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Classification of schizophrenia using feature-based morphometry
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Abstract The objective of this study was to use a com-

bined local descriptor, namely scale invariance feature

transform (SIFT), and a non linear support vector machine

(SVM) technique to automatically classify patients with

schizophrenia. The dorsolateral prefrontal cortex (DLPFC),

considered a reliable neuroanatomical marker of the dis-

ease, was chosen as region of interest (ROI). Fifty-four

schizophrenia patients and 54 age- and gender-matched

normal controls were studied with a 1.5T MRI (slice

thickness 1.25 mm). Three steps were conducted: (1)

landmark detection and description of the DLPFC, (2)

feature vocabulary construction and Bag-of-Words (BoW)

computation for brain representation, (3) SVM classifica-

tion which adopted the local kernel to implicitly implement

the feature matching. Moreover, a new weighting approach

was proposed to take into account the discriminant rele-

vance of the detected groups of features. Substantial results

were obtained for the classification of the whole dataset

(left side 75%, right side 66.38%). The performances were

higher when females (left side 84.09%, right side 77.27%)

and seniors (left side 81.25%, right side 70.83%) were

considered separately. In general, the supervised weighed

functions increased the efficacy in all the analyses.

No effects of age, gender, antipsychotic treatment and

chronicity were shown on DLPFC volumes. This integrated

innovative ROI-SVM approach allows to reliably detect

subjects with schizophrenia, based on a structural

brain marker for the disease such as the DLPFC. Such

classification should be performed in first-episode patients

in future studies, by considering males and females

separately.
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machine � Dorsolateral prefrontal cortex � Shape

morphometry
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Introduction

Computational neuroanatomy using magnetic resonance

imaging (MRI) has been used consistently in schizophrenia to

detect specific morphological abnormalities of the brain in

comparison with normal subjects (Giuliani et al. 2005). In

general two methods are routinely used, i.e. the region of

interest (ROI) analysis or the voxel-based morphometry

(VBM) (Ashburner and Friston 2000). The ROI methods are

focussed on specific brain regions which are manually traced

by expert operators. The VBM considers the whole brain after

a normalization procedure which maps the current brain onto a

standard reference, namely the stereotaxic space, allowing a

voxel-by-voxel comparison. Both methods have reported

some consistent findings such as cortical atrophy, particularly

of the prefrontal cortex, with related ventricular enlargement,

shrinkage of the hippocampus and of the superior temporal

gyrus, and reduction of the cerebral asymmetry (Andreone

et al. 2007a; Arnone et al. 2008; Bellani et al. 2010a; Fornito

et al. 2009; Kempton et al. 2010). However, neither technique

enables patients with schizophrenia to be classified automat-

ically, based on the brain’s features. In this perspective, apart

from standard volumetric methods (Ashburner and Friston

2000; Baiano et al. 2008), few studies have applied innovative

approaches to detect schizophrenia based on the brain char-

acteristics (Fan et al. 2007; Gerig et al. 2001; Koutsouleris

et al. 2009; Yoon et al. 2007). Specifically, Gerig et al. (2001)

proposed a ROI-based morphometric analysis by defining

spherical harmonics and a 3D skeleton as shape descriptors,

i.e. the shape descriptor-based approach was successfully

compared to classical volumetric techniques. Yoon et al.

(2007) utilized a support vector machine (SVM) to classify

cortical thickness, which was measured by calculating the

Euclidean distance between linked vertices on the inner and

outer cortical surfaces. Fan et al. (2007) combined deforma-

tion-based morphometry with SVM, capturing multivariate

relationships across various anatomical regions. Finally,

Koutsouleris et al. (2009) performed a whole brain SVM

analysis, detecting the dimensionality of MR images by the

optimal number of uncorrelated principal components

obtained by principal component analysis (PCA). Several

cortical and subcortical areas across the two hemispheres were

found to characterize patients with schizophrenia, at-risk

subjects and unaffected family members (Davatzikos et al.

2005; Fan et al. 2007, 2008; Koutsouleris et al. 2009; Yoon

et al. 2007). However, with the exception of the preliminary

study by Gerig et al. (2001), these reports were not driven by

a priori hypothesis and did not consistently detect any specific

structural markers. Also, they applied multivariate whole

brain techniques, thus being limited by the analysis of an

immense dimensional space in relatively small samples.

In this study, we aimed at automatically classifying

schizophrenia by applying a ROI-based machine learning

approach (Duda et al. 2001) within the dorsolateral pre-

frontal cortex (DLPFC), a reliable structural marker for

schizophrenia (Potkin et al. 2009; Prasad et al. 2007; Yoon

et al. 2008). This technique utilizes a few, significant

landmarks to detect and characterise local region descrip-

tors. The novelty therefore consists in characterising brain

abnormalities in terms of intra-ROI local patterns which

are not necessarily spatially coherent, using consistent

neuroanatomical features for the disease. The underlying

hypothesis consists in relaxing the common constraint that

morphological anomalies appear at the same voxel location

for the entire population. Therefore, a new kernel of a SVM

was designed to compare a pair of brains represented by an

unordered set of features. The proposed method is inspired

by the Bag-of-Words (BoW) (Cruska et al. 2004) paradigm

which implicitly implements feature matching within the

SVM framework (Grauman and Darrell 2007). Finally, a

weighting function was introduced to define the relevance

of the detected features, namely the visual words, in dis-

criminating between patients and controls.

Materials and methods

Sample

Fifty-four patients suffering from schizophrenia as defined

by the Diagnostic and Statistical Manual of Mental Dis-

orders, 4th edition, (DSM-IV) (American Psychiatric

Association 1994) were recruited from the South Verona

Psychiatric Case Register (Amaddeo et al. 1997, 2009)

(Table 1). The register includes information about patients

residing in the epidemiologically defined catchment area of

South Verona (with a population of approximately 100,000

inhabitants) and treated by the South Verona Community-

based Mental Health Service (CMHS) and related clinics.

Diagnostic evaluation was based on the Item Group

Checklist of the Schedule for Clinical Assessment in

Neuropsychiatry (IGC-SCAN) (World Health Organisation

1992). These assessments were conducted by trained clin-

ical psychologists with extensive experience of using the

SCAN, as previously described (Andreone et al. 2007b),

who were blind to diagnosis. The Italian version of the

SCAN was edited by our group (World Health Organisa-

tion 1996) and our investigators attended specific courses

held by official trainers on how to administer this scale.

The inter- and intra-rater reliability of the IGC-SCAN

assessments was monitored by regular quality control

meetings. Diagnostic validity was further confirmed by

clinical consensus by two qualified psychiatrists. The

patients’ psychopathology was rated using the Brief Psy-

chiatric Rating Scale (BPRS, 24-item version) (Ventura

et al. 2000). Information about age of onset, duration of
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illness, and number of hospital admissions was obtained

during an interview and from medical records. Fifty-four

matched healthy individuals without any personal lifetime

history of DMS-IV Axis I disorders, recruited from the

same catchment area, were also studied (Table 1). Exclu-

sion criteria for all participants were (a) alcohol or sub-

stance abuse within the preceding 6 months, as defined by

the DSM-IV (b) any current major medical or neurological

illness, (c) history of traumatic head injury with loss of

consciousness, (d) DSM-IV axis I comorbidity. Additional

exclusion criteria for comparator subjects were (a) any self-

reported history of psychiatric disorders in first-degree

relatives (b) any prescribed medication.

The study was approved by the Ethics Committee of the

Azienda Ospedaliera of Verona. All the participants provided

their signed informed consent, having understood the nature

and purpose of the study after it was explained to them.

Magnetic resonance imaging acquisition

The MRI scans were acquired using a 1.5 T Siemens

Magnetom Symphony Maestro Class, Syngo MR 2002B.

All the participants were provided with earplugs to reduce

acoustic noise and their head was placed in a comfortable

head holder to keep it steady in order to minimize move-

ment artefacts. Initially, exploratory T1-weighted images

(TR = 450 ms, TE = 14 ms, flip angle = 90�, FOV =

230 9 230, slice thickness = 5 mm, matrix size = 384 9

512) were obtained to verify the subject’s head position and

the quality of the image. A coronal 3D MPR sequence was

acquired (TR = 2,060 ms, TE = 3.9 ms, flip angle = 15�,

FOV = 176 9 235, slice thickness = 1.25 mm, matrix

size = 270 9 512, TI = 1,100) to obtain 144 images

covering the entire brain.

Automatic classification analysis

The proposed method was based on three main steps: (1)

landmark detection and description, (2) feature vocabulary

construction and computation, (3) SVM classification.

Landmark point detection and description

A landmark or feature is a set of points that can be clearly

differentiated from its neighbouring image points. In this

paper, we employed the Difference of Gaussians (DoG)

point detector (Lowe 2004) which is robust to image-

translation, -rotation and -scale. This implies that a land-

mark can be detected without requiring an explicit regis-

tration procedure. Moreover, the region of influence of

each landmark (i.e., the neighbourhood) was also estimated

with this technique. In general, a wider region was adap-

tively defined for homogeneous areas and viceversa.

Therefore, for each landmark the scale invariance feature

transform (SIFT) descriptor (Lowe 2004) was applied to

characterize its local neighbourhood. In practice, the pixels

of the landmark’s neighbourhood are encoded into a mul-

tidimensional feature vector which effectively and con-

cisely describes the local area. A pair of successive slices

from the DLPFC, with the extracted landmarks and their

region of influence are reported in Fig. 1. Slice thickness of

1.25 mm was utilized. Then the most characteristic patches

in terms of strong local pattern variations were selected

from each brain. Here, the main idea was to verify whether

there were brain anomalies among those variations.

Feature vocabulary construction

After the landmark detection was completed, each brain

was represented by a set of unordered feature vectors.

Moreover, such sets generally appeared with different

cardinalities. In order to compare a pair of brains, the Bag-

of-Words (BoW) approach was introduced (Cruska et al.

2004). The set of feature vectors coming from all brains

was clusterized by employing the k-means clustering

technique (Duda et al. 2001). According to the BoW par-

adigm, the centroids of the clustering were referred as

visual words or feature prototypes (Cruska et al. 2004).

Indeed, the set of visual words provides a quantization of

the feature space, i.e., the so called feature vocabulary.

Then, each set of feature vectors observed on each brain

was transformed into a histogram that counted the fre-

quency of occurrence of such feature prototypes (Cruska

et al. 2004). In order to obtain this, each feature vector of a

brain was compared with all the visual words and was

associated to the closest one. The outputted histogram

became the descriptor of the brain. The set of landmark

points of the DLPFC extracted from the whole dataset is

Table 1 Demographic features of the subjects

Healthy controls

(N = 54)

Patients with

schizophrenia (N = 54)

Age (years) 39.19 ± 10.05 37.96 ± 10.90

Gender (females/

males)

25/29 19/35

Race Caucasian Caucasian

Duration of illness

(years)

12.53 ± 10.04

AP Lifetime

treatment (years)

10.77 ± 9.23

CPZ-equivalent

dose (mg)

241.91 ± 176.29

BPRS total scores 47.20 ± 20.95

Healthy controls and patients with schizophrenia did not significantly

differ for age or gender (p [ 0.05)

AP antipsychotic, CPZ chlorpromazine

Feature-based morphometry of schizophrenia 397
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shown in Fig. 2. Each landmark is coloured according to its

closest visual words. In this fashion, similar landmarks are

associated to the same visual word and visualized with the

same colour.

The relationship between feature prototypes and mor-

phological abnormalities due to schizophrenia was tenta-

tively captured. For each cluster of features its

discriminative relevance was measured by counting the

occurrences for each group separately. In particular, the

following weighting function was defined for each visual

word:

wiðnci
p ; n

ci
c Þ ¼

1:5 if nci
p � nci

c

�
�
�

�
�
��D

0:5 otherwise

8

<

:
ð1Þ

where ci is the ith centroid (i.e., the visual word, i = 1, …, K),

nci
p and nci

c are the percentages of patients and controls in ci,

and D is a heuristic constant. In this way, clusters composed

by a clear majority of the population (i.e. patients or controls)

were considered to be more discriminant for the

classification.

Support vector machine classification

SVMs (Brurges 1998) are powerful classifiers which

have reliably been used for schizophrenia (Fan et al.

2007). Note that usually a SVM requires a fixed length

vector which characterizes globally the subject to be

classified. Here, however, due to the BoW representation,

a subject (i.e., a brain) was encoded by a set of local

features. In particular, the novelty consisted in employing

a suitable kernel function to implicitly implement the

feature matching. Such kernels are generally referred to

as local kernels or matching kernels (Grauman and

Darrell 2007).

In order to construct a BoW histogram of a new brain,

we compared each of the extracted features with the visual

words w.r.t. the visual vocabulary by counting the number

of features assigned to each visual word. The BoW repre-

sentation hA for brain A was obtained in this way.

In detail, the kernel function was defined as:

K hA; hB
� �

¼
XK

i¼1

wi minðhA
i ; hB

i Þ ð2Þ

Where hi
A denotes the count of the ith bin of the histogram

hA with K bins, and wi is computed from Eq. 1. Such a

kernel was called a weighted histogram intersection

function and was shown to be a valid kernel (Grauman

and Darrell 2007). Histograms were assumed to be

normalized such that

XK

i¼1

hi ¼ 1

As observed by Grauman and Darrell (2007), the

proposed kernel implicitly encoded the point-to-point

Fig. 1 Two succeeding slices from the dorsolateral prefrontal cortex

(DLPFC). Landmark points are identified by green ellipsoids and

represent feature that can be clearly differentiated from its

neighbouring image points. The region of influence of a landmark is

represented by the set of pixel inside its ellipsoid; in general, a wider

region is adaptively defined for homogeneous areas and viceversa

Fig. 2 Clusterized feature vectors are shown. The centroids of the

clustering are referred as visual words (or feature prototypes) and

each point is coloured according to its visual word. Similar landmarks

are associated to the same visual word and therefore are visualized

with the same colour
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matching, since corresponding features were likely to

belong to the same histogram bin. Indeed, the histogram

intersection function counted the number of feature

matching, which are intermediated by the visual words.

More in detail, since two points are declared as being a

‘match’ if both are associated to the same visual word, the

tolerance of matching (i.e. the maximum error matching of

a pair of points) is bounded by the size of cluster associated

to the visual word.

Dorsolateral prefrontal cortex landmarks

All imaging data were analyzed using the BRAINS2 soft-

ware developed at the University of Iowa. The superior

border of the DLPFC was the superior frontal sulcus, the

inferior border was the upper border of the Sylvian fissure

posteriorly and the horizontal ramus of the Sylvian fissure

anteriorly. The lateral boundary was the edge of the brain,

and the medial boundary was the line connecting the most

medial point of the superior frontal sulcus with the Sylvian

fissure/horizontal ramus (Fig. 3). The tracing started ante-

riorly to the posterior border of the genu and ended at the

anterior border of the horizontal ramus of the Sylvian fissure,

as per a previously published technique (Prasad et al. 2005).

A rater who was blind to the subjects’ identity traced all the

scans, after reaching intra-class correlation coefficients

(ICCs)[0.90 (0.92 for left DLPFC, 0.98 for right DLPFC)

with another rater by blindly tracing 10 randomly selected

scans. The volumes (ml) were obtained by summing the

volumes of all relevant slices and were expressed in cm3.

Intracranial volume (ICV) was traced in the coronal place

along the border of the brain and included the cerebrospinal

fluid, dura mater, sinus, optic chiasma, brainstem, and

cerebral and cerebellar matter. The inferior border did not

extend below the base of the cerebellum. An inter-rater

reliability of 0.97 was achieved for the ICV measurements.

Results

Landmark extraction was obtained using the SIFT imple-

mentation available from http://vision.ucla.edu/vedaldi.

Then feature points were properly clusterized in order to

obtain the visual words. The Matlab (http://www.math

works.com) version 7.4 of the K-mean algorithm was used

Fig. 3 Dorsolateral prefrontal cortex tracing. The superior border of

the DLPFC was the superior frontal sulcus, the inferior border was the

upper border of the Sylvian fissure posteriorly and the horizontal

ramus of the Sylvian fissure anteriorly; the lateral boundary was the

edge of the brain, and the medial boundary was the line connecting

the most medial point of the superior frontal sulcus with the Sylvian

fissure/horizontal ramus
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Fig. 4 Histogram of word occurrences for the whole dataset for the left and right hemispheres. Patients with schizophrenia are marked in red,

healthy controls in blue
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by fixing K = 30. Therefore, the relevance of each visual

word was computed by obtaining the weighs wi (Fig. 3).

Also, in order to take into account the intra-class vari-

ability, the whole dataset was stratified by sex (males and

females) and age (subjects \40 years, and subjects

C40 years) (Fig. 4, 5).

The classification is shown in Table 2. Scores were

obtained by leave-one-out cross validation (Duda et al.

2001). In general, a dramatic improvement was observed

when weights were applied. Substantial results were

obtained for the classification of the whole dataset (left

hemisphere 75%, right hemisphere 66.38%). Moreover,

performances increased when only females (left side

84.09%, right side 77.27%) and only seniors (left side

81.25%, right side 70.83%) were taken into consideration.

Interestingly, DLPFC volumes significantly inversely

correlated with length of illness on the right side (Spear-

man’s rho coefficient = -0.43, p = 0.001) with a trend for

significance on the left one (Spearman’s rho coeffi-

cient = -0.23, p = 0.10). In contrast, no significant cor-

relations were found between antipsychotic lifetime

treatment or dosages and bilateral DLPFC volumes (partial

correlation analyses controlling for length of illness,

p [ 0.05). Age did not show any significant association

in both control and schizophrenia group with DLPFC

volumes (Spearman’s correlation, p [ 0.05). Moreover,

DLPFC size did not significantly differ between patients

treated with typical and atypical antipsychotics and

between chronic and non-chronic schizophrenia patients

separated in accordance to mean of length of illness (GLM

multivariate with age, gender, and ICV as covariates,

p [ 0.05). Finally, schizophrenia patients did not show any

significant differences for DLPFC volumes when males

and females (GLM multivariate with age, and ICV as

covariates, p [ 0.05) and junior and senior individuals

were compared (GLM multivariate with gender, and ICV

as covariates, p [ 0.05). Age, length of illness, BPRS

scores, and antipsychotic lifetime treatment did not differ

between female and male schizophrenia subjects and

between patients treated with typical and atypical anti-

psychotic drugs (student t test, p [ 0.05).

Discussion

This study showed that our innovative approach integrating

ROI and SVM techniques allows to consistently classify

subjects with schizophrenia. In particular, a reliable

neuroanatomical marker for the disease such as the DLPFC

was chosen and the Bag-of-Words (BoW) paradigm was

applied. The designed kernel was able to compare local

regions localized in the DLPFC without imposing spatial

constraint among them. Local features were encoded by

multivariate descriptors which allowed for a greater ver-

satility in capturing anatomical variations. The results were

promising, since satisfactory scores were observed in the

analysis of the whole dataset (up to 75%), being higher

when the subjects were stratified by sex and age (84% for

females and 81% for older subjects). Prior studies using

automatic classification strategies for schizophrenia have

reported similar rates, ranging between 75 and 90% (Fan

et al. 2011; Ince et al. 2008; Ingalhalikar et al. 2010; Pohl

and Sabuncu 2009). In particular, Koutsouleris et al. (2009)

have shown that pattern classification may be a valuable

tool to detect psychosis event at the early stages of the

illness. With regard to females with schizophrenia, prior

MRI studies found increased probabilistic distribution of

gray matter (Yoon et al. 2005) and higher classification

accuracy (Fan et al. 2007). Similarly, older patients were

better classify than younger individuals with schizophrenia.

In this context, sexual dysmorphism and aging effects may

have a significant interaction with the disease processes

(Frazier et al. 2008; Granholm et al. 2000), possibly

resulting in a better detection of the disease when SVM

techniques are applied. Although age, chronicity, illness

severity, and duration of treatment may in part explain

male/female differences, in our sample men and women

patient groups did not differ for those variables. Finally, the

left hemisphere was classified with higher accuracy, which

is consistent with prior pattern classification studies

focused on cortical thickness (Yoon et al. 2007), poten-

tially supporting the relevance of reduced laterality in

schizophrenia (Bellani et al. 2009a, 2010b; Ribolsi et al.

2009).

Table 2 Classification rate for

healthy controls and patients

with schizophrenia

Senior subjects are C40 years

and juniors are \40 years

n number

Experiment Healthy

controls (n)

Patients with

schizophrenia (n)

Left Right

Weight

score (%)

Raw

score (%)

Weight

score (%)

Raw

score (%)

Whole dataset 54 54 75.00 62.93 66.38 59.48

Females 25 19 84.09 77.27 77.27 72.73

Males 29 35 60.00 44.62 67.69 50.77

Seniors 23 25 81.25 73.52 70.83 64.12

Juniors 31 29 71.67 55.27 63.33 51.18

Feature-based morphometry of schizophrenia 401

123



The DLPFC was used for brain classification in this

study based on the evidence that it is a reliable anatomical

marker of schizophrenia (Bellani et al. 2009b; Lopez-

Garcia et al. 2006). In particular, the DLPFC (Broadmann

areas 9 and 46) is part of the frontal–subcortical neural

circuitry that modulates mood and emotional processing

(Gray et al. 2002; Lopez-Garcia et al. 2006). It is connected

with higher order association centres in the temporal and

parietal lobe and is involved in working memory and

executive functions (Cabeza and Nyberg 2000; Smith and

Jonides 1999). As far as schizophrenia is concerned, sev-

eral in vivo magnetic resonance imaging (MRI) and neu-

ropsychological findings have clearly shown that DLPFC

plays a crucial role in the pathophysiology of the disease

(Cannon et al. 2005; Meyer-Lindenberg and Weinberger

2006). In particular, DLPFC may in part sustain deficits of

working memory, context processing, and learning in

schizophrenia (Brambilla et al. 2007, 2011; MacDonald

and Carter 2003), which may be improved after cognitive

training along with DLPFC activation (Haut et al. 2010).

However, it should be mentioned that, although the DLPFC

is a key structure (Glahn et al. 2005), it has clearly been

shown that a complex neural network sustains the neuro-

biology of schizophrenia (Corradi-Dell’acqua et al. 2011;

Kaymaz and van Os 2009) and that possibly different

pathological processes may relate to particular subgroups

(Fornito et al. 2009), based for instance on specific psy-

chopathological dimensions (i.e. negative, positive, and

disorganization symptoms) (Goghari et al. 2010). The use

of combined ROI and SVM approaches might therefore

consider other specific structural markers to further auto-

matically characterize the disease, such as the anterior

cingulate, the hippocampus, the superior temporal gyrus

and the corpus callosum, which have consistently been

found to be altered in schizophrenia (Baiano et al. 2007;

Brambilla et al. 2005).

It should be noted that our findings may have partially

been limited by the administration of antipsychotic drugs

or by length of illness. However, no effects of the duration

of treatment, dosages, or type of antipsychotics were found

on the volumes of the DLPFC. Also, chronically ill and

non-chronically ill patients had comparable DLPFC size. In

regards of our tracing landmarks for detecting DLPFC, we

followed the method suggested by (Prasad et al. 2005)

which greatly includes Brodmann’s areas 9 and 46. How-

ever, it should be considered that there is a large inter-

individual and inter-hemispheric anatomical variability

in the DLPFC boundaries in humans (Rajkowska and

Goldman-Rakic 1995b). Therefore, for some subjects part

of other areas (i.e. 8 and 10) may possibly have been

included in the tracing. The DLPFC indeed comprises

the Brodmann’s areas 9 and 46 predominantly but also a

few transitional areas: 9–8, 9–45, 46–10, and 46–45

(Rajkowska and Goldman-Rakic 1995a). As a result, dif-

ferent landmarks and measurement procedures have gen-

erally been used (Crespo-Facorro et al. 1999; Sanches et al.

2009; Tisserand et al. 2002) and up to date there is still no

‘‘in vivo’’ gold standard technique to delimit this region in

humans. In general, it should also be kept in mind that the

role of SVM remains at the moment an ancillary diagnostic

tool which tentatively improve the ability to diagnose

patients with schizophrenia and that will probably never

substitute the expertise of the clinical psychiatrist. None-

theless, SVM techniques represent a very promising tool

for clinical and research psychiatry and other sequences

may be useful to further classify schizophrenia such dif-

fusion weighted imaging or functional magnetic resonance

imaging, as recently shown (Ingalhalikar et al. 2010; Ulas

et al. 2011; Yang et al. 2010). Pattern classification has also

satisfactory been used in other neuropsychiatric conditions,

such as autism (Ingalhalikar et al. 2010) and Alzheimer’s

disease (Plant et al. 2010).

In conclusion, this study showed that the DLPFC can be

used as a brain structural marker to detect subjects with

schizophrenia using an integrated innovative ROI-SVM

approach. Similar investigations should be carried out in

first-episode patients, considering males and females sep-

arately since they may express differential patterns of

DLPFC neuropathology.

Acknowledgments We thank Barbara Alberti for proofreading the

manuscript. This work was partly supported by grants to Dr.

Brambilla from the American Psychiatric Institute for Research and

Education (APIRE), the Italian Ministry for University and Research,

and the Italian Ministry of Health (IRCCS ‘‘E. Medea’’). We

acknowledge financial support from the FET programme within the

EU-FP7, under the SIMBAD project (contract 213250).

Conflict of interest None.

References

Amaddeo F, Beecham J, Bonizzato P, Fenyo A, Knapp M, Tansella M

(1997) The use of a case register to evaluate the costs of

psychiatric care. Acta Psychiatr Scand 95:189–198

Amaddeo F, Burti L, Ruggeri M, Tansella M (2009) Long-term

monitoring and evaluation of a new system of community-based

psychiatric care. Integrating research, teaching and practice at

the University of Verona. Ann Ist Super Sanità 45:43–53
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