Digital Investigation 20 (2017) S99—S106

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2017 Europe — Proceedings of the Fourth Annual DFRWS Europe
Forensic analysis of deduplicated file systems

@ CrossMark

Dario Lanterna’, Antonio Barili

University of Pavia, Via Ferrata, 5, Pavia, Italy

ARTICLE INFO ABSTRACT

Article history:
Received 26 January 2017
Accepted 26 January 2017

Deduplication splits files into fragments, which are stored in a chunk repository. Deduplication stores
chunks that are common to multiple files only once. From a forensics point of view, a deduplicated device
is very difficult to recover and it requires a specific knowledge of how this technology operates. Dedu-
plication starts from a whole file, and transforms it in an organized set of fragments. In the recent past, it
was reserved to datacenters, and used to reduce space for backups inside virtual tape library (VTL)
devices. Now this technology is available in open source packages like OpenDedup, or directly as an
operating system feature, as in Microsoft Windows Server or in ZFS. Recently Microsoft included this
feature in Windows 10 Technical Preview. Digital investigation tools need to be improved to detect,
analyze and recover the content of deduplicated file systems. Deduplication adds a layer to data access
that needs to be investigated, in order to act correctly during seizure and further analysis. This research
analyzes deduplication technology in the perspective of a digital forensic investigation.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

Keywords:
Deduplication
File systems

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The architecture evolution of deduplicated file systems has been
mature for production environment since many years, but now it is
ready for office and consumer environment.

Digital forensic analyses are frequently required for many types
of crimes, not only for cybercrime. In most cases, the practitioner
has to extract some files from file systems, to restore some other
from backups, and to analyze a bunch of digital media as USB disks,
SD cards, and NAS storages. Analyses involving datacenters are
done with the collaboration of data center staff and technology and
deduplication is handled transparently. Now that this technology is
arriving at a consumer level (Windows 10 Technical Preview-2016),
a higher level of awareness is required. Seizing an usb disk of some
TB, without knowledge of the presence of deduplicated volumes,
makes it difficult and sometimes impossible to extract data.

The use of a deduplicated file system is transparent to the user,
and gives optimal results in terms of space saving. The saving
improvement estimated from Microsoft (EI-Shimi et al., 2012) using
basic chunking is of 25.82% for Office-2007 documents (docx), and
9.96% for PDF. These values are calculated using GFS-US dataset.

This analysis explains how deduplication works, how we can
identify a particular type of deduplication implementation, and

* Corresponding author.
E-mail address: dario.lanterna@unipv.it (D. Lanterna).

http://dx.doi.org/10.1016/j.diin.2017.01.008

how to reconstruct files for a specific configuration. Traditional data
carvers do not recognize the presence of a deduplicated file system.
Microsoft implements this feature as an extension of NTFS, adding a
reparse point attribute in the file entry. Reading the NTFS Master
File Table ($MFT) of a system with deduplication enabled, a forensic
tool can show files and folder structures, but cannot extract the
files' content. A similar problem was present the first time NTFS
introduced files and folders compression.

Previous work

Deduplication is studied from the point of view of algorithms
and their efficiency (Muthitacharoen et al., 2001; Min et al., 2011)
and a brief introduction to new storage technologies in a forensics
perspective is explained in this article (Carlton and Matsumoto,
2011). The authors indicate the need for thorough study using
experimental data, and physical acquisition and underline the
importance of markers that help to recognize storage technologies.
Deduplication is used in smartphone memory analysis to detect
duplicated pages (Park et al., 2012), because flash memory pages
are not deleted and rewritten when data is modified, but a new
page is created according to Flash Translation Layer (FTL) algorithm
(Park et al., 2012), and the updated content is saved in it (Harnik
et al., 2010). Deduplication is also considered a useful technology
to reduce space needed to archive digital evidence (Neuner et al.,
2015; Neuner et al., 2016).

1742-2876/© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dario.lanterna@unipv.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.008&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.008
http://dx.doi.org/10.1016/j.diin.2017.01.008

S100 D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106

Deduplication

Deduplication is a process that works in order to reduce dupli-
cation of data on a device. Data deduplication is used in backup and
archive processes, while network deduplication is used to reduce
network bandwidth usage in some applications. Deduplication can
be done at file-level (SIS Single Instance Storage) or at block-level.

The deduplication process is considered in-line if it is done
before saving data on the device, while is considered a post-
process, if data is first stored on a device and then deduplicated,
according to some parameters as file age, file type and file usage. An
example of inline deduplication is OpenDedup, while an example of
post-process is the deduplication engine integrated in Microsoft
Windows Server (2012) (and 2016) (El-Shimi et al., 2012).

A deduplicated file system acts the deduplication process
against the whole file, to discover duplicated parts. The procedure
(Fig. 1) splits the file into fragments called chunks and for each
chunk a hash is computed (OpenDedup uses a non-cryptographic
hash algorithm named Murmurhash3 (Yamaguchi and Nishi,
2013; Appleby), while Microsoft uses a cryptographic algorithm
SHA256 (NIST, 2012)). All new hashes are stored in a database, and
the relative chunk is stored in a chunkstore; a pointer to the posi-
tion in chunkstore is saved together with the hash. The original file
is transformed in a sequence of hashes; each hash is linked to the
corresponding chunk. The procedure, that reconstructs original
files after deduplication, is called rehydrating. Chunks that are
common to multiple files are saved only once. If a very frequent
chunk is lost, many files cannot be fully rehydrated. Different
techniques are possible to avoid this problem. Microsoft stores
multiple copies of the chunks that recur very often; OpenDedup
uses SDFS file system that may use multiple nodes and spread each
chunk inside more than one node.

The chunks may have a fixed length in the order of some kB
(usually 32 kB—128 kB) or variable length. The use of fixed length
chunks simplify hash computing, and storage is simple to organize.
Using fixed length chunks, a little difference between two files
generates a different set of chunks with different hashes: for
example later versions of documents or source code. Variable
length algorithms extract chunks using fingerprints in the text, in
this case little additions to a file affect only the chunk that contains
the addition. Fingerprints identification is done using Rabin fin-
gerprints algorithm (Rabin, 1981). This algorithm uses a sliding
window of a fixed number of bytes and computes a value (finger-
print) using polynomials. Using specific patterns of fingerprint
values, deduplication systems cut original files in chunks. In this
way, it is possible to extract common chunks in very similar files
isolating the changing parts.

Deduplication is present in many products available for pro-
duction usage:

e Data Domain File system (DDFES) (Zhu et al., 2008) is used in
appliance of EMC DataDomain family;

e Zettabyte File System (ZFS) an open source file system originally
designed by Sun Microsystems, now Oracle Corporation. ZFS
implements deduplication from 2009;

e B-tree file system (BTRFS) stable from August 2014 can enable
out-of-band data deduplication;

e LiveDFS (Ng et al., 2011) implements inline deduplication and is
designed for virtual machine storage repositories;

e OpenDedup based on SDEFS is an inline file system used for
backup purposes;

e Microsoft Windows 2012 file system is a post-process dedupli-
cation engine (Debnath et al., 2010; Introduction-to-data-
deduplication, 2012).

Each implementation has proper strategies to reduce impact on
system performance, and to reduce usage of memory and CPU.

Analysis
Low level file system analysis

The analysis of a real system allows acquiring and recognizing
details, about characteristics of these file systems. The analysis of
the structure and the acquisition of artifacts give a knowledge of
how to operate. The elements analyzed here are present in all
deduplicated file systems with different naming conventions and
internal organizations.

The scope of the analysis is to detect a series of parameters
needed to reconstruct data. Using these parameters, it is possible to
infer configurations of the original systems and to run an instance
of the original application and recover data automatically.

The knowledge of the structure of deduplicated file systems may
help improve off-line tools. Off-line tools, like FTK Imager by
AccessData or Autopsy by Basis Technology, can navigate many
different file systems, but considering W2012 deduplication these
tools can only navigate files and folders structure, but they cannot
extract the content of deduplicated files and the same happens
with OpenDedup. These tools installed on a W2012 system, cannot
open deduplicated files, even if they are accessible from file system.

OpenDedup

The first implementation analyzed in this paper is the SDFS file
system, used in OpenDedup. OpenDedup allocates all necessary
files in a regular file system using a software interface called File
system in Userspace (FUSE). By means of FUSE it can write a virtual
file system allocated in user storage space. When SDFS is mounted
it operates as a regular file system, and deduplicated files are

‘ Deduplication ‘

v

Split input
file in chunks

v

Computes hash
for each chunk

il Hash is YBS Return pointer
|n hash-db?’_l_,..-- —» to ChunkStore
vN 0
Store

chunck in ChunkStore
hash in hash-db

Store hash
sequence for the file

Fig. 1. Deduplication process.

D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106 5101

reached through their mount point. Unmounting the file system, it
is possible to access the underlying structure (Fig. 2). The basic
structure of SDFS (Fig. 2) is replicated for each volume.

The volume under analysis is called “\deduptest”; to navigate
this file system, the starting point is the folder “\deduptest\files”
(Fig. 3). In this folder, there is a replica of the folders and files
structure of the mounted file system; each file and folder has
metadata similar to the files in the mounted file system. The
attribute relative to file size is not referred to the original dedu-
plicated file, while the content of the file is relative to the dedu-
plicated storage structure. Files in this folder contain the pointers
needed to support the deduplication structure. These files are
pointer files.

Analyzing one of the pointer files (ex.: The Complete Works of
William Shakespeare.txt) the first bytes report the creator, in our
case OpenDedup (address 0x08: “org.opendedup.sdfs.io.MetaData
DedupFile”) and the version is at the end of the file (address 0x12E:
“3.1.9”). The first two bytes in each file pointer (Table 1)
(stream_magic: 0XACED) are a typical marker for JavaSerialization
protocol. This indicates that this file is a serialization of java data
structure.

Inside this file there is the size of the original file (address
0x4A:00:00:00:00:00:55:4B:81 — 5.589.889 bytes — Table 2).
Using this attribute, the metadata related to the file system are now
complete: owner, permission, path and filename are reported in the
folder “\deduptest\files” while the size is inside the file pointer.
Using pointers, we can rehydrate a file to its original content.

To reconstruct the file we need a link to the structure that
contains the sequence of chunks. Inside the file pointer there is a
unique-identifier (address 0x6B: “$aac2f972-56e4-4fd5-9elc-
8dddec187195” — Table 3) that points to further elements in the
structure.

In the folder “\deduptest\ddb” (Fig. 4) there is a set of two
characters folders, these are the first two characters of the unique
identifiers present in the file pointers. In this case, we have to look
in the folder “\deduptest\ddb\aa”: inside this folder there are the
folders that map files relative to unique-identifiers starting with
“aa”. To access the map for the file under analysis the right folder is
“\deduptest\ddblaa \aac2f972-56e4-4fd5-9e1c-8dddec187195".
The folder contains a file named “aac2f972-56e4-4fd5-9elc-
8dddec187195.map”. This file contains all the chunks hashes of the
original file chunks. These hashes are in the proper order and each
hash can be used as a pointer into the chunkstore.

The hashes sequence and the chunkstore are two elements
common in all deduplication systems. The default hash algorithm
in OpenDedup is murmur hash (mmh3) (Appleby) but this can be
changed by a configuration parameter and other algorithms can be
specified; Microsoft and DataDomain use SHA1/SHA256.

E chunkstore ,m
N S ~_Ehdb .
'E 'V'0|“”‘ffﬁ,l,__u B3 deduptest / & ddo _ A
o) = files
\ B ers

Fig. 2. SDFS volumes structure.

The_Writings_of_Mark_Twain_Following_the - Copy.pdf

/ The_writings_of_Mark_Twain_Following_the.pdf

/ |/} The Complete Works of William - Copia (2).txt
3 files / [/} The Complete Works of William ¢ - Copia.td
\\ @ /
N\ Shak /
‘Ma [/} The Complete Works of William o bt

Fig. 3. SDFS files structure.

Table 1

MetaData Dedup file.
Hexadecimal Text
0x0000 AC ED 00 05 73 72 00 27 —i..Sr.'
0x0008 6F 72 67 2E 6F 70 65 6E Org.Open
0x0010 64 65 64 7570 2E 73 64 Dedup.sd
0x0018 66 73 2E 69 6F 2E 4D 65 fs.io.Me
0x0020 74 61 44 61 74 61 44 65 taDataDe
0x0028 64 75 70 46 69 6C 65 dupFile

Table 2
File size.
Hexadecimal
0x0048 xx 00 00 00 00 00 55 4B
0x0050 81 XX XX XX XX XX XX XX
Table 3
Unique identifier.
Hexadecimal Text
0x0068 00 00 00 24 61 61 63 32 ...S%aac2
0x0070 66 39 37 32 2D 35 36 65 F972-56e
0x0078 34 2D 34 66 64 35 2D 39 4-4£d45-9
0x0080 65 31 63 2D 38 64 64 64 Elc-8ddd
0x0088 65 63 31 3837 31 39 35 ecl87195

3 aac2r972-56e4-4fd5-9e 1c-8dddec187195
BEaddo /) BHaa — o —————
< [E aacofa72-66e4-4fd5-9e c-8dddec187195.map

S .
==)

\@n

aa.. .map

(i

Fig. 4. SDFS ddb structure.

E chunks
E chunkstore E hdb _

& 100

[@&-100
1" l/—
l/ | 9038290553609075189
B3 chunks /@903 /[9038200553609075189.map

\\\ £ outgoing X
\| B3 syncstaged
£ Bucketinfo

Fig. 5. SDFS chunkstore structure.

Mmh3 is a non-cryptographic hash algorithm simple to
compute, with a reduced need of memory and computing power; it
has a low collision rate, and so it is suitable for inline deduplication.
The procedure computes mmh3 with a 128 bit length and with a
“seed” (0x192A — decimal 6442), the value of which is written in

S102 D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—-S106

the first two characters of each map file. The simplest way to verify
mmh3 hash computing is by fixing the chunk length, splitting the
file using chunk length and then computing mmh3 (Appleby) using
the “seed” 6442.

The sequence (Table 4) of hashes can be used to get the chunks.
To discover where each chunk is saved some other steps are
needed. In folder “\deduptest\chunkstore\hdb” there is a file called
hashstore-sdfs-UNIQUEID (example: hashstore-sdfs-97035D0A-
E223-D298-AABA-6EE996282BAS8.keys) that contains as set of (key,
value) pairs. The keys are the hashes, while the values are pointers
in the chunkstore folder structure (Fig. 5). This file contains all the
hashes computed for all the files in the deduplicated file system,
and operates as an index.

The use of these pointers in the chunkstore structure (Table 5)
requires a simple transformation of the pointer from hexadecimal to
decimal (ex: Ox7D6E755F20A339F5 — signed decimal —
9038290553609075189): now we know where to search for this
chunk. In folder “\deduptest \chunkstore\chunks” there is a set of
about two thousand folders. The name of these folders are something
like “nnn” and “-nnn”. The pointer for the chunk we are looking for,
uses the first three number plus the sign: in this example, the folder
we are looking for is “\deduptest\chunkstore\chunks\903” and the
file “9038290553609075189.map”.

The structure of this file (Table 6) is again (key, value): the key is
as usual the hash, while the value is the offset in the file
“9038290553609075189”. This file contains the chunks and the
structure is (key, length, value); the length is the chunk size plus
the length of a start marker FFFF FFFF, and the value is the chunk.

Table 4
Hashes sequence.

Hexadecimal

0x000000 19 2A 02 00 00 00 00 00

0x000100 00 00 00 00 3500 00 00
0x000108 01 2D FA E1 3F CE 15 51
0x000110 B1 9A A7 55 28 A0 E8 99
0x000118 41 00 FE 00 00 00 00 00

0x000160 00 35 00 00 00 01 BD D7
0x000168 C2 E3 4B C9 85 7B CO 1A
0x000170 34 CE F1 B4 28 EF 00 FE

Table 5
Chunkstore pointer.

Hexadecimal

0x162048 2D FA E1 3F CE 15 51 B1
0x162050 9A A7 55 28 A0 E8 99 41
0x162058 7D 6E 75 5F 20 A3 39 F5

Table 6

Chunkstore.
Hexadecimal Text
0x0AD2DO0 00 00 00 10 2D FA E1 3F ...-ué?
0x0AD2DO CE 15 51 B1 9A A7 55 28 i.Q1é§U(
0x0AD2DO0 A0 E8 99 41 00 00 10 04 e™a .
0x0AD2DO0 FF FF FF FF EF BB BF 54 GYVYInT
0x0AD2DO0 68 65 20 50 72 6F 6A 65 he Proje
0x0AD2DO0 63 74 20 47 75 74 65 6E ct Guten
0x0AD2D0 62 67 2 65 720 45 42 6F berg EBo

Windows 2012 deduplication

The Windows 2012 Deduplication (W2012Dedup) (Patentscope)
is a feature of the file system, while OpenDedup was a file system in
userspace. This implies that the analysis has to access the under-
lying structure of the file system. To analyze the file system, the
tools used are FTK Imager and Autopsy; by means of these tools, it is
possible to access all the elements of the NTFS structure.

The file system stores all deduplication data under the “System
Volume Information” (Fig. 6); this hidden folder contains the
chunkstore structure. The chunkstore contains three elements, the
Stream container, the Data container and the Hotspot container.
The first two elements are common in deduplication. The Stream
contains the hashes sequences; the Data contains the chunks, while
the Hotspot is an element added by Microsoft to store most com-
mon or frequently used chunks; in this last container there is a
controlled level of redundancy.

The analysis of a Windows 2012 file system starts from the
Master File Table ($MFT) and $MFT information are stored in little
endian. The SMFT entry relative to a deduplicated file contains in-
formation about chunkstore. These data are saved in a “Reparse
Points” attribute (SREPARSE_POINT — 0xCO).

The function of the “Reparse Point” attribute is to act as a
collection of user-defined data. Microsoft or third party software
can use this attribute for specific applications. When a reparse
point is present, the system needs a specific filter to parse this
attribute.

Reparse Point (Table 7) starts with the NTFS attribute type 0xCO;
in our example, the full length of this section is 0x00AO. The length
of the original file is written at the relative offset 0x28 (Len 4 bytes);
at offset 0x38 (Len 16) there is the unique identifier of ChunkStore
({2EE490E5-44F0-4F9A-8D59-D6D8A2B5652C}.ddp). Inside this
folder, we have the “Data” and “Stream” folders. Inside the Data
folder, there are .ccc files that are chunks containers, while inside
the Stream folder the .ccc files contain the hashes sequences for the
deduplicated files. At offset 0x78 (Len 30) there is the sequence of
bytes that are the stream header; this value identifies the stream of
a particular file in the stream container.

In the Stream folder, a .ccc file has three type of sections: “Cthr”
called file header, “Rrtl” or redirection table, “Ckhr” or stream map
element. The syntax of the file is:

<Stream Container> ::= <file header> <redirection table>
<stream maps>

<stream maps> ::= <stream map> <stream maps> | <stream
map>

<stream map> ::= <stream header> <metadata> <hash values>
<hash values> ::= <hash value> <hash values> | <hash value>

The data we are looking for is in Ckhr (0x 43 6B 68 72) sections.
Each Ckhr section (Table 8) contains the full sequence of hashes
relative to a file also called “stream map”; each section reports the

E{j System Volume Information
=2 Dedup
&2 ChunkStore

B0 {2EE490E5-44F0-4F9A-8D59-DED8A2B5652C} ddp

Fig. 6. Windows 2012 system volume information.

D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106 5103

Table 7
Reparse point.

Address Hexadecimal content
+0x00 C0 00 0000A0 000000
0x08 00 00 00 00 00 00 03 00
0x10 84 00 00 0018 00 00 00
0x18 13 00 0080 7C 00 00 00
0x20 01 02 7C 00 00 00 00 00
0x28 16 8F 09 00 00 00 00 00
0x30 00 00 00 00 00 00 00 00
0x38 E5 90 E4 2E F0 44 9A 4F
0x40 8D 59 D6 D8 A2 B5 65 2C
0x48 40 00 40 00 40 00 00 00
0x50 F5 F4 B2 C1 6E BO D1 01
0x58 01 00 00 00 00 00 01 00
0x60 00 50 00 00 01 00 00 00
0x68 01 00 00 00 08 05 00 00
0x70 C8 01 00 00 00 00 00 00
0x78 9C FC 06 75 EB 4E D1 0C
0x80 FD13 F3 14 AA 1D B1 D3
0x88 8C BA 9C 19 E2 EF D5 12
0x90 50 58 CE B1 FB 58 05 00
0x98 C1 AD 45 7A 00 00 00 00
0xA0
Table 8

Ckhr entry in stream container.

Address Hexadecimal content
+0x00 43 6B 68 72 01 03 03 01
0x30 00 00000000000000
0x38 9C FC 06 75 EB 4E D1 0C
0x40 FD13 F3 14 AA 1D B1 D3
0x48 8C BA 9C 19 E2 EF D5 12
0x50 50 58 CE B1 FB 58 OF 27
0x58 EB 47 3C 95 A2 30 E5 A5
0x60 77 51 A6 31 DF FF CB 71
0x68 53 6D 61 70 01 04 04 01
0x70 0100000001000000
0x78 00 50 00 00 01 00 00 00
0x80 2E 5E 01 00 00 00 00 00 ED
0x88 DB 30 58 FA 7F 5C 19
0x90 5C 89 FD 23 FE 97 FA 43
0x98 58 B2 99 B4 FF 6B 40 6C
0xA0 OB BABE 27 49 BB 28 7A
0xA8 ED A7 00 00 000000 00

stream header at offset relative 0x38. Starting from global offset
0x30 and each 64 (0x40) bytes, there is a new hash section. At offset
0x70 starts the first hash (sequence 0x01), at 0x78 there is the
absolute position in the chunkstore (0x5000), and at offset 0x88
the hash (len 32). The value at offset 0xA8 is the length of the chunk
payload (0xA7ED).

The last file to analyze is the chunks container .ccc in the “Data”
folder. The syntax of the file is:

<Chunk Container> ::= <file header> <redirection table> <data
chunks>

<data chunks> ::= <data chunk> <data chunks> | <data chunk>
<data chunk> ::= <chunk header> <chunk data>

Here are stored the chunks, jumping to the position indicated in
the “Ckhr entry” (0x5000) there is a the first “Ckhr” entry and after
a few bytes (0x5C) starts the chunks content for the length indi-
cated again in this file at offset 0xOC (OxA7ED) (Table 9).

Following the sequence as reported in the stream map, all the
chunks in a file can be retrieved and the rehydration of the whole
file can be accomplished. If chunks are compressed, before being

Table 9
Data chunk in Chunk container.

Address Hexadecimal content

0x5000 43 6B 68 72 01 03 03 01 Ckhr. ...
0100 00 00 EDA7 00 00
010028 00 08 00 00 00
08 00 00 00 08 00 00 00
02 00 00 00 00 00 00 00
ED DB 30 58 FA 7F 5C 19
5C 89 FD 23 FE 97 FA 43
58 B2 99 B4 FF 6B 40 6C
OB BABE 27 49 BB 28 7A
5D 1A 7C 25 A5 A8 E7 CF
32 B8 58 6B BB 92 4C 9D
0000 00 00 50 72 6F 6A
6563 74 20 47 75 74 65
6E 62 6572 67 27 73 20
4C 6120 44 69 76 69 6E La Divin
6120 43 6F 00 10 00 00 acCo....
6D 6D 65 64 69 61 20 64
6920 44 61 6E 74 65 2C

....Proj
ect Gute
nberg's

mmedia d
i Dante,

concatenated, they have to be deflated.

When a file is deleted, the $MFT entry $REPARSE_POINT is
cleared, but the chunk hashes sequence, and the chunks in the
chunk container are preserved until the first “garbage collection
job” runs.

The chunks may be compressed, depending on the system
configuration, and some types of file are excluded from compres-
sion because they already contain compressed data. The compres-
sion used (sometimes called LZNT1+) is very similar to LZNT1
(Introduction-to-data-deduplication, 2012; MS-XCA, 2015). LZNT1
is a Microsoft algorithm inspired to LZ77 (Ziv and Lempel, 1977).
The difference between LZNT1 and this compression algorithm is
that the flag bytes are 32 bits long (4 bytes) instead of 16 bits (2
bytes) used by LZNT1. The syntax is the same:

<compressed chunk> ::= <Flag group>

<Flag group> ::= <Flag data> <Flag group> | <Flag data>
<Flag data> ::= Flag-byte <data block>{1-32}

<data block> ::= Char | Len-displacement

There is no official documentation about this element, but this
compression algorithm seems an evolution of LZNT1.

W2012Dedup hash algorithm outputs values 256 (32 bytes) bits
long. According to documentation (Microsoft Open Specifications
Program) many Microsoft protocols use SHA-1, for example Win-
dows Distributed File System (DFS) replication (MS-FRS2) and
Remote Differential Compression Algorithm (MS-RDC). In this case,
the length of the hash value (256 bits) indicates another algorithm.
To verify this hypothesis we tested some algorithms but without
the knowledge of the padding strategy it is difficult to identify the
algorithm: the best hypothesis is SHA-256.

Forensic analysis
Analysis carefulness

The seizure of storage devices containing a deduplicated file
system is an activity that requires some carefulness. During a
seizure, we need to check the presence of deduplication in storage
devices and if it is present, there are a few solutions applicable. The
first is to seize the whole system and not only the deduplicated
storage. The second is to conduct a live forensic analysis and extract
the documents of interest for investigation (if known) on-site. The
third method is to write down all installation details and replicate

5104 D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106

the same configuration in laboratory, because to recover a dedu-
plicate volume we can mount it using an operating system that
runs the same configuration as the original installation.

However, if during seizure no check was done for the presence
of deduplication, we have to extract information directly from
storage devices. In this case, recovering of the volume requires a
little more effort. The first step is to recognize the file system type;
the second is to infer the configuration parameters. We must pay
specific attention at data carver's results, because at the date we
wrote this article, popular data carvers do not recognize the pres-
ence of a deduplicated file system, and do not know how to rehy-
drate original files. This article is a beginning of investigation of
these file systems, to improve awareness about the problem.

OpenDedup

The previous explanation of how this file system works, gives us
the way to recover it using the chunks repository and the hash
sequences. Usually a deduplicated file system is used to support
backup of huge quantity of data. The idea to manually rehydrating a
file system is nonsensical, but a clear understanding of the process
is the basis to create procedures to automate the process. The direct
analysis of the storage support is reserved to recovering of cor-
rupted volumes. The fundamental elements in recovery procedure
are the chunkstore and the relative hash sequences. To see if the
volume under analysis contains a working file system, we can
analyze the structure of the deduplicated file system. It allows
checking integrity of data; the integrity check is done using the
information available in the chunkstore. The chunkstore contains a
set of ordered pairs (hash, chunk), and we can use the algorithm
murmurhash3 and the “hash-key” (default 0x6442 in case of
default configuration) to verify integrity of chunks. To verify that all
the chunks are present, we must use the hash sequences. This
procedure gives a granularity of check corresponding to the chunk
size.

If we have a well-functioning OpenDedup volume, we can install
the same version of the file system and configure it to mount the
volume under analysis. The configuration requires parameters
inferable from data present in the volume. The basic parameters are
chunk type and size, the hash algorithm, the “hash-key”, the po-
sition of the hash-db and of the chunkstore. To identify chunk type
and size we can analyze the chunks length: if all chunks have the
same size, the chunk type is “fixed-size” and the chunk size is easily
computed, while if chunks have different length the chunk type is
“variable-size” and “min-size” and “max-size” need to be estimated
analyzing all the chunks. The hash-key is in the first byte of all the
map files. The hash-type (or hash algorithm) can be detected using
the length of the hash value, the hash value, the chunk content, and
the hash-key. We must compute the hash value of the chunk using
the possible algorithms and identify the right one; the default al-
gorithm is murmurhash3 (Appleby).

Windows 2012 R2

Windows 2012 uses a post-process deduplication method. Files
are first stored in the file system as regular files, and only after a
configured period (parameter: fileMinimumAge) are processed for
deduplication. After deduplication, the file system removes the
original files. However, until the disk area is overwritten, the arti-
facts of deleted files remain on the volume. Since they were regular
files, they can be recovered using a data carver.

W2012 does not deduplicate all the files: it filters files according
to “excludeFilextensionsDefault” configuration parameter, that in-
dicates which file extensions are excluded. The excluded files are
saved as regular files and no deduplication is applied. Other files are

deduplicated and stored in the volume as previously explained.
W2012 stores chunks in a compressed form, but compression is
not applied to all files, there is a configuration parameter that ex-
cludes the compressed formats (parameter: noCompressionFi-
leExtensions, default values: asf, mov, wma, wmv, ace, arj, bhx, bz2,
cab, gz, gzip, hpk, lha, 1zh, 1zx, pak, pit, rar, sea, sit, tgz, z, zip, zoo).
The excluded files are deduplicated, but chunks are not com-
pressed. These files can be recovered concatenating all chunks as
they are in the chunkstore, following the order specified in the
stream map; no deflate process is required after chunks extraction.
The simplest method, to recover a well-functioning W2012
deduplicated volume, is to mount it on a system with the same
operating system version with the deduplication engine enabled.
Tools like FTK Imager or Autopsy can analyze many different file
systems, reading directly the file system data structure. However,
when you try to read a deduplicated file system, it starts from $MFT
of the deduplicated volume, reads all the entry, shows files and
folders with their metadata and when it tries to inspect the content
of the files, they result empty. This happens because these tools do
not know how to use reparse point information. Therefore, in case
of a damaged device, we must recover the fundamental files that
are the chunk-container and the stream-container; these two ele-
ments are the bearing structure of the chunkstore. Then, following
a stream map, we can concatenate chunks to compose a whole file.
When a file is rehydrated, if the $MFT is available, we can recover
the file name and metadata, otherwise we can analyze header and
structure of the file and recognize the file type.
Considering a non-deduplicated volume, when we delete a file,
a data carver can recover the whole file, until the allocated space is
overwritten. A deduplicated volume instead splits files in chunks,
and stores each chunk in a repository. When a file is removed from
a deduplicated volume, the entry in $MFT is immediately removed,
but the stream map and the chunkstore remains unchanged.
Therefore, immediately after deletion, it is possible to recover a file.
A deduplicated volume runs a optimization process regularly, but a
“regular” optimization has no effects on stream maps and chunk
repositories. Only when a garbage collection (GC) job runs, it
removes the chunks that are part of deleted elements from the
chunkstore. A “regular” GC deletes only part of the unreferenced
chunks from the chunkstore, while a “full” GC eliminates all traces
of deleted files in deduplicated volume structure. Nevertheless,
analyzing unallocated space after a GC we can find artifacts left by
this process. During GC, the system creates a new version of the
stream container and the chunk container, then deletes the previ-
ous version of the stream container and the chunk container files,
but they remain for a while in the file system as artifacts. We can
recover fragments of stream map and chunk container, and
sometimes whole files. To recognize stream-container and chunk-
container, we can use their internal structure reported in
Tables 10 and 11. The particular structure of files that support a
deduplicated file system gives high confidence to the recovered file,
because the stream map is a sequence of hashes, and so it is
possible to verify the completeness of the chunks repository.

The importance of Hash-db

Suppose you recover a chunk container, without the hash se-
quences, and the chunks are not compressed. Without the knowl-
edge of chunks concatenation sequence, it is impossible to do an
accurate reconstruction because of the deduplication algorithms
used to create chunks. An efficient chunking strategy uses a system
based on the Rabin algorithm (Rabin, 1981). This algorithm locates
the point where to break a file creating chunks; the localization of
cut points happens where the original file shows a predefined
“fingerprint”. When systems use this algorithm to process files

D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106 S105

Table 10
Stream container format.

Address Hexadecimal content
0x000000 43 74 6872 01 04 04 01 Cthr....
0x000020 last stream entry

43 74 6872 01 04 04 01 Cthr....
0x001000 52 72 74 6C 0103 0301 Rrtl....
0x002000 52 72 74 6C 01 03 03 01 Rrtl....
0x003000 52 72 74 6C 01 03 03 01

Table 11

Data container format.

Address Hexadecimal content

0x000000 43 74 687201 04 04 01 Cthr....
0x000020 last stream entry

43 74 68 72 01 04 04 01 Cthr....
0x001000 52 72 74 6C 01 03 03 01 Rrtl....
0x002000 52 72 74 6C 01 03 03 01 Rrtl....
0x003000 52 72 74 6C 01 03 03 01

end of P

file FF FF FF FF FF FF FF FF

containing documents like contracts or invoices, the resulting
chunks are very similar, because these documents are usually based
on models, and their chunks can be concatenated to generate files
never existed in the original file system. The existence of a flawless
hash sequences container is the only way to be sure of the accuracy
of file reconstruction.

To test this hypothesis, we used the first twelve pages of “Alice’s
Adventures in Wonderland”. The first file in Fig. 7-File 1 contains
the first twelve original pages. This file is the smallest file that
W2012Dedup splits in three chunks. We modified the starting line
of the text and created a second file Fig. 7-File 2. To create the third
file we modified the ending line of the second file Fig. 7-File 3. After
creation of these three files, we converted them in PDF format, and
to simplify the test we changed the extension from “.pdf” to “.ace”
to avoid chunks compression. Then we copied them in the dedu-
plicated volume. The system broke the three files generating
chunks has depicted in Fig. 7-File 1 2 3 (same pattern indicates
identical chunk). The file # in Fig. 7 can be composed using the
chunks of “file 1” “file 2” “file 3”, and obtaining a new valid file. The
chunking based on Rabin algorithm uses the output of a polynomial
function, and cuts the files where a fixed trend is present. This
generates accurate cuts; the same hash in the central part of the
three files proves the precision of these cuts. Exploiting this

0
SRR
o
O
oeletelole
GESESS

File 2 File 3 File #

Fig. 7. Recovering using chunks without hashes sequence.

property, you can concatenate chunks, to create a new well-
formatted file, but this file was not present in the original volume.

The procedure we used to generate files to demonstrate this
hypothesis is very similar to the procedure used to create docu-
ments in a company, where employees start always from the same
document model to create new documents, and then they modify
only part of header and part of the body (examples are invoices and
contracts).

The problem exposed, enforces the rule that we must have the
hash sequences to rehydrate files present in the chunkstore. The
hash sequences are a crucial element of a forensics acceptable
reconstruction of a deduplicated file system.

Conclusion

New storage technologies need to be investigated from a
forensic point of view, because manufacturers rarely give detailed
documentation about low-level implementation. Storage technol-
ogies knowledge is central in digital forensic analysis and this work
gives a first look inside deduplication implementations.

This paper addresses deduplication technologies, it analyses a
post process deduplication (Microsoft Windows, 2012) and an in-
line implementation (OpenDedup). The knowledge of deduplica-
tion implementations helps to identify the presence of this kind of
file system on devices, and to recover files and folders content from
them. In case of damaged devices or file systems, this work proves
that, without the structures containing the hash sequences, the file
reconstruction can generate never-existed files. The hash se-
quences are crucial for a “forensically sound” recovery.

Future works will analyze from a forensic point of view other
implementations of storage deduplication and storage technology.

References

Appleby, A,
Hash3.cpp.

Autopsy by Basis Technology http://www.sleuthkit.org/autopsy/ — Online Resource.

Carlton, Gregory H., Matsumoto, Joseph, 2011. A survey of contemporary enterprise
storage technologies from a digital forensics perspective.]. Digital Forensics
Secur. Law JDFSL 6 (3), 63.

Debnath, Biplob K., Sengupta, Sudipta, Li, Jin, 2010. ChunkStash: speeding up inline
storage deduplication using flash memory. In: USENIX Annual Technical
Conference.

El-Shimi, Ahmed, Kalach, Ran, Kumar, Ankit, Oltean, Adi, Li, Jin, Sengupta, Sudipta,
2012. Primary data deduplication — large scale study and system design. In:
USENIX Annual Technical Conference. Microsoft Corporation.

Forensic Tool Kit (FTK) Imager by AccessData http://accessdata.com/product-
download/digital-forensics/ftk-imager — Version-3.4.2.

Harnik, D., Pinkas, B., Shulman-Peleg, A., Nov.—Dec. 2010. Side channels in cloud
services: deduplication in cloud storage. In: IEEE Security & Privacy, vol. 8,
pp. 40—47. http://dx.doi.org/10.1109/MSP.2010.187 no. 6.

Introduction-to-data-deduplication, 2012 https://blogs.technet.microsoft.com/filecab/
2012/05/20/introduction-to-data-deduplication-in-windows-server-2012/.

Mater File Table — https://msdn.microsoft.com/en-us/library/bb470206(v=vs.85).
aspx — Online Resource.

Microsoft Open Specifications Program https://msdn.microsoft.com/en-us/library/
dd208104.aspx.

Min, J., Yoon, D., Won, Y., June 2011. Efficient deduplication techniques for modern
backup operation. In: IEEE Transactions on Computers, vol. 60, pp. 824—840.
http://dx.doi.org/10.1109/TC.2010.263 no. 6.

MS-XCA — v20151016. Xpress Compression Algorithm. Copyright© 2015 Microsoft
Corporation.

Muthitacharoen, Athicha, Chen, Benjie, Mazieres, David, 2001. A low-bandwidth
network file system. In: ACM SIGOPS Operating Systems Review, vol. 35. ACM,
pp. 174—187 no. 5.

Neuner, S., Mulazzani, M., Schrittwieser, S., Weippl, E., 2015. Gradually improving
the forensic process. In: Availability, Reliability and Security (ARES), 2015 10th
International Conference on, Toulouse, pp. 404—410. http://dx.doi.org/10.1109/
ARES.2015.32.

Neuner, Sebastian, Schmiedecker, Martin, Weippl, Edgar, 2016. Effectiveness of file-
based deduplication in digital forensics. Secur. Commun. Netw. ISSN: 1939-
0122 9 (15), 2876—2885. http://dx.doi.org/10.1002/sec.1418.

Ng, Chun-Ho, Ma, Mingcao, Wong, Tsz-Yeung, Lee, Patrick P.C., Lui, John CS.,
December 2011. Live deduplication storage of virtual machine images in an

https://github.com/aappleby/smhasher/blob/master/src/Murmur

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
http://www.sleuthkit.org/autopsy/
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref3
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref3
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref3
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref4
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref4
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref4
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref5
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref5
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref5
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref5
http://accessdata.com/product-download/digital-forensics/ftk-imager
http://accessdata.com/product-download/digital-forensics/ftk-imager
http://dx.doi.org/10.1109/MSP.2010.187
https://blogs.technet.microsoft.com/filecab/2012/05/20/introduction-to-data-deduplication-in-windows-server-2012/
https://blogs.technet.microsoft.com/filecab/2012/05/20/introduction-to-data-deduplication-in-windows-server-2012/
https://msdn.microsoft.com/en-us/library/bb470206(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb470206(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb470206(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dd208104.aspx
https://msdn.microsoft.com/en-us/library/dd208104.aspx
http://dx.doi.org/10.1109/TC.2010.263
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref13
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref13
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref13
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref13
http://dx.doi.org/10.1109/ARES.2015.32
http://dx.doi.org/10.1109/ARES.2015.32
http://dx.doi.org/10.1002/sec.1418
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref16
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref16

S106 D. Lanterna, A. Barili / Digital Investigation 20 (2017) S99—S106

open-source cloud. In: Proceedings of ACM/IFIP/USENIX 12th International
Middleware Conference, Lisbon, Portugal.

NIST FIPS PUB 180—4, Secure Hash Standard (SHS). U.S. Department of Commerce, 2012.

OpenDedup — http://opendedup.org/ — https://github.com//opendedup/sdfs — Sam
Silverberg.

Park, Jungheum, Chung, Hyunji, Lee, Sangjin, 2012. Forensic analysis techniques for
fragmented flash memory pages in smartphones. Digit. Investig. 9 (2), 109—-118.

Patentscope https://patentscope.wipo.int/search/en/detail.jsf; jsessionid=27950A
5A2339C6A87EAB6BAOF2829DC4.wapp2nA? docld=W02012067805&recNum=
164&maxRec=4648&office=&prevFilter=&sortOption=&queryString=%28PA%
2Fmicrosoft%29+&tab=PCTDescription.

Rabin, Michael 0., 1981. Fingerprinting by Random Polynomials. Center for Research
in Computing Technology, Harvard University. Tech Report TR-CSE-03—01.
Retrieved 2007-03-22.

Yamaguchi, F, Nishi, H., 2013. Hardware-based hash functions for network appli-
cations. In: 19th IEEE International Conference on Networks (ICON), Singapore,
2013, pp. 1-6. http://dx.doi.org/10.1109/ICON.2013.6781990.

Zhu, Benjamin, Li, Kai, Patterson, R. Hugo, 2008. Avoiding the disk bottleneck in the
data domain deduplication file system. In: Fast, vol. 8, pp. 1-14.

Ziv,]., Lempel, A., May 1977. A universal algorithm for sequential data compression.
In: IEEE Transactions on Information Theory, vol. 23, pp. 337—343. http://
dx.doi.org/10.1109/TIT.1977.1055714 no. 3.

http://refhub.elsevier.com/S1742-2876(17)30032-4/sref16
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref16
http://opendedup.org/
https://github.com//opendedup/sdfs
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref19
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref19
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref19
https://patentscope.wipo.int/search/en/detail.jsf
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref21
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref21
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref21
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref21
http://dx.doi.org/10.1109/ICON.2013.6781990
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref24
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref24
http://refhub.elsevier.com/S1742-2876(17)30032-4/sref24
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1977.1055714

	Forensic analysis of deduplicated file systems
	Introduction
	Previous work

	Deduplication
	Analysis
	Low level file system analysis
	OpenDedup
	Windows 2012 deduplication

	Forensic analysis
	Analysis carefulness
	OpenDedup
	Windows 2012 R2
	The importance of Hash-db

	Conclusion
	References

