariant subset of a vector bundle

on a compact manifold, we can define the index of σ ∈ K 0
G(T ∗

GU ).
The problem of computing the index can be reduced, at least theoretically, to the case

in which G is a torus. For a given compact manifold M, one embeds M into a linear
representation and then is reduced to perform the computations in the representation.
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10.5.1. Some properties of the index map

(i) Any element σ ∈ K 0
G(T ∗

G M) arises from the restriction to T ∗
G M of a G- bundle

morphism σ(x, ξ) : Ex → Fx , such that supp(σ )∩T ∗
G M is a compact set. Here

E, F are G-equivariant complex vector bundles over M .
(ii) If j : U → M is an open embedding, the map j∗ : K 0

G(T ∗
GU) → K 0

G(T ∗
G M) is

compatible with the index.
(iii) Let W be a real vector space with a linear representation of G and W ′ be the

dual vector space. We identify T W = W × W with WC by (v,w) → v + iw.
Furthermore, we identify T W = W ×W with T ∗W = W ×W ′ using an Euclid-
ean structure on W . Thus the Bott symbol cWC

(v + iξ) acting on
∧

WC defines
a G-equivariant elliptic symbol on W . Its G-equivariant index is identically
equal to 1.
Let i : N → M be an injection of G-manifolds, this factors through a tubu-
lar neighborhood j : U → M . Using a similar construction we obtain a map
i! : K 0

G(T ∗
G N ) → K 0

G(T ∗
G(U)) given at the level of symbols by σ �→ σ " cWC

.
The index of σ is equal to the index of i!σ .

(iv) In case M = N × R with the trivial action on R, T ∗
G(N × R) = T ∗

G N × T ∗
R

and thus i! is an isomorphism by Bott periodicity.
(v) Let H be a closed subgroup of G. Then there is a surjective map Ĝ → Ĥ

induced by the restriction of characters. The dual map induces an injection
IndG

H : C[Ĥ ] → C[Ĝ].
Let M be a space with H action (open subset a compact H -manifold), and let

N := G ×H M be the G space with typical fiber M over G/H . It is easy to see that
there is an isomorphism

i G
H : K i

H (T ∗
H M) → K i

G(T ∗
G N ) (27)

and, by [1, Theorem 4.1], for any σ ∈ K 0
H (T ∗

H M),

indm(i G
H (σ )) = IndG

H (indm(σ )). (28)

We shall also need the following simple consequence of the previous facts:

Lemma 10.6 Let G be a compact Lie group and χ : G → S1 be a surjective char-
acter. Set H := ker χ be the kernel of χ .

Take a manifold M over which G acts and consider the product C
∗ × M, with the

action of G on the first factor induced by χ .
There is an isomorphism

k : K i
H (T ∗

H M) ∼= K i
G(T ∗

G(C∗ × M)). (29)

Moreover, if σ ∈ K 0
H (T ∗

H M), we have indm(k(σ )) = IndG
H (indm(σ )).

Since C
∗ = S1 × R

+, we get by iv) that the inclusion i : S1 × M → C
∗ × M

induces the isomorphism

i! : K i
G(T ∗

G(S1 × M)) → K i
G(T ∗

G(C∗ × M))
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which at the level of K 0 is compatible with the index.
On the other hand, the space G ×H M identifies with S1 × M via the map [g, m] �→

[χ(g), g · m]. So (27) gives us the isomorphism

i G
H : K i

H (T ∗
H (M)) → K i

G(T ∗
G(S1 × M)).

If σ ∈ K 0
H (T ∗

H M), then indm(i G
H (σ )) = IndG

H (indm(σ )) by Formula (28).
Thus we can take k := i!i G

H .

• The tangential Cauchy–Riemann operator.

Assume that the group G is an abelian compact Lie group. An irreducible repre-
sentation a of G is a one dimensional complex vector space La, where G acts via a
character χa : G → S1, so that Ĝ is identified with the abelian group of characters,
denoted by 	.

Definition 10.7 Let X be a finite list of elements of 	. Define the complex vector
space

MX := ⊕a∈X La . (30)

The space MX is a G-manifold and our goal is the determination of K 0
G(T ∗

G MX ).
The basic tool that we shall use is the space of functions DM (G)(X) on 	. This is
defined as DM(X) (and often denoted also DM(X)) but in this more general case
of not necessarily connected G. The extension to non connected abelian groups is
necessary in order to perform induction. In this case 	 has a torsion subgroup 	t and
Theorem 13 gives the statement that DM (G)(X) is a free module over the group ring
of 	t or rank δ(X).

With a given G-invariant Hermitian structure on M let S be the unit sphere of M . Let
P(M) be the complex projective space of M . Consider on S the differential operator
δ acting on the pull back of the Dolbeault complex on the associated projective space
P(M) using ∂ + ∂

∗ : ∑�0,2p → ∑
�0,2p+1. Then δ is a G-transversally elliptic

differential operator the tangential Cauchy–Riemann operator on S.
Indeed, using the Hermitian structure, identify T ∗S with its tangent bundle

T S ⊂ T M, the subspace Hp of T ∗
p S orthogonal to the line RJu p is then identi-

fied to the complex subspace of M, orthogonal under the Hermitian form to p. We
call it the horizontal cotangent space. The symbol of δ is σ(p, ξ) = c(ξ1) where ξ1 is
the projection of ξ on Hp, and c the Clifford action of Hp on

∧
Hp. This morphism

is invertible if ξ1 �= 0. We have also Hp ⊕Rρ(u)p = T ∗
p S, as the eigenvalues of −iu

on M are all positive. Thus we see that σ(p, ξ) restricted to T ∗
G S is invertible outside

the zero section.
The following formula is proven in [1] (Proposition 5.4).

Theorem 24 Let M be provided with the complex structure Ju and let δ be the tan-
gential Cauchy–Riemann operator, on the unit sphere of M. Then

index(δ)(g) = (−1)|X |gaX (�−F
X (g) − �F

X (g))

where aX = ∑
a∈X a.
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We recall briefly the proof. Let S1 be the circle group acting by homotheties on M .
We decompose solution spaces with respect to characters t �→ tn of S1. The group G
acts on P(M) and on every line bundle O(n) on P(M). Thus the index as an index of
G × S1 is the sum of the index of G in the cohomology on P(M) of the line bundles
O(n). Define χn(g) as the virtual character (as a representation of G) in the virtual
finite dimensional vector space

∑
(−1)i H0,i (P(M),O(n)). Then

index(δ)(g) =
∑

n∈Z
χn(g).

Let us show that

∑

n≥0

χn(g) = (−1)|X |gaX �−F
X (g), (31)

∑

n<0

χn(g) = (−1)|X |+1gaX �F
X (g). (32)

For n ≥ 0,O(n) has only 0-cohomology and H0,0(P(M),O(n)) is just the space
of homogeneous polynomials on M of degree n. So

∑∞
n=0 χn is the character of the

symmetric algebra S[M∗] = ∏
a∈X S[L−a]. The function

∑∞
k=0 g−ka is the charac-

ter of the action of G in S[L−a]. The function �−F
X is the product of the functions

−g−1∑∞
k=0 g−ka . Thus we obtain Formula (31). On the other hand, if n < 0, we

have two cases. If −|X | − 1 < n ≤ −1, then H0,i (P(M),O(n)) = 0 for every i .
Otherwise we apply Serre’s duality and we obtain the second equality (32).

• Atiyah-Singer pushed symbol. We identify T ∗M with M × M, using the
Hermitian metric on M . Let c(v) : ∧even M → ∧odd M be the Clifford action
(24) of M on

∧
M . Given, as before, a regular element u in the Lie algebra of G and

letting ρ(u) denote its infinitesimal action on M, we define

Definition 10.8

Atu(v, ξ) = c(ξ + ρ(u)v).

The morphism Atu(v, ξ) is invertible except if ξ + ρ(u)v = 0. If furthermore ξ is
in T ∗

G M, ξ is orthogonal to the tangent vector ρ(u)v. Thus the support of Atu(v, ξ)

restricted to T ∗
G M is the unique point v = 0, ξ = 0 and Atu determines an element of

K 0
G(T ∗

G M), which depends only of the open face F of u in the hyperplane arrangement
dual to X . We denote it by AtF . The index of AtF is computed in [1] (Theorem 8.1). In
more detail, in the Appendix of [9], it is constructed an explicit G-transversally elliptic
pseudo-differential operator A on the product of the projective lines P(La ⊕ C).

If j : MX → ∏
a∈X P(La ⊕ C) is the natural open embedding, it is shown that

j∗(AtF ) is homotopic to the symbol of A. By definition, the index of AtF is that of A
and one has the explicit formula:
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Theorem 25 Let M be provided with the complex structure Ju and let AtF ∈
K 0

G(T ∗
G M) be the “pushed” ∂ symbol. Then

index(AtF )(g) = (−1)|X |gaX �F
X (g). (33)

11 The index for MX

This section contains the main results on the index for the space MX , that is Theorems
28 and 29.

11.1 K -theory

Let G be, as before, a compact abelian Lie group of dimension s and MX := ⊕a∈X La

as in (30). We assume that X has rank s.
Given a vector v ∈ MX , its support is the sublist of elements a ∈ X such that v

has a non zero coordinate in the summand La .
If Y is the support of v, an element t of G stabilizes v if and only if ta = 1 for all

a ∈Y . If Y spans a rational subspace of dimension k, the G-orbit of v has dimension k.
For any rational subspace r , we may consider the subspace Mr := ⊕a∈X∩r La of

MX . We set

M≤i := ∪
r∈S(i)

X
Mr , M≥i := MX\M≤i−1,

Fi := M≤i\M≤i−1 = M≥i\M≥i+1 = M≤i ∩ M≥i . (34)

Notice that

MX = M≥0 ⊃ M≥1 ⊃ M≥2 ⊃ · · · ⊃ M≥s := M f
X .

The set M≤i is the closed set of points in M with the property that the orbit has
dimension ≤ i while M≥i is the open set of points in M with the property that the
orbit has dimension ≥ i . The set Fi is open in M≤i and closed in M≥i and it is
the set of points in M whose orbit under G has dimension exactly i . In particular,
Fs = M≥s = M f

X is the open set of points in M with finite stabilizer under the action
of G, which plays a particular role.

Definition 11.2 Given a rational subspace r , we denote by Gr the subgroup of G
joint kernel of the elements in 	 ∩ r . The group Gr is a torus and acts trivially on
Mr := ⊕a∈X∩r La inducing an action of G/Gr .

We define the set F(r) to be the open set of Mr where G/Gr acts with finite
stabilizers.

In other words, the connected component of the stabilizer of an element of F(r) is
exactly the group Gr .
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Remark 11.3 By definition of Gr , the set F(r) is non-empty. The set Fi is the disjoint
union of the sets F(r) as r runs over all rational subspaces of dimension i . Thus the
space MX is the disjoint union of the locally closed strata F(r).

We now analyze the equivariant K theory of T ∗
G M f

X .
Let a ∈ X be an element of infinite order so that the homomorphism ga : G → S1

is surjective. Set Z := X\{a} and Ga := ker ga . Denote by Z̃ the list of the restric-
tions to Ga of the elements of Z . For v ∈ MX , denote by va ∈ C its coordinate in La

with respect to a choice of a basis of the one dimensional vector space La .
The set M f

Z := {v ∈ M f
X | va = 0} is closed in M f

X . Denote by i : M f
Z → M f

X the

closed embedding and by j : M f
X \M f

Z → M f
X the open embedding of the comple-

ment.

Lemma 11.4 There exists an isomorphism

k : K i
Ga

(T ∗
Ga

M f

Z̃
) → K i

G(T ∗
G(M f

X \M f
Z )).

If σ ∈ K 0
Ga

(T ∗
Ga

M f

Z̃
), we have indm(k(σ )) = IndG

Ga
(indm(σ )).

Take an element (va, w) ∈ La × MZ with va �= 0, its stabilizer in G is the subgroup
of Ga stabilizing w, therefore the space M f

X \M f
Z is isomorphic to C

∗ × M f

Z̃
. Thus

we are in the setting of Lemma 10.6.
For a real vector space W, we shall denote by W ′ its dual. Consider the projection

p : T ∗
G M f

X → M f
X . Then p−1 M f

Z is a closed subset of T ∗
G M f

X ⊂ M f
X × M ′

X and

T ∗
G M f

X \p−1 M f
X is equal to T ∗

G(M f
X \M f

Z ). We use the same notations i, j also in this
setting for the closed and open embedding associated. Remark the following fact.

Lemma 11.5 (i) We have p−1 M f
Z = T ∗

G M f
Z × L ′

a.

(ii) We have an isomorphism Ca : K i
G(T ∗

G M f
Z ) → K i

G(p−1 M f
Z ).

The first assertion is immediate to verify. The second follows from the first and
Thom isomorphism. The first theorem (see [20] for a proof ) is:

Theorem 26 (i) K 1
G(T ∗

G M f
X ) = 0.

(ii) If a ∈ X has infinite order, there is a short exact sequence:

0 → K 0
Ga

(T ∗
Ga

M f

Z̃
)

j∗k→ K 0
G(T ∗

G M f
X )

C−1
a i∗→ K 0

G(T ∗
G M f

Z ) → 0. (35)

Choose 0≤ i ≤s. We pass now to study the G-invariant open subspace M≥i of M .
The set M≥i+1 is open in M≥i with complement the space Fi disjoint union of the
spaces F(r) with r ∈ S(i)

X . Denote by T̃ ∗
G Fi the restriction of T ∗

G M to Fi , disjoint
union of the spaces T̃ ∗

G F(r). Denote j : M≥i+1 → M≥i the open inclusion and
e : T̃ ∗

G Fi → T ∗
G M≥i the closed embedding. Let Ci be the Thom isomorphism from

K 0
G(T ∗

G Fi ) to K 0
G(T̃ ∗

G Fi ) direct sum of the Thom isomorphisms Cr .
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Theorem 27 For each 0 ≤ i ≤ s − 1,

(i) K 1
G(T ∗

G M≥i ) = 0.
(ii) The following sequence is exact

0 → K 0
G(T ∗

G M≥i+1)
j∗→ K 0

G(T ∗
G M≥i )

C−1
i e∗
→ K 0

G(T ∗
G Fi ) → 0. (36)

Since M≥s = M f
X , we can assume by induction on s−i that (i) holds for each j > i .

Also by Theorem 26 (i) we get that K 1
G(T ∗

G Fi ) = 0 for each 0 ≤ i ≤ s − 1. Using
this both statements follow immediately from the long exact sequence of equivariant
K -theory.

Remark 11.6 The fact that the sequence (36) is exact is proved in [1] using a splitting.

11.6.1. Two commutative diagrams Let N be a complex representation space for G.
Recalling the structure of R(G) module of the equivariant K -theory, the multiplica-
tion by the difference

∧even N −∧odd N will be denoted by
∧

−1 N ⊗ −. This is by
definition the action of the element detN (1 − g) ∈ R(G) on the equivariant K -theory.

Lemma 11.7 Take a sublist Y in X and decompose MX = MX\Y ⊕ MY . Let U be
an open G-invariant set contained in MX\Y × (MY \{0}). Then if σ ∈ K i

G(U ) or
σ ∈ K i

G(T ∗
GU ), we have

∧
−1 MY ⊗ σ = 0.

We give the proof for U, the case of T ∗
GU being identical.

Take v ∈ U and decompose it as v = vX\Y +vY with vX\Y ∈ MX\Y and vY ∈ MY .
The component vY is not zero by assumption. Consider the complex G-equivariant vec-
tor bundle VY = U ×MY on U . Set now E+ := U ×∧even MY , E− = U ×∧odd MY .
Choosing an Hermitian metric on MY , for every u ∈ MY , we get the Clifford action
c(u) : ∧even MY → ∧odd MY of MY on

∧
MY , which is an isomorphism as soon as

u �= 0.
Going back to our bundles E+, E−, for every ε ∈ [0, 1], define the bundle map

cε : E+ → E− by

cε(v, ω) = (v, εc(vY )ω).

If σ ∈ K 0
G(U ), the element

∧
−1 MY ⊗σ ∈ K 0

G(U ) is represented by the morphism
c0 " σ, homotopic to c1 " σ . This last bundle map is an isomorphism since vY �= 0
on U . This implies that

∧
−1 MY ⊗ σ = 0.

We apply this to the open set M f
X where G acts with finite stabilizers. If Y is a

cocircuit, MX\Y ∩ M f
X = ∅, thus

∧
−1 MY ⊗ σ = 0 for all σ ∈ K 0(T ∗

G M f
X ). As the

index map is a R(G) module map, this implies that for cocircuit Y, the generalized
function index(σ )(g) on G satisfies the equation

∏
a∈Y (1 − ga)index(σ )(g) = 0.

The function indm(σ ) on Ĝ is the Fourier transform of the function index(σ ). It
follows that ∇Y indm(σ ) = 0.

Thus we obtain
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Corollary 11.8 The multiplicity index map indm maps K 0
G(T ∗

G M f
X ) to the space

DM(X).

More generally the same argument shows that

Corollary 11.9 Choose 0 ≤ i ≤ s. If σ ∈ K 0
G(T ∗

G M≥i ) and t is a rational subspace
of dimension strictly less than i, then

∧
−1 MX\t ⊗ σ = 0.

Let us now split X = A ∪ B and MX = MA ⊕ MB . Let p : T ∗
G MX → MX be

the projection and consider T̃ ∗
G MA := p−1 MA. We have T̃ ∗

G MA = T ∗
G MA × M ′

B . In
particular, we get a Thom isomorphism

CM ′
B

: K 0
G(T ∗

G MA) → K 0
G(T̃ ∗

G MA) ∼= K 0
G(T ∗

G MA × M ′
B).

Denote by i the closed inclusion MA → MX , and, by abuse of notation,
also the inclusion T̃ ∗

G MA → T ∗
G MX above i . Then i induces the morphisms

i∗ : K 0
G(T ∗

G MX ) → K 0
G(T̃ ∗

G MA) and i! : K 0
G(T ∗

G MA) → K 0
G(T ∗

G MX ). Combin-
ing these 3 maps, we claim that

Lemma 11.10 Take σ ∈ K 0
G(T ∗

G MX ), then i!C−1
M ′

B
i∗(σ ) = ∧

−1 MB ⊗ σ .

Since we are working on vector spaces, we can assume that all vector bundles
are topologically trivial. Thus we can represent σ as given by a variable linear map
σ(v,w, ξ, η) : E → F where E, F are complex representation spaces, v ∈ MA, w ∈
MB, ξ ∈ M ′

A, η ∈ M ′
B . Now σ restricts to an element σ̃ := i∗σ in K 0

G(T ∗
G MX |MA)

which is represented by the map σ(v, 0, ξ, η). Since T ∗
G MX |MA = T ∗

G MA × M ′
B,

the element σ̃ is equivalent to cM ′
B

" q∗τ, where q : T ∗
G MA × M ′

B → T ∗
G MA is the

projection, τ a transversally elliptic symbol on MA and cM ′
B

the Bott symbol with
support the zero section of the bundle T ∗

G MA × M ′
B on T ∗

G MA. Thus we have to show
that

∧
−1 MB ⊗ σ and i!(τ ) are homotopic.

By definition, a representative of the symbol i!(τ ) on MA × MB is the product
of the symbol cMB⊗RC

by the symbol q∗τ . As cMB⊗RC
= cMB " cM ′

B
, we see that

i!(τ ) = q∗τ " cMB " cM ′
B

= σ̃ " cMB .
As we have seen before, the symbol defined as

∧
−1 MB ⊗σ on the manifold MA ×

MB is homotopic to the element cMB "σ . Now consider the symbol σ(t)(v,w, ξ, η) =
σ(v, tw, ξ, η) on T ∗M . The intersection of the support of cMB "σ(t) with T ∗

G M stays
compactly supported for all t . Indeed its support remains constant: this is the inter-
section of the support of σ with T ∗

G MA. So we obtain the desired homotopy between∧
−1 MB ⊗ σ = cMB " σ(1) and i!(τ ) = cMB " σ(0) and the claim follows.
With the previous notations, X = A ∪ B, i : T ∗

G MA × M ′
B → T ∗

G MX .

Corollary 11.11 Take σ ∈ K 0
G(T ∗

G MX ). Let σ0 = C−1
M ′

B
i∗(σ ) ∈ K 0

G(T ∗
G MA). Then,

we have the equality of generalized functions on G:

detMB (1 − g)index(σ )(g) = index(σ0)(g).

We are now ready to compare the exact sequence (35) with a combinatorial exact
sequence using the index. Notice that Z̃ is a list of elements in 	/Za and functions on
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	/Za cab be identified to functions on 	 which are invariant under translation by a.
We get

Theorem 28 The diagram

0 → K 0
Ga

(T ∗
Ga

M f

Z̃
)

j∗k−−−−→ K 0
G(T ∗

G M f
X )

C−1
a i∗−−−−→ K 0

G(T ∗
G M f

Z ) → 0

indm

⏐
⏐
/ indm

⏐
⏐
/ indm

⏐
⏐
/

0 −→ DM(Z̃)
ia−−−−→ DM(X)

∇a−−−−→ DM(Z) → 0

(37)

is commutative. Its vertical arrows are isomorphisms.
In particular, the index multiplicity map gives an isomorphism between K 0

G(T ∗
G M f

X )

and DM(X).

We start by remarking that, by Corollary 11.8, all the vertical maps in our diagram
are indeed taking values in the corresponding Dahmen–Micchelli spaces.

So we need to show commutativity. To prove the commutativity of the square on the
right hand side, using Fourier transform, we need to prove that (1−ga)index(σ )(g) =
index(C−1

a i∗(σ ))(g).

From the symbol σ on M f
X , an open set in MX , we deduce a symbol on MX with

same index, by the excision property of the index. Thus the commutativity follows
from Corollary 11.11 applied to A = Z , B = {a}. As for the square on the left hand
side, since j∗ is an open embedding, it preserves indices. The statement thus follows
from Proposition 11.4.

By induction we can then assume that the two external vertical arrows are isomor-
phism so, by the five Lemma, also the central one is and everything follows.

Summarizing we have isomorphisms

K s+1
G (M f

X ) ∼= K 1
G(T ∗

G M f
X ) = 0, K s

G(M f
X ) ∼= K 0

G(T ∗
G M f

X ) ∼= DM(X).

Let us make two obvious remarks on the isomorphism K 0
G(T ∗

G M f
X ) ∼= DM(X).

Remark 11.12 The space K 0
G(T ∗

G M f
X ) depends only of the manifold MX considered

as a real manifold. The space DM(X) depends only of the list X up to change of signs.

Remark 11.13 If U is a G manifold, the index of an element σ ∈ K 0
G(T ∗

GU ) is a
generalized function supported on the set of points g ∈ G such that g has a fixed point
in U .

We have seen in Sect. 8.3.1 that Fourier transforms of elements in DM(X) are
supported on the finite set of points P(X). This is in agreement with the fixed point
philosophy that we just recalled. In fact, an element g ∈ G has a fixed point v in M f

X if
and only if g ∈ P(X). Indeed if g ∈ P(X), there exists a basis b of V extracted form
X with gbi = 1, for all bi ∈ b. Thus any element v ∈ MX with non zero coordinates
on each Lbi is fixed by g, and is in M f

X .

We now come to our next commutative diagram.
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Lemma 11.14 For each s ≥ i ≥ 0, the index multiplicity map indm sends
K 0

G(T ∗
G M≥i ) to the space F̃i (X).

Recall that F̃i (X) is the subspace in F̃(X) such that ∇X\t f = 0 for all t ∈ S(i−1)
X .

Denote by � : F̃i (X) → F̃(X) the inclusion.
By Corollary 11.9, if σ ∈ K 0

G(T ∗
G M≥i ) and t is a rational subspace of dimen-

sion strictly less than i, we have
∧

−1 MX\t ⊗ σ = 0. Thus ∇X\t indm(σ ) = 0.
It follows that the only thing we have to show is that, if σ ∈ K 0

G(T ∗
G MX ), then

indm(σ ) lies in F̃(X). Take a rational subspace r . By Lemma 11.10, the index of∧
−1 MX\r ⊗ σ equals the index of an element σ0 ∈ K 0

G(T ∗
G MX∩r ). But the action

of G on MX∩r factors though the quotient G/Gr whose character group is 	r .
Thus K 0

G(T ∗
G MX∩r ) ∼= R(G)⊗R(G/Gr ) K 0

G/Gr
(T ∗

G/Gr
MX∩r ), hence ∇X\r indm(σ ) =

indm(σ0) lies in R(G) ⊗R(G/Gr ) C[	r ] as desired.
Our second commutative diagram and main theorem characterizes the values of

the index on the entire MX . This time, we use the notations and the exact sequences
contained in Theorem 27 and Corollary 11.11.

Theorem 29 For each 0 ≤ i ≤ s,

• the diagram

0 → K 0
G(T ∗

G M≥i+1)
j∗−−−−→ K 0

G(T ∗
G M≥i )

C−1
i e∗

−−−−→ K 0
G(T ∗

G Fi ) → 0

indm

⏐
⏐
/ indm

⏐
⏐
/ indm

⏐
⏐
/

0 → F̃i+1(X)
�−−−−→ F̃i (X)

μi−−−−→ ⊕
r∈S(i)

X
DM (G)(X ∩ r) → 0

commutes.
• Its vertical arrows are isomorphisms.
• In particular, the index gives an isomorphism between K 0

G(T ∗
G MX ) and F̃(X).

Lemma 11.14 tells us that the diagram is well defined. We need to prove commu-
tativity.

We prove that the square on the right hand side is commutative using Corollary
11.11. The square on the left hand side is commutative since j∗ is compatible with the
index and � is the inclusion.

Recall that K 0
G(T ∗

G MX∩r ) ∼= R(G) ⊗R(G/Gr ) K 0
G/Gr

(T ∗
G/Gr

MX∩r ) and that

DM (G)(X ∩ r) ∼= R(G) ⊗R(G/Gr ) DM(X ∩ r). Using Theorem 28, this implies
that the right vertical arrow is always an isomorphism.

We then apply descending induction on i . When i + 1 = s, since M≥s = M f
X and

F̃s−1(X) = DM(X), Theorem 28 gives that the left vertical arrow is an isomorphism.
So assume that the left vertical arrow is an isomorphism. We then deduce by the five
Lemma that the central vertical arrow is an isomorphism and conclude by induction.
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12 Generators

In this section, we show that the generators of F̃(X) correspond via the index map to
the generators of K 0

G(T ∗
G MX ) constructed by Atiyah-Singer in [1].

Recall that, given a manifold M, a way to construct elements of K 0
G(T ∗

G M) is
to take a closed G-manifold N embedded by i : N → M . Then we have a map
i! : K 0

G(T ∗
G N ) → K 0

G,c(T
∗
G M).

For our case M = MX , we shall take the following manifolds. Take a flag φ of
rational subspaces 0 = r0 ⊂ r1 ⊂ r2 ⊂ · · · ⊂ rs with dim(r i ) = i (and s = dim G).
Consider then the spaces Ei := ⊕a∈(X∩r i )\r i−1

La . We choose an orientation for each
r i and divide the set of characters Zi := (X ∩ r i )\r i−1 into positive and negative
elements Ai , Bi . Accordingly, we change the complex structure on each Lb for which
b is negative into its conjugate structure. Let A be the union of the sets Ai and B the
union of the sets Bi . Choose a G-invariant Hermitian metric hi on Ei and consider the
unit sphere Si (hi ) on Ei . The product Sφ(h) = ∏s

i=1 Si (hi ) is a closed submanifold

of M f
X .

The tangent space at a point p of Sφ(h) decomposes as a vertical space generated
by the rotations on each factor Ei and the horizontal space Hp, a lift of the tangent
space to the corresponding product of projective spaces. The horizontal space is a
Hermitian vector space. The tangential Cauchy–Riemann operator δφ is a differential
operator on Sφ(h), the product of the operators δi described in Subsection 10.3. The
index of δφ is the product of the indices of δi .

Let cφ(p, ξ) = c(ξ1) be the Clifford action on
∧

Hp of the projection ξ1 of ξ on
the horizontal tangent space Hp.

We then have [1] the following theorem.

Theorem 30

index(δφ)(g) = (−1)s(−1)|B|g
∑

a∈A aθ X
φ (g).

In fact cφ = c1 " c2 " · · · " cs is the external product of the symbols ci of the
operators δi .

Let iφ be the closed embedding of Sφ(h) in M f
X . We can then give an “easy” proof

of the following theorem of Atiyah-Singer (Theorem 7.9 of [1]).

Theorem 31 Let iφ be the closed injection of Sφ(h) to MX . Then the elements (iφ)!cφ

generate K 0
G(T ∗

G M f
X ).

Consider MX as a real representation of G, each connected component F of the
space of regular elements in Lie(G) gives us a complex structure JF on MX and
a corresponding “pushed” symbol AtF with index(AtF )(g) = (−1)|B|g

∑
a∈A a�F

X
(Theorem 25).

Theorem 32 The symbols AtF ∈ K 0
G(T ∗

G MX ), where F varies over all open faces of
the arrangement HX , give us a set of generators for K 0

G(T ∗
G MX ).

Remark 12.1 After checking naturality axioms, Theorem 32 reduces the proof of the
cohomological index formula given by [9] or [30] to the case of the symbols AtF .
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So Theorem 32 is crucial in establishing a cohomological formula valid for any trans-
versally elliptic operator.

13 Equivariant cohomology and infdex

The purpose of this section is to establish cohomological formulas for the index of
transversally elliptic operators (cf. [22] and [21]). We do this through a new invariant,
the infinitesimal index.

This construction is motivated by taking the Fourier transform of the formula of
Berline–Vergne for the equivariant index of a transversally elliptic operator [8,9,27]
where one can also find the various notations and definitions. As we shall see the com-
binatorial spaces DM(X) and F(X) appearing in K -theory and index Theory will be
replaced by spaces of distributions completely analogues to the ones appearing in the
Theory of splines and giving rise to precise analogues.

13.1 Equivariant de Rham cohomology

Let M be a C∞ manifold with a C∞ action of a compact Lie group G, we are going to
define its equivariant cohomology with compact support following Cartan (see [24]).

We define the space of compactly supported equivariant forms as

AG,c(M) = (S(g∗) ⊗ Ac(M))G

with the grading given setting g∗ in degree 2. Here Ac(M) is the algebra of differential
forms on M with compact support.

Each element x ∈ g of the Lie algebra of G induces a vector field vx on M, the infin-
itesimal generator of the action: here the sign convention is that vx = d

dε
exp(−εx) ·m

in order that the map x → vx be a Lie algebra homomorphism. A vector field V on
M induces a derivation ιV on forms, such that ιV (d f ) = V ( f ) and for simplicity we
denote by ιx = ιvx .

One defines the differential as follows. Given α ∈ AG,c(M), we think of α as an
equivariant polynomial map on g with values in Ac(M), thus for any x ∈ g we set

Dα(x) := d(α(x)) − ιx (α(x)) (38)

where d is the usual de Rham differential.
It is easy to see that D increases the degree by one and that D2 = 0. Thus we

can take cohomology and we get the G-equivariant cohomology of M with compact
support.

Now take a G-stable closed set Z in a manifold M . Consider the open set U = M\Z .
Then U is a manifold and we have an inclusion of complexes AG,c(U ) ⊂ AG,c(M)

given by extension by zero. We set

AG,c(Z , M) := AG,c(M)/AG,c(U ).
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Definition 13.2 The equivariant de Rham cohomology with compact support H∗
G,c(Z)

is the cohomology of the complex AG,c(Z , M).

Notice that AG,c(U ) is an ideal in AG,c(M) so AG,c(Z , M) is a differential graded
algebra and H∗

G,c(Z) is a graded algebra (without 1 if Z is not compact).
In this model, a representative of a class in H∗

G,c(Z) is an equivariant form α(x) with
compact support on M . The form α is not necessary equivariantly closed on M, but
there exists a neighborhood of Z such that the restriction of α(x) to this neighborhood
is equivariantly closed.

13.3 Action form and the moment map

Let G be a Lie group and M a G-manifold.

Definition 13.4 An action form is a G-invariant real one form σ on M .

The prime examples of this setting are when M is even dimensional and dσ is non
degenerate. In this case dσ defines a symplectic structure on M .

Example 13.5 For every manifold N , we may take its cotangent bundle M := T ∗N
with projection π : T ∗N → N . The canonical action form σ on a tangent vector v at
a point (n, φ), n ∈ N , φ ∈ T ∗

n N is given by

〈σ | v〉 := 〈φ | dπ(v)〉.

In this setting, dσ is a canonical symplectic structure on T ∗N and, if r = dim(N ), the
form dσ r

r ! determines an orientation and a measure, the Liouville measure on T ∗N . If
a group G acts on N , then it acts also on T ∗N preserving the canonical action form
and hence the symplectic structure and the Liouville measure.

Remark 13.6 If M is a manifold with a G-invariant Riemannian structure, we can
consider an invariant vector field instead of a 1-form.

Let vx be the vector field on M associated to x ∈ g and ix the derivation on forms
induced by contraction with vx .

Definition 13.7 Given an action form σ we define the moment map μσ : M → g∗
associated to σ by:

μσ (m)(x) := −〈σ | vx 〉(m) = −ιx (σ )(m). (39)

for m ∈ M, x ∈ g.

The moment map is related to the equivariant differential of σ as defined in the
Cartan model (see Formula (38)).

�(x) = Dσ(x) = μ(x) + dσ.
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13.8 Infinitesimal index

We fix a translation invariant Lebesgue measure dξ on g∗. We choose a square root i
of −1 and define the Fourier transform:

f̂ (x) :=
∫

g∗
e−i〈ξ | x〉 f (ξ)dξ.

We normalize dx on g so that the inverse Fourier transform is

f (ξ) =
∫

g

ei〈ξ | x〉 f̂ (x)dx . (40)

The measure dxdξ is independent of the choice of dξ .
If f (ξ) is a C∞ function on g∗ with compact support in a ball BR of radius R in

g∗ (for a choice of Euclidean structure on g∗) its Fourier transform f̂ (x) is a rapidly
decreasing function on g.

Theorem 33 Let σ be an action form with moment map μ. Let M0 = μ−1(0). Then
we can define a map

infdexσ
G : H∗

G,c(M0) → D′(g∗)G

setting for any [α] ∈ H∗
G,c(M0) and for any smooth function with compact support f

on g∗

〈infdexσ
G([α]), f 〉 := lim

s→∞

∫

M

∫

g

eis�(x)α(x) f̂ (x)dx .

The map infdexσ
G is a well defined homomorphism of S[g∗]G modules.

If the one form σ moves along a smooth curve σt with moment map μt such that
μ−1

t (0) remains equal to M0, then

infdexσt
G = infdexσ

G .

13.8.1. Applications. We apply the Theory to a linear representation MX of a torus,
with list of characters X . Then we have, for the infinitesimal index, cohomological
analogues of the K -theoretical results 28 and 29. on the index discussed in Sect. 11.

Theorem 34 The map infdex is a graded isomorphism as S[g∗]-modules of
H∗

G,c(T
∗
G M f in

X ) onto D(X).

Finally as for K -theory and the index we have
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Theorem 35 For each 0 ≤ i ≤ s − 1,

(a) For each h ≥ 0, H2h+1
G,c (T ∗

G MX,≥i ) = 0.
(b) For each h ≥ 1, the following sequence is exact

0→ H2h
G,c(T ∗

G MX,≥i+1)
j∗→ H2h

G,c(T ∗
G MX,≥i )

C−1
i e∗
→ ⊕s∈SX (i) H

2h−2|X\s|
G,c (T ∗

G M f
s )→0.

(41)

Let r be a vector subspace in g∗. We have an embedding j : S ′(r) → S ′(g∗) by
j (φ)( f ) = φ( f |r) for any φ ∈ S ′(r), f a Schwartz function on g∗. We denote the
image j (S ′(r)) by S ′(g∗, r) (sometimes we even identify S ′(r) with S ′(g∗, r) if there
is no ambiguity). We next define the vector space:

Definition 13.9

G(X) := { f ∈ S ′(g∗) | ∂X\r f ∈ S ′(g∗, r), for all r ∈ SX }. (42)

The following theorem characterizes the values of the infinitesimal index on the
entire MX . This time, we use the notations and the exact sequences contained in
Theorem 27 and Corollary 11.11.

Theorem 36 For each 0 ≤ i ≤ s,
• the diagram

0 → H∗
G,c(T

∗
G MX,≥i+1)

j∗−−−−→ H∗
G,c(T

∗
G MX,≥i )

C−1
i e∗

−−−−→ H∗
G,c(T

∗
G M=i ) → 0

infdex

⏐
⏐
/ infdex

⏐
⏐
/ infdex

⏐
⏐
/

0 → G̃i+1(X)
�−−−−→ G̃i (X)

μi−−−−→ ⊕s∈SX (i) Dg(X ∩ s) → 0

commutes.
• Its vertical arrows are isomorphisms.
• In particular, the infinitesimal index gives an isomorphism between H∗

G,c(T
∗
G MX )

and G̃(X).

13.9.1. Index and infinitesimal index. Our final task is to relate all commutative dia-
grams, of index and K -theory on one hand, infinitesimal index and cohomology on
the other, in a unique commutative diagram involving the Chern character on one hand
and Poisson summation formula on the other. The box spline now appears in Fourier
transform since the following result is well known.

ch(Bott(MX ))(x) = (2iπ)|X | ∏

a∈X

ei〈a,x〉 − 1

i〈a, x〉 Thom(MX )(x)

in the cohomology group of smooth equivariant differential forms.
We denote by X R the sequence X ∪ −X of characters. Remark that the zonotope

associated to X R contains 0 in its closure.
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Theorem 37 (Convolution theorem) Let X ⊂ 	 be a system of characters of G. Let

X R = X ∪ −X.

Let � be a G-invariant transversally elliptic symbol on M. Let indm(�) ∈ CZ[	]
be its multiplicity index. Let infdex−μ

G (ch(�)) be the infinitesimal index of its Chern
character. Then

BX R ∗d indm(�) = (2iπ)−2|X |infdex−μ
G ch(�).

We need thus a Deconvolution theorem which we state in the unimodular case (for the
general case see [22] and [21]).

Theorem 38 (Deconvolution theorem) Assume that X is unimodular. Let c be an
alcove in V containing 0 in its closure and contained in Z(X). Then

(i) limc(T odd(X)pw BX ) = δ0.

(ii) For any K ∈ C[	],

K = lim
c

(T odd(X)pw(BX ∗d K )).

Using the deconvolution theorem in the unimodular case, Theorem 37 leads to
the following theorem, which is strongly reminiscent of the Riemann–Roch theorem.
Remark that as X R contains 0 in its interior, we may use any alcove containing 0 in
its closure in the limiting procedure.

We denote by T odd(X R) the Todd operator associated to X R . It acts on the space
of piecewise polynomial functions for the system (X,	).

Theorem 39 Let X ⊂ 	 be a unimodular system of characters of G. Let

T odd(X R) =
∏

a∈X∪−X

∂a

1 − e−∂a

be the Todd operator.
Let � be a G-invariant transversally elliptic symbol on M, indm(�) ∈ CZ[	]

be its multiplicity index and infdex−μ
G (ch(�)) be the infinitesimal index of its Chern

character. Then

• infdex−μ
G (ch�) is a piecewise polynomial measure on g∗.

• Let c be an alcove having 0 in its closure. We have

indm(�) = (2iπ)−2|X | lim
c

T odd(X R)pwinfdex−μ
G (ch(�)).

Remark 13.10 It is possible to show in this unimodular case that the piecewise poly-
nomial function (2iπ)−2|X |T odd(X R)pwinfdex−μ

G (ch(�)) extends to a continuous
function on g∗. Thus its restriction to 	 gives the index multiplicity.
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We formulate now the general index theorem. We denote by P(X) ⊂ G the points
of the arrangement.

Theorem 40 Let X be a sequence of elements in 	 and let M := MX . Let

X R = X ∪ −X.

Let � be a G-invariant transversally elliptic symbol on M and indm(�) ∈ CZ[	]
be its multiplicity index.

For any g ∈ P(X), let infdex−μ
G (chg(�)) be the distribution on g∗ associated to

the cohomology class chg(�) ∈ H∞,m
G,c (T ∗

G Mg) by the infinitesimal index. Then

• infdex−μ
G (chg(�)) is a piecewise polynomial measure on g∗.

• Let c be an alcove having 0 in its closure. We have

indm(�) =
∑

g∈P(X)

(2iπ)−2|X g |ĝ lim
c

D(X R\X g
R, g)−1 (43)

T odd(X g
R) ∗pw infdex−μ

G (chg−1
(�)).
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which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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