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Abstract

The nonlinear free oscillations of a planar, initially straight Timoshenko beam are investigated by means of the asymptotic devel-
opment method. Attention is focus on the difference in considering the “mechanical” vs the “geometric” curvature of the axis of
the beam, which are different for extensible beams. A comparison of the results obtained by the two models is proposed, and it is
shown when they are equivalent and when they give different nonlinear behaviours. A parametric analysis showing the effects of
the slenderness (arbitrary, not necessarily large) and of the stiffness of the right-end axial spring is performed.
c© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the 24th International Congress of Theoretical and Applied Mechanics.
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1. Introduction

Beam models can be obtained by two different approaches. In the first, named “three dimensional approach”1

or “induced theories”2, the equations are derived from a fully 3D “parent” problem, by means of some appropriate
mathematical techniques, like for example asymptotic methods3,4 or internal constraints5, taking into account the
specific geometrical (and mechanical) properties, in particular its cylindrical-like shape. The second approach, named
“direct approach”1 or “intrinsic theories”2, consists of regarding the system directly as a 1D continuum, with its own
mechanical properties and related descriptors. Here the 3D nature of the body is somehow hidden, as it appears only
in the definition of the parameters entering the equations, and one makes assumptions directly on the beam axis.

The two approaches are alternative, being more rigorous but more demanding and somehow more “rigid” the
former, more immediate and thus easier and more “open” the latter.

The difference relies in the level at which one introduces the hypothesis necessary to end up with the beam equa-
tions. In the first approach this is mainly done in the “reduction” process, where one makes some assumption on
the behaviour of the 3D displacements, on smallness of some parameters (e.g. the cross-section dimensions), etc.
In the second approach this is commonly done in choosing the kinematic descriptors (i.e. strain measures), and the
constitutive behaviour, which are the main assumptions calling for a detailed investigation.
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Limiting to the case of flexural behaviour, it is accepted that the bending moment is a (possibly nonlinear) function
of the curvature of the beam axis1,6, M = M(k). However, two conceptually different curvatures can be defined,

km =
dθ
dZ
, or kg =

dθ
dS
=

dθ
dZ

dZ
dS
=

km

1 + e
, (1)

where θ is the rotation of the beam cross-section (which corresponds to the deflection angle of the beam axis for
Euler-Bernoulli beams, and which is instead an intrinsic variable for Timoshenko beams), dZ and dS are the length of
the undeformed and deformed beam element, respectively, and e = dS

dZ −1 is the elongation of the beam axis7. Clearly,
the difference appears only for extensible beams, for which e � 0. Furthermore, we note that in the linear case e << 1,
so that the two definitions are identical, and the difference is relevant only in the nonlinear regime.

We name the former “normalized”, “flexural” or “mechanical” curvature6,8,9, and the latter “geometric” curva-
ture8,10. Note that the normalized curvature is defined as the material measure of curvature11,12 and the geometric
curvature is denoted as the spatial measure of curvature10,12.

Now the question arises of which is the “proper” curvature13. Actually, in the literature km is commonly used2,6,9,10,14,
with various motivations: its simplicity, its capability to isolate the effect of pure bending from curvature variations
produced by stretching, etc. However, at least in6,7,8,12,15,16,17,18 kg is used (or at least addressed), mainly because it is
considered to be the more correct curvature due to its geometric meaning.

It must be remarked that, since the choice of the curvature is an assumption, thus being part of the model, both
expressions (1) are correct in principle within the direct or intrinsic approach. Preferring one with respect to the other
is only related to the predictive capability of the ensuing model, and thus the choice should be made by comparing the
results of the model with other independent results: experimental, numerical or theoretical (i.e., comparing with the
constitutive equation coming from 3D or induced theories).

It will not be very surprising to not get to a unique answer, being one model preferable in some circumstances and
the other better in different cases. Thus, it is interesting to ascertain the differences obtained by considering the two
models, to be used for comparison purposes in further developments. This is the goal of this work, which adds to
other previous authors’ papers7,15,19,20 that were aimed at investigating the free nonlinear oscillations of planar beams
of arbitrary slenderness and with arbitrary end constraint in the axial direction, where kg was used.

In order to focus on the differences between the use of km or kg, and following7,15,19,20, we consider a linearly
elastic constitutive behaviour, i.e.

M = EJ km (“mechanical”model), or M = EJ kg =
EJ km

1 + e
(“geometric”model), (2)

EJ being the bending stiffness. Furthermore, planar free oscillations of an initially straight homogenous Timoshenko
beam are investigated, where the axial and rotational inertia are taken into account, as well as the shear deformation.

Since in the considered case the nonlinear behaviour is determined by the so-called backbone curve

ω = ω(a) = ω0 + ω2a2 + ..., (3)

giving the natural (circular) frequencyω as a function of the oscillation amplitude a, the comparison is made in terms
of ω2, as ω0 is the same for both models being the linear frequency.

2. The governing equations for the two models

We consider the beam reported in Fig. 1, and we denote by W(Z, T ) and U(Z, T ) the axial and the transversal
displacements of the beam axis, respectively. Z is the spatial coordinate in the rest rectilinear configuration, which
ranges from 0 to the length L. T is the physical time. κ is the stiffness of the spring at the right-end of the beam, which
allows us to encompass cases from the axially free (κ = 0) to the axially constrained (κ→ ∞).
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Fig. 1. Current configuration (continuous line) of the initially straight (dashed line) beam with end spring of stiffness κ. U and W are the transversal
and axial displacements, respectively.

In7, based on kinematics, balance and the constitutive behaviour M = EJ kg, the following exact PDEs of motion
are obtained for the “geometric” model:⎧⎪⎪⎨⎪⎪⎩EA[

√
(1 +W′)2 + U ′2 − 1]

1 +W′√
(1 +W′)2 + U ′2

+GA

[
θ − arctan

(
U ′

1 +W′

)]
U ′√

(1 +W′)2 + U ′2

⎫⎪⎪⎬⎪⎪⎭
′

= ω2ρA Ẅ,⎧⎪⎪⎨⎪⎪⎩EA[
√

(1 +W′)2 + U ′2 − 1]
U ′√

(1 +W′)2 + U ′2
−GA

[
θ − arctan

(
U ′

1 +W′

)]
1 +W′√

(1 +W′)2 + U ′2

⎫⎪⎪⎬⎪⎪⎭
′

= ω2ρA Ü,⎡⎢⎢⎢⎢⎢⎣EJ
θ′√

(1 +W′)2 + U ′2

⎤⎥⎥⎥⎥⎥⎦
′
−GA

[
θ − arctan

(
U ′

1 +W′

)] √
(1 +W′)2 + U ′2 = ω2ρJ θ̈,

(4)

where the time is rescaled as t = ωT (this is needed to apply the Poincaré-Lindstedt method), the dot means derivative
with respect to t and prime derivative with respect to Z. We refer to7,15 for the definition of the various parameters
appearing in (4) and for further details.

Considering the constitutive behaviour M = EJ km we obtain the “mechanical” model. The first two equations
(4)1 and (4)2 do not vary, since they represent the translation dynamic balance equations in the axial and transversal
directions and thus are not affected by the curvature (and in fact EJ does not appear in those equations). Equation
(4)3, on the other hand, represents the rotational dynamic balance equation, and changes to the simpler expression

[
EJθ′
]′ −GA

[
θ − arctan

(
U ′

1 +W′

)] √
(1 +W′)2 + U ′2 = ω2ρJ θ̈. (5)

The boundary conditions associated with both models are7,15

U(0, T ) = 0, U(L, T ) = 0, M(0, T ) = 0, M(L, T ) = 0, W(0, T ) = 0, Ho(L, T ) + κW(L, T ) = 0, (6)

where Ho is the horizontal (in the Z-direction) internal force.

3. Asymptotic solution

According to the Poincaré-Lindstedt method, the solution is sought after in the form

W(Z, t) = εW1(Z, t) + ε2W2(Z, t) + ε3W3(Z, t) + ..., U(Z, t) = εU1(Z, t) + ε2U2(Z, t) + ε3U3(Z, t) + ...,
θ(Z, t) = εθ1(Z, t) + ε2θ2(Z, t) + ε3θ3(Z, t) + ..., ω = ω0 + εω1 + ε

2ω2 + ...,
(7)

where ε is a small parameter that underlines that we are considering moderately large nonlinear oscillations.
Inserting the expressions (7) in the governing equations, and equating to zero the coefficients of εn, we get the

following sequence of linear problems, which have been solved in7,15 for the “geometric” model.

3.1. First order solution

The first order terms U1(Z, t), W1(Z, t) and θ1(Z, t) are given by (n ∈ N is the order of the natural frequency)

U1(Z, t) = Ua sin(λU1Z) sin(t), θ1(Z, t) = Uaα1λU1 cos(λU1Z) sin(t), W1(Z, t) = 0,

α1 =
GA

GA − ρJω2
0 + EJλ2

U1

, λU1 =
nπ
L
.

(8)
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The hypothesis W1 = 0 has been removed in19, although it is kept in this work.
The first order (linear) natural frequency is given by

ω0 =
1
L2

√
EJ
ρA
ω̄0, ω̄0 = l

√
zl2 + n2π2(1 + z) −

√
z2l4 + 2zn2π2(1 + z)l2 + n4π4(1 − z)2

2
, (9)

where the slenderness of the beam l = L
√

(A/J) and the dimensional shear stiffness z = [2(1+ ν)χ]−1 (ν is the Poisson
coefficient and χ is the shear correction factor, equal to 6/5 for rectangular cross-section) have been used to obtain

EA =
EJ
L2

l2, ρJ =
ρAL2

l2
, GA =

EJ
L2

l2z. (10)

For following purposes, we also define the dimensionless stiffness of the end spring κh = κ L3

EJ .
For slender beams (l→ ∞) we have

ω̄0 = n2π2 − n4π4

2

(
1 +

1
z

)
1
l2
+ .... (11)

The solution described by (8) and (9) corresponds to the linear term, and thus, while being obtained for the “geo-
metric” model, it is valid also for the “mechanical” model.

3.2. Second order solution

The second order solution, which is valid for both models, is obtained by means of appropriate solvability condi-
tions of the second order equations, and is given by

U2(Z, t) = 0, θ2(Z, t) = 0, W2(Z, t) = W2a(Z) +W2b(Z) cos(2t), ω1 = 0,

W2a(Z)
U2

a
= −λU1

16
EA + 2GA(α1 − 1)

EA
sin(2λU1Z) +

c1

L
Z
L
, c1 = −

1
8 +

GA
4EA (α1 − 1)

1 + κLEA

L2λ2
U1,

W2b(Z)
U2

a
=
λ3

U1

16
EA + 2GA(α1 − 1)

EAλ2
U1 − ρAω2

0

sin(2λU1Z) +
c2

L
sin
(
2ω0
√
ρA√

EA
Z

)
,

c2 =
[EA + 2GA(α1 − 1)](2ρAω2

0 − EAλ2
U1)

2ω0
√
ρA
√

EA cos
(

2ω0
√
ρA√

EA
L
)
+ κL sin

(
2ω0
√
ρA√

EA
L
) L

8
(
ρAω2

0

λ2
U1
− EA

) .
(12)

3.3. Third order solution

The solvability condition of the third order equations provides the backbone nonlinear correction term

ω2 = U2
a

[
c1
ω2a

ω2d
+ c2 sin

(
2Lω0

√
ρA√

EA

)
ω2b

ω2d
+
ω2c

ω2d

]
=

(Ua

L

)2 1
L2

√
EJ
ρA
ω̄2, (13)

where ω̄2 is a dimensionless quantity, implicitly defined by (13), that depends on l (slenderness), z (shear stiffness)
and κh (spring stiffness) (see15).

Equations (9)1 and (13)2 allow us to rewrite (3) in the form

ω =
1
L2

√
EJ
ρA

[
ω̄0 +

(
εUa

L

)2
ω̄2 + ...

]
, (14)

where a = εUa/L is the dimensionless amplitude of the (first order) oscillations (see (7) and (8)).
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3.3.1. Geometric model
For the “geometric” model the parameters ω2a, ω2b, ω2c and ω2d are7,15:

ω2a = 32EAπ2n2(EAπ2n2 − ω2
0L2ρA)[EAL2 − EJπ2n2α2

1 +GAL2(α2
1 − 1)],

ω2b = 16EAπ2n2GAL2(α2
1 − 1)(2ρAω2

0L2 − EAπ2n2) + 16(EA)2π2n2(EJα2
1π

4n4 − EAπ2n2L2 + 2ρAω2
0L4),

ω2c = 6π6n6L2(EA)3 − π4n4(EA)2[−6π2n2L2(α2
1 − 1)GA + 6π4n4α2

1EJ + 7ρAω2
0L4]+

+EA{π6n6α2
1[−6π2n2(α1 − 1)GA + 5L2ρAω2

0]EJ − π4n4L2GA(α1 − 1)[6n2π2(α2
1 − 1)GA+

+ω2
0L2ρA(7α1 + 9)]} + 4ρA(α1 − 1)L2GAπ4n4ω2

0[(α2
1 − 1)L2GA + n2π2α2

1EJ],
ω2d = 64EAL4ω0(EAπ2n2 − ω2

0L2ρA)(ρAL2 + π2n2α2
1ρJ).

(15)

For slender beams (l→ ∞) we have

ω̄
geom
2 = n2π2

(
3
32
κh +

15
64

n2π2 − 1
24

n4π4

)
+

n2π2

l2

[
− 3

32
κ2h + n2π2

(
1
12

n2π2 − 37
64

)
κh

+n4π4

(
− 1

15
n4π4 +

17
48

n2π2 − 153
128

)
+

n2π2

z

(
1
48

n4π4 − 15
128

n2π2 +
3
64
κh

)]
+ ...

(16)

3.3.2. Mechanical model
For the “mechanical” model the parameters ω2a, ω2b, ω2c and ω2d are:

ω2a = 32EAπ2n2(EAπ2n2 − ω2
0L2ρA)[EAL2 +GAL2(α2

1 − 1)],
ω2b = 16EAπ2n2GAL2(α2

1 − 1)(2ρAω2
0L2 − EAπ2n2) + 16(EA)2π2n2(−EAπ2n2L2 + 2ρAω2

0L4),
ω2c = 6π6n6L2(EA)3 − π4n4(EA)2[−6π2n2L2(α2

1 − 1)GA + 7ρAω2
0L4]+

+EA{−π4n4L2GA(α1 − 1)[6n2π2(α2
1 − 1)GA+

+ω2
0L2ρA(7α1 + 9)]} + 4ρA(α1 − 1)L2GAπ4n4ω2

0[(α2
1 − 1)L2GA],

ω2d = 64EAL4ω0(EAπ2n2 − ω2
0L2ρA)(ρAL2 + π2n2α2

1ρJ).

(17)

For slender beams (l→ ∞) we have

ω̄mech
2 = n2π2

(
3
32
κh +

15
64

n2π2 − 1
24

n4π4

)
+

n2π2

l2

[
− 3

32
κ2h + n2π2

(
1
12

n2π2 − 31
64

)
κh

+n4π4

(
− 1

15
n4π4 +

15
48

n2π2 − 139
128

)
+

n2π2

z

(
1
48

n4π4 − 15
128

n2π2 +
3
64
κh

)]
+ ...

(18)

By comparing expressions (15) and (17) we see that the coefficients for the “mechanical” model are obtained by
setting EJ = 0 in the coefficients of the “geometric” model. ω2d is the same for both models.

On the contrary, the comparison of (16) and (18) shows that there are very minor differences (the three numbers
reported in bold in the formulas) in the nonlinear correction coefficient obtained with the two models. Furthermore,
we note that the dominating term in the two asymptotic expansions is the same, so that we can conclude that for
slender beams the two models coincide, and for non-slender beams the differences should be limited.

4. Comparison for different slenderness and boundary condition

The detailed study of the backbone curve has been done in7,15,19,20 for the “geometric” model. Here, instead of
performing the same analysis for the “mechanical” model, we prefer to compare ωmech

2 with ωgeom
2 to better highlight

the differences between the two models.
The ratio ωmech

2 /ω
geom
2 is reported in Fig. 2 as a function of κh for the three fixed values of l used in20 (so that in this

case we also have a numerical confirmation of the analytical results). The ratio is approximately constant and greater
than 1 (consistent with the stiffer mechanical model), apart from the critical points where the ratio is 0 (for ωmech

2 = 0)
or it goes to infinity (for ωgeom

2 = 0), which however are close to each other (for example, for the case of Fig. 2a we
have κh = 21.8521 vs κh = 21.7491, respectively). The conclusion is that κh affects the results only slightly.

Apart from the neighborhood of the critical points, which is very small and thus unimportant from a practical
point of view, we note that ωmech

2 and ωgeom
2 have the same sign, so that the two models prescribe the same harden-

ing/softening behaviour, and thus are consistent.
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a) b)

c)

Fig. 2. The ratios ωmech
2 /ω

geom
2 as function of κh for different values of l. n = 1 and z = 0.3205.

The (almost constant) value of the ratio increases by decreasing l, with the major difference occurring for the
thicker beam, where however the difference is only about 8%. For slender beams, on the other hand, the difference is
negligible from a quantitative point of view, and vanishes for very slender beams.

To better appreciate the effect of the slenderness, we start to compute the asymptotic expansion for l→ ∞:

ωmech
2

ω
geom
2

= 1 +
n2π2

l2
8n4π4 − 21n2π2 − 18κh
8n4π4 − 45n2π2 − 18κh

+ ..., (19)

which confirms that the two models are substantially identical for slender beams.
We report in Fig. 3a the ratio as a function of l for the hinged-supported (κh = 0) and the hinged-hinged (κh → ∞)

cases. The two curves are very close to each other, and the curves for all other values of κh (apart from the critical
points) are in-between, confirming the low effect of κh highlighted above.

The two curves have a maximum of 13.1% and 13.6%, at l = 4.520 and l = 4.252, respectively. These numbers
confirm also from a quantitative point of view the closeness of the two curves, and further show that the largest differ-
ence between the two models is about 13% and occurs for very low slenderness, at the limit of practical application.
After the maximum the curves are decreasing and rapidly approach 1, confirming that even for not so slender beams
the outcomes of two models are identical (for example, the difference of 1% is obtained yet for l 	 40).
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a) b)

Fig. 3. The ratios ωmech
2 /ω

geom
2 for n = 1. a) as function of l for κh = 0 (dash blue line) and κh →∞ (solid red line), z = 0.3205; b) as a function of

z for κh = 0 (dash blue line) and κh → ∞ (solid red line), and two different values of l (the vertical line corresponds to z = 0.3205).

Figure 3b, on the other hand, shows the substantial independence of the ratio on the shear stiffness coefficient z,
apart from the sharp decrease occurring for highly shear deformable beam elements where the anyway lower value of
the geometric curvature with respect to the mechanical one plays a role.

5. Softening/hardening transition

It has been shown in7,15,19,20 that the main nonlinear dynamical feature of the considered mechanical system is that
it can change its nonlinear behavior from softening (ω2 < 0) to hardening (ω2 > 0) by varying the system parameters.
This occurs when ω2 = 0, which is the simplest case, but also when ω2 → ∞. Let us start with this latter condition,
which happens when the denominators of ω2 vanish. Since ω2d is always different from zero7,15, this occurs when the
denominator of c2 (see (12)) vanishes, namely

κ = −2ω0
√
ρA
√

EA
L

1

tan
(

2ω0
√
ρA√

EA
L
) → κh = −

2lω̄0

tan
(

2ω̄0
l

) . (20)

It is worth to remark that this condition is the same for both models.
The other transition condition ω2 = 0 provides two (one per model) second order algebraic equations in the

unknown κh, which can be easily solved. The transitions loci are reported in Fig. 4, which for the “geometric” model
is the same of Fig. 12c of15. The differences between the two models are very minor, and can be appreciated only on
the enlargement of Fig. 4b.

6. Conclusions

The nonlinear oscillations of a Timoshenko beam with arbitrary slenderness and arbitrary boundary condition in the
axial direction have been investigated. Axial and rotational inertia have been considered, and the solution is obtained
by means of the Poincaré-Lindstedt asymptotic method.

Attention is focused on the different definition of the curvature, as the derivative with respect to the deformed
length (“geometric”) or with respect to the undeformed length (“mechanical”). The two models are compared to each
other. Since the difference appears only in the nonlinear regime, the comparison is made in term of the nonlinear
correction coefficient of the backbone curve.
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a) b)

Fig. 4. The solution of ω2 = 0 (solid line) for the “geometric” model, of ω2 = 0 (dashdot line) for the “mechanical” model, and of ω2 →∞ (dashed
line) in the (l, κh) plane. n = 1 and z = 0.3205.

It has been shown that the two models give the same nonlinear behaviour for slender beams, while some difference,
up to about 13%, can be observed for thick beams. Furthermore, the stiffness of the end spring does not influence the
differences between the two models.

The general conclusion is that using, in moderately large nonlinear free oscillations, the “geometric” or the “me-
chanical” curvature does not affect the results that much, especially for slender beams.
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