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Abstract
The water Vapour Emission SPectrometer for Antarctica at 22 GHz (VESPA-22) has been 
designed for long-term middle atmospheric climate change monitoring and satellite data 
validation. It observes the water vapour spectral line at 22.235 GHz using the balanced 
beam-switching technique. The receiver antenna has been characterized, showing an 
HPBW of 3.5° and a sidelobe level 40 dB below the main lobe. The receiver front-end 
has a total gain of 105 dB and a LNA noise temperature of 125 K. A FFT spectrometer 
(bandwidth 1 GHz, resolution 63 kHz) will be used as back-end, allowing the retrieval of 
H2O concentration profiles in the 20 to 80 km altitude range. The control I/O interface is 
based on reconfigurable hardware (USB-CPLD).
Keywords: Microwave remote sensing, water vapour, stratosphere, Antarctica, antenna 
measurements.

Introduction
Water vapour is a crucial element of the climate system. Accurate observations of 
stratospheric humidity are needed in the equatorial belt, where water vapour crosses the 
tropopause, and in the polar regions, that are affected the most by climate change trends 
[IPCC, 2007; Solomon et al., 2010]. Satellite-based observations provide atmospheric 
composition data with extensive spatial and temporal coverage, but these need to be 
validated and integrated by ground-based networks like GAW (Global Atmospheric Watch) 
and NDACC (Network for Detection of Atmospheric Composition Change). Moreover, it 
was shown that changes in middle atmospheric water vapour �������������������������������     on time scales longer than the 
duration of a satellite mission can be successfully observed by ground-based instruments 
[Nedoluha et al., 2009]. Several other ground-based spectrometers have been developed 
in the last decades to ��������������������������������������������������������������������          detect the water vapour rotational emission line at 22.235 GHz with 
heterodyne microwave receivers ��������������������������������������������������������         [�������������������������������������������������������         e.g., Nedoluha et al., 2009; Straub et al., 2011]. Due 
to the collisional (or pressure) broadening of spectral lines in the microwave region, the 
vertical distribution of water vapour can be retrieved from the measured spectra using 
inverse techniques, such as the Optimal Estimation Method (OEM) [Rodgers, 2000].
A new ground-based spectrometer for the observation of middle atmospheric water 
vapour concentration profiles has been designed at the Istituto Nazionale di Geofisica 
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e Vulcanologia (INGV) in Rome (Fig. 1), and a first set of tests is presented here. The 
water Vapour Emission SPectrometer for Antarctica at 22 GHz (VESPA-22) has two main 
science objectives: provide long-term (decadal time scale) as well as short-term (diurnal) 
observations of water vapour variations from observatories at high altitude/high latitude 
(characterized by low atmospheric opacity). In order to observe diurnal changes in the 
mesosphere, we aim at obtaining spectra (at the full resolution B of 61 kHz) with a signal-
to-noise ratio (SNR) of 115 with a total integration time (ttot) of 12 hours (Table 1). Faster 
changes in the lower stratosphere can be observed with a ttot of 1 hour (and the same SNR) 
by reducing the spectral resolution to 610 kHz.

Figure 1 - The VESPA-22 parabolic off-axis reflector and feed horn antenna 
under test in the indoor test site at ISCTI, Rome.

This will be achieved by having a system temperature (Tsys) of ≈165 K and an effective 
observation time t of 4.8 hours, that is a percentage of operating time dedicated to observing 
the atmospheric signal of 40%. It is shown that system temperatures in this range can be 
obtained using an uncooled low-noise-amplifier at 22 GHz of the latest generation [e.g., 
Forkman et al., 2002; Deuber et al., 2004]. The need to maximise the effective observation 
time led us to adopt a balanced beam-switching configuration with a chopper mirror rotating 
at ~1 Hz [e.g., Parrish et al., 1988; de Zafra and Muscari, 2004, and references therein]. 
Balanced beam-switching receivers use the sky near the zenith direction as a calibration 
reference, with a weak grey-body emission added in the “reference” beam so to have the 
same wide-band power as the “signal” beam (usually pointing 10-20° above the horizon). 
The difference spectrum (signal – reference / reference) is then not affected by channel-
dependent gain variations, which would compromise the detection of weak emission lines.
The VESPA-22 specification parameters have been calculated using the radiometer noise 
formula for a balancing radiometer [modified from Janssen, 1993]:
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where σ is the goal noise level in kelvin. The tropospheric correction coefficient ctrop is used 
to scale the spectrum from the “signal” beam angle to the zenith direction, and it depends 
on the observation angle itself (assumed between 10° and 15° above the horizon) and the 
tropospheric opacity (assumed between 0.007 and 0.06, consistent with a high altitude/
high latitude site [e.g., Deuber et al., 2005; Straub et al., 2011]). The goal specification 
for absolute accuracy of the retrieved mixing ratio profile is 15%, with the specified SNR, 
based on previous experience with the OEM.

Table 1 - Observation goals and instrument specifications.

Observation goals Instrument specifications

Observation angle 10°-15° Spectral resolution (B) 61 kHz

Signal-to-noise ratio (SNR) 115 Spectrometer bandwidth 1 GHz

Total integration time (ttot)
12 hrs 

(1 h if binned) Antenna beamwidth (HPBW) 3.5°

Altitude range of profiles 20 - 80 km Effective observation time (t / ttot) 40%

Profile accuracy 15% System temperature (Tsys) ≈ 165 K

The long-term accuracy of measured spectra is guaranteed by constant calibration against 
three different references: i) the “reference” beam, measured every chopper cycle, ii) 
calibrated noise diodes, whose output is added to the measured atmospheric signal 
for a cycle every ~20 minutes, iii) hot and cold loads at controlled temperatures for an 
absolute calibration on a monthly basis. Details on the calibration are reported in a later 
section. Additionally, th�����������������������������������������������������������������        e strategy for cross-calibrating the VESPA-22 long-term data set 
involves a first validation campaign with existing satellite water vapour measurements 
(e.g., Aura/MLS, ACE-FTS) at the end of the development and installation phases, and 
subsequent intercomparison campaigns before and after every major repair or upgrade of 
the equipment.
The proposed site for the installation of VESPA-22 is Concordia Station (3233 m asl, 
75.1°S, 123.3°E, NDACC site), Antarctica. Alternative sites are Mount Chacaltaya, Bolivia 
(5320 m asl, 16.2ºS, 68.1ºW, GAW site), or Thule Air Base, Greenland (225 m asl, 76.5°N 
68.8°W, NDACC site), where the Ground-Based Microwave Spectrometer (GBMS) [e.g., 
de Zafra and Muscari, 2004] is currently operated and performing regular measurements of 
stratospheric profiles of several trace gases.

Description of the instrument
The radiation emitted by water vapour molecules in the atmosphere is collected, through 
an off-axis parabolic reflector and a feedhorn antenna, by a single side-band uncooled 
heterodyne receiver. Once the signal is properly amplified and down converted in frequency 
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(Fig. 2), a high resolution FFT spectrometer is used for digital acquisition. Both signal 
acquisition and control of the observation and calibration cycles are realized with a real-
time PC-based system developed and tested at our laboratory.

Figure 2 - Functional scheme of the VESPA-22 instrument.

Receiver antenna
The antenna of VESPA-22 is composed by an off-axis parabolic reflector coupled with a 
feedhorn, providing a high directivity and a relatively compact instrument size. 
The feedhorn for the antenna is an aluminium choked Gaussian horn designed and 
manufactured by the Public University of Navarra [Teniente et al., 2002]. The circular 
shape was chosen to have a consistent response from different observation angles, such 
as those necessary for the balanced beam-switching technique. The horn was designed to 
have a high Gaussian beam purity (99.85%) and low sidelobes in a 1.3 GHz band around 
22.235 GHz. 
The feedhorn was tested in operational conditions on the Water Vapour Microwave 
Spectrometer (WVMS2) [e.g., Nedoluha et al., 1995] at Table Mountain, California, to 
make sure that internal reflections did not produce any spectrally-dependent anomalies 
in the received signal (spectral artefacts). The test did not show any remarkable spectral 
artefact attributable to the feedhorn in a frequency range of 500 MHz around the H2O 
line at 22.235 GHz. Figure 3 shows the measured signal intensity spectrum in brightness 
temperature units, as the radiation emitted at these frequencies is proportional to the 
emission temperature according to Rayleigh-Jeans’ law. ��������������������������������   Relative temperature values are 
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indicated on the y-axis, as the signal emitted by tropospheric water vapour consists of a 
temperature offset in the pass band which is removed in the calibration process.
The beam-switching technique requires observations of the sky at different elevation angles 
with the same radiation response, thus a rotating reflector of some kind is needed. We 
chose to employ a parabolic off-axis reflector that can rotate around its optical axis (Fig. 
1). The reflector was designed using the General Reflector Antenna Software Package 
(GRASP), considering size and directivity, and results in an overall antenna HPBW of 
3.5°. Manufactured by Thomas Keating Ltd., it has an elliptical shape, with an aperture 
40 cm wide, and a focal distance of 21 cm. The optimal distance between the reflector and 
the phase centre of  the feedhorn was estimated at 43 cm using GRASP, where particular 
attention was devoted to minimize beam asymmetry and keep a low level of spill-over loss 
(now at 0.0019 dB).

Figure 3 - The 22 GHz water vapour line observed by the WVMS2 
instrument at Table Mountain, California, using the VESPA-22 feed horn. 
(Courtesy of G. Nedoluha and M. Gomez).

Front-end receiver
The receiver employs the heterodyne principle to down-convert the observed signals 
centred around the 22.235 GHz water vapour line first to a 1.4 GHz intermediate frequency 
(IF), then to a 500 MHz second IF. The first IF was chosen for compatibility with back-end 
spectrometers (AOS and filterbanks) already in use at INGV. The second IF is optimised 
for the FFT back-end.
The first-stage amplifier is a very-low-noise miniature waveguide amplifier (LNA) from 
Miteq. Inc. with a noise temperature of 125 K and a +36 dB gain. An additional RF 
amplifier and a first IF amplifier provide a total gain of 105.6 dB for the whole chain. A 
double sideband mixer is employed, together with an image rejection filter with a pass 
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band between 21.5 and 23 GHz. The local oscillator signal at 20.835 GHz is provided by a 
tunable synthesizer with a high stability (better than 30 kHz).

Digital motion control system
The reflector elevation angle needs to be set and known to a high degree of accuracy, to 
make sure that the optical path uncertainty is small, and to provide proper balancing of 
the “signal” atmospheric and “reference” spectra. A high precision motion control system 
was designed to meet these needs. The rotating and holding torque is provided by a 51200-
microstep motor by Schneider Electrics, linked to the main reflector axle by high precision 
aluminium gears with a ratio of 1:5. The angle of the reflector axle is tracked by a 13-bit 
absolute encoder by Lika Electronics, resulting in an overall precision on the elevation 
angle of 0.07°.
In order to minimize standing waves produced by internal reflections, the VESPA-22 design 
includes the opportunity for feedhorn and front-end receiver to be moved continuously 
back and forth by a quarter-wavelength distance with respect to the parabolic reflector by 
means of a microstep linear actuator.

Calibration procedure
Periodical calibration is needed to account for time- and spectral-dependent variations in the 
receiver noise temperature. VESPA-22 is designed for a calibration procedure that is a modified 
version of the one described in Nedoluha et al. [1995]: a calibrated noise source injects a known 
power in the waveguide link between the feedhorn and the LNA via a 20-dB directional coupler, 
so that the intensity of the atmospheric signal can be assessed by acquiring the received signal 
with and without the calibrated noise power added. Two calibrated noise diodes with a 15-dB 
ENR by Noisecom will be used, with one as backup and reference for the other.
An absolute calibration will be performed on a monthly basis with a hot-cold scheme, using 
Eccosorb ����������������������������������������������������������������������������            CV-3 �����������������������������������������������������������������������           microwave absorbers in the observation beam, with the hot load at room 
temperature, and the cold load immersed in liquid nitrogen at 77 K.
The motion system, the front-end receiver and the noise calibration system are connected to the 
control PC via a multi-purpose control-and-acquisition board developed at INGV. The digital 
I/O and control interface is based on a high speed USB peripheral controller (FX2LP) and a 
reconfigurable CPLD (XC95288XL), supporting up to 117 digital I/O lines. This combination 
forms a powerful, flexible and easy to use high speed interface.

Back-end FFT spectrometer
The microwave signals are acquired using an Agilent U1080A analyser board, with a fast 
Fourier transform (FFT) firmware running on the Virtex field-programmable gate array 
(FPGA) core. The ADC converter acquires at a frequency of 2 gigasamples per second, 
resulting (by Nyquist sampling theorem) in a spectral range of 0 to 1 GHz. Since the firmware 
computes FFT spectra on 16384 channels, a spectral resolution of 61 kHz is achieved [Benz 
et al., 2005]. The bandwidth and the resolution lead to an observation range between 20 km 
and 80 km altitude, based on the estimates by Janssen [1993] for the 22 GHz water vapour 
line. The FFT spectrometer board is mounted on a cPCI chassis and controlled through a 
PCI-cPCI bus by the control PC, running a custom acquisition software written in LabView 
and running under the LabView Real-Time OS. 
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Characterization of the antenna system
The performance of the receiver antenna system was measured in the lab, to make sure 
that design specifications would be met, and to test the reliability of the motion system. 
The Microwave Eurolab laboratories of the Istituto Superiore delle Comunicazioni e delle 
Tecnologie dell’Informazione (ISCTI) in Rome provided with testing equipment and facilities. 
The far-field spectral-dependent antenna pattern was measured for both the feedhorn and the 
complete antenna system. Moreover, near-field phase measurements were performed on the 
feedhorn alone. The boresight antenna gain was measured in both indoor and outdoor test 
ranges using the gain-transfer method described by Rudge [1982]. In this method a gain-
standard antenna is used as reference, and its measured signal power is compared to the power 
measured with the antenna under test. The measured power difference is then equal to the gain 
difference.

Far-field feedhorn measurements
The far-field characterization of the feed horn alone was achieved in a semi-anechoic 
chamber, certified by ETSI as an “indoor site” for tests on radio- and microwave-frequency 
telecommunications devices. A calibrated horn antenna (by Flann Microwave Ltd.) with a 
gain of 20.0 dBi (± 0.1 dBi) at 22.2 GHz was used as source antenna. It was set on a tripod 
at a ~4 m distance from the feed horn, mounted on an azimuth-rotating support. A signal 
generator Anritsu 69367B was used to produce a sine wave signal sweeping a 2 GHz range 
centred at 22.235 GHz with a resolution of 5 MHz. The signal received by the feed horn was 
amplified by a HP 83051A pre-amplifier and measured with a scalar signal analyser R&S 
FSQ40. Azimuth scans were performed rotating the feed horn on the horizontal plane with a 
variable angle step (0.5° to 3°). Both principal planes (E-plane and H-plane) were scanned, in 
both co-polar and cross-polar configurations.
From the antenna pattern observed at 22.235 GHz in both principal planes (not shown), 
the half-power beam-width (HPBW) of the feed horn alone is measured at approximately 
12.5°, and the first-null beam-width (FNBW) is approximately 60°. The first side lobe has an 
intensity more than 35 dB lower than that of the main lobe. The maximum intensity measured 
in cross-polar configuration is also 35 dB lower than the co-polar main lobe peak. Along the 
whole spectral range observed the only significant spectral-dependent feature in the antenna 
pattern is a widening of the main lobe with decreasing frequency, as expected. A gain-transfer 
test was performed using an additional Flann calibrated horn antenna as reference, resulting 
in a gain of  21.8 dBi (± 0.2 dBi) for the feed horn of VESPA-22.

Near-field feed horn measurements
In order to check whether the reflector and the feed horn were properly matched, the microwave 
beam entering the feed horn was characterised with a near-field scan at the distance between the 
reflector surface and the feed horn phase centre. The measurement setup had a Wiltron 360 B 
vector network analyser with a coax-waveguide (WR-42) transition as source antenna and the 
feed horn as receiving antenna, placed on an azimuth-rotating structure and connected to an HP 
83051A pre-amplifier. By rotating the feed horn around its Gaussian beam phase centre on both 
principal planes and measuring the phase variation, we verified that the curvature of the wave 
front of the beam matched the curvature of the spherical reflector. We could observe a phase 
deviation of less than 0.1 radians in a 10° interval from the boresight direction (Fig. 4).
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Figure 4 - Phase difference from the boresight direction for the 
VESPA-22 feed horn alone at a 43 cm distance.

Far-field  antenna system measurements
The far-field of the complete antenna system (parabolic reflector and feed horn) was 
characterised using the same setup as the far-field azimuth scans on the feed horn, with the 
antenna motion system used to set the elevation angle. The complete spectral-dependent 
antenna pattern was therefore measured indoors at a 4 m distance (Fig. 5). 
However, since the whole antenna has a Fraunhofer distance of 24 m, larger than the size 
of the anechoic chamber, we repeated outdoors, at a 34.5 m distance, the measurements at 
22.235 GHz. For the outdoor measurements the rooftop of a L-shaped building >20 m high 
was chosen as test site, with the source and the receiver antennas placed on the two segments 
of the L-shape so that the beam would travel more than 20 m above the ground, with no 
metal structures in the field of view of the antennas. This configuration was judged a good 
approximation of a free-space elevated range by the absence of reflected signals at different 
angles. No significant difference was observed between the indoor and outdoor data sets. 
Both principal planes were scanned in both co-polar and cross-polar configurations for the 
two main observation geometries of the antenna, “signal” and “reference”.
The HPBW Θ3dB (averaged over the 4 configurations) is 3.5° (± 0.1°), resulting in a 
directivity (DM 4π / Θ3dBE Θ3dBH) of 35 dBi (± 2 dBi), while the FNBW is approximately 
30°. The side lobe level is more than 40 dB below the boresight gain, as expected from 
the GRASP simulations. Cross-polarization rejection is now lower than it was with the 
feedhorn alone, as can be seen by the difference between the maximum received power in 
co-polar and cross-polar configuration being lower than before (24 dB versus the 35 dB of 
the feed horn alone). In Figure 6, the “signal” configuration pattern at 22.235 GHz, both 
expected (right panel) and measured (left panel), is presented (the “reference” configuration 
does not show any significant difference). Due to the larger directivity of the whole antenna 
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system with respect to the feedhorn alone, the beamwidth variation with frequency is less 
significant (Fig. 5). An antenna gain of 33.3 dBi (± 0.2 dBi) was measured using the gain-
transfer method.

Figure 5 - Spectral-dependent antenna pattern of the VESPA-22 antenna system measured in the 
indoor site at ISCTI in co-polar “signal” configuration. On the left, elevation scan of the E-plane; on 
the right, azimuth scan of the H-plane.

Figure 6 - Antenna pattern of the VESPA-22 antenna (off-axis parabolic reflector and corrugated 
feed horn) at 22.235 GHz simulated using GRASP (right) and measured in the “indoor site” at 
ISCTI (left).

Conclusions and future work
The VESPA-22 has been designed as a middle atmospheric water vapour monitoring 
station, to retrieve concentration profiles from about 20 to 80 km altitude and observe 
their long-term (decadal) and short-term (diurnal) changes. The receiver antenna has been 
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characterised, and it showed a HPBW of 3.5° and sidelobe levels more than 40 dB below 
the main lobe, with no significant spectral dependence.
Further steps in the development include: in February 2011, a test of the back-end FFT 
spectrometer on the GBMS spectrometer at Thule Air Base and comparison with the 
existing AOS system and, in autumn 2011, the final assembling and test of the front-end 
receiver, with a measurement of the actual receiver noise temperature. The first atmospheric 
observations are planned for spring 2012.
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