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Abstract: The beam-column joints are very restricted areas in which the internal forces,
generated by boundary elements, act on the concrete core and reinforcing bars with a very
high gradient. They are the link between horizontal and vertical structural elements, and
therefore, they are directly involved in the transfer of seismic forces. Thus, they are crucial
to study the seismic behavior of reinforced concrete (RC) structures. To fully understand the
seismic performances and failure modes of beam-column joints in RC buildings, a simplified
analytical model of joint behavior is proposed and theoretical simulations are performed.
The aim of the model, focusing on internal perimetric joints, is to identify the strength
hierarchy in terms of capacity for different failure modes (namely failure of cracked joint,
bond failure of passing through bars, flexural/shear failures of columns or beams). It could
represent a tool for the designers of new joints to quantify the performance of new structures,
but also as a tool for the designers of external strengthening of existing joints in order to
calculate the benefits of the retrofit and pushing the initial failure to a more desirable failure
mode. Further, some experimental results of tests available in the scientific literature are
reported, analyzed and compared.



Polymers 2015, 7 1733

Keywords: beam-column joints; analytical modeling; capacity; failure mode; FRP;
reinforced concrete

1. Introduction

The behavior of the beam-column joint is a crucial aspect in a new or existing reinforced
concrete (RC) moment resisting frame and needs to be designed and detailed properly. During
earthquakes, the failure of beam-column joints is governed by bond and shear failure mechanisms which
are usually brittle. Beam-column joints having deficient reinforcement details are expected to respond
poorly, even when subjected to moderate seismic action. Beam-column joints in a RC moment resisting
frame are circumscribed portions of the structures where high loads transfer between the connecting
elements (i.e., columns and beams) in the structure. This aspect can be particularly crucial in the case of
seismically-resistant frames where this high demand mobilizes the inelastic capacity of RC members to
dissipate seismic energy while joints are poorly designed, jeopardizing the entire structure, even if it is
correctly designed (Manfredi et al.) [1].

Under certain seismic actions, the beams connecting into a joint are subjected to moments in the
same (clockwise or counter-clockwise) direction. Under these moments, the bars at the same level are
pulled or pushed in the same direction at both sides of the joint panel. If the column is not wide enough,
or if the strength of concrete in the joint is too low, the bond between steel bars and concrete cannot
balance this stress request (Lignola et al.) [2]. In such cases, the reinforcement bars slip inside the
joint region, and beams lose their load capacity. Furthermore, under cyclic actions, joints undergo the
diagonal push and pull actions and concrete diagonally cracks into the joint panel.

Stirrups in the joint panel provide the crucial shear strength and confinement pressure to preserve
joint panels from premature brittle failures. A proper quantity of transverse reinforcement allows the
stresses to be appropriately transmitted between the beams and columns. Nonetheless, the deficiency of
transverse reinforcement in joint panels occurs often in structural systems designed for gravity loads or
according to outdated seismic codes (Masi et al.) [3]. Hence, current research efforts concentrated on
developing cost-effective and sound retrofit techniques and strategies by means of composite materials.
Former rehabilitation techniques, such as RC or steel jackets, have been well investigated in the
past (e.g., Alcocer and Jirsa [4], Ghobarah et al. [5], Tsonos [6], and Hakuto et al. [7] among others).
In recent years, Fiber-reinforced polymer (FRP) has been widely studied as a novel strengthening system,
and it has been extensively applied in practice due to its benefits, such as light weight, high strength,
corrosion resistance, and fast constructability.

Several FRP-strengthening materials and layouts were considered to define the benefits provided
to the seismic performance of beam-column joints (e.g., Gergely et al. [8], Pantelides et al. [9],
Gergely et al. [10], Granata and Parvin [11], Ghobarah and Said [12], Pantelides et al. [13]
among others).

From a designer point of view, current building codes for an earthquake-resistant design of RC
moment frame structures provide an empirical limit on joint shear force. Earlier models, namely,
traditional truss and strut models to explain the shear resistance mechanism, were proposed by
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Paulay et al. [14]. Further studies established shape factors given as empirical factors based on laboratory
testing to take into account the variation of beam-column joint configurations. Such studies converged
in different seismic code provisions and a review of them for joints, from main codes of practice around
the world, can be found in Uma and Jain [15]. However they lack consideration for the effects of other
critical factors such as the magnitude of column axial load or the capacity of the members’ framing to the
joint. Shiohara, in 2001 [16], made some of the first efforts to identify all the crucial factors by means of
a mechanical model, as described in the following, being the basis of the improvements provided by the
proposed novel model. Re-evaluating available experimental results, the idea was not to limit the joint
failure to an exceedance of a joint shear stress capacity (because joint shear stress does not degrade as
the storey shear does during experimental tests).

Lowes and Altoontash, in 2003 [17], and in the following years with further improvements and
calibrations, proposed a nonlinear model for beam-column joints to be used in numerical analyses to
evaluate the impact of joints on RC frame earthquake performance and their deformability, including
bond-slip behavior. Increasing the complexity, further studies involved the full nonlinear finite element
modeling (FEM) of joints clarifying the role of many factors in the behavior of beam column joints
(e.g., Manfredi et al. [1] and Lignola et al. [2], among others).

2. Research Significance

The aim of the present paper is to investigate the internal RC beam-column joints in order to study
seismic behavior and to establish the strength hierarchy in the case of failure. It aims to contribute
to capacity design (and the subsequent strength hierarchy) principles. In fact, these modern design
principles are strongly subordinate to the beam-column joint panels’ behavior which can reduce
substantially the global ductility, if the joint is subjected to a premature failure. Theoretical simulations
and analytical models have been presented and discussed, and theoretical outcomes have been compared
to experimental results. Presented theoretical approach aims to represent a practical tool to be used by
practitioners in the FRP-strengthening design process of beam column joints.

3. Basis of Theoretical Model

The study focuses on internal joints which can be identified in a perimetric moment resisting frame.
Perimetric frames have been selected because they have less beneficial effect of confinement provided
by out-of-plane members (i.e., transverse beams or slabs). Internal joints present two beams framing into
the sides of a column.

Experimental joint failure databases (e.g., Kim [18] collected data on 341 subassemblies) highlight
typical shear failures in conjunction with, but also without, yielding of longitudinal beam reinforcement.
Influencing parameters for joint shear behavior are linked to key points on capacity curves displaying
the most distinct stiffness changes. Concrete cracking is usually coupled to yielding or bond failure of
longitudinal reinforcement of beams when the most different changes in stiffness, for both overall and
local behavior are triggered, up to the point of initiation of joint shear failure (maximum experimental
storey shear).

The examined parameters for joint behavior are material properties, joint panel geometry,
reinforcement in joint panel, column axial load, and reinforcement bond condition. Furthermore, the
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effect of external strengthening, e.g., by means of externally-bonded FRP, but not limited to it, is another
debated parameter. Obviously, shear and flexural capacity of intersecting elements, namely beams and
columns, are also of interest for the capacity design, hence they are considered herein, but not analyzed in
detail, since they are considered almost well established, both in terms of as-built and retrofitted capacity.

The proposed model moves from the so called quadruple flexural resistances model [16] sketched
in Figure 1. It considers the kinematics of the four segments divided by diagonal cracks in the joint
panel, rotating due to bending moment and shear coming from beams and columns. The equilibrium of
internal forces in steel and concrete, and external forces acting on beam ends and column ends is taken
into account, whereas the compatibility condition is not necessarily satisfied. Dowel effects of bars and
shear friction along diagonal cracks were neglected in the original formulation. In fact, the model, as it
was originally proposed, presents some essential assumptions, described in the following lines, mainly
because of the undetermined system of equations having fewer equations than unknowns.
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Figure 1. The basic scheme of original quadruple flexural resistance model (Shiohara [16]).

For instance in the interior joint, accounting for symmetry, given twelve equations defining
equilibrium (three per rigid body), the number of independent equations representing the equilibrium
reduces to five. Conversely, the unknowns are at least eight; three of them were assumed equal to
experimental recorded data in experimental validation or directly assigned in the design phase. For
instance yielding of joint stirrups was assumed (according to typical experimental outcomes after joint
cracking) and also yielding of all beam bars, or alternatively yielding of tensile bars only and then the
stress in compressed bars was derived by bond capacity limitation in the joint panel.

The model was also split to analyze potential beam failure or joint failure (evidently, beam column
joint capacity is the smallest one of the two failure loads). However to avoid assuming a priori many
unknowns, either supplied by experimental outcomes or considered at their maximum capacity (e.g., steel
at yielding point, which actually is not always yielded at joint failure, when looking at experimental
databases), modified unknowns, altered assumptions, and different solutions are herein proposed.

The basic idea is to include the beam mode into a unified joint model (adding apart a separate check
not only of beam flexural failure, but also of column flexural failure, and for both, checking shear
failure also). Doing so, it is possible to merge concrete compression and steel compression in a single
compression force resultant at both beam and column ends. This assumption to merge compression in
concrete and steel reinforcement has almost no effect on equilibrium of beams, while has minor effect
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on columns where neutral axis is deeper (Cosenza et al.) [19]. Finally, considering column shear not as
an unknown, but as the main driving parameter to study, it is possible to plot the evolution of all other
internal force unknowns with the column shear, Vc, and to match the number of equations and unknowns.
In this way, according to basic capacity design principles, column shear capacity is provided for each
failure mode (e.g., column shear corresponding to concrete compression failure, is found on the curve
of concrete in compression at a certain column shear value, Vc, intersecting concrete capacity; similarly
column shear, Vc, corresponding to bond failure, is found on the bond demand curve while intersecting
the bond capacity threshold). The model has been particularized for internal joints.

3.1. Mathematical Formulation

Joint scheme has been identified by setting geometric parameters and stresses, as shown in Figure 2.
It is enough to analyze a single load direction, since load reversal yields to the same stress state, because
of the symmetry of the joint. Symmetry of the beam column joint is obvious if the joint is exactly at
Lb/2 and Lc/2, as it is usually in experimental and design schemes; however, this does not mean that steel
reinforcement bars having as resultant force, T1, at the bottom of the right beam and at the top of the
left beam have equal cross section or total area. Internal joints present a symmetry in terms of internal
and external forces, but not necessarily in terms of reinforcement bars. Force resultants, Fi, (e.g., for
the depicted case of clockwise moments on columns, F1 and F2 are in compression) are also shown
in Figure 2. Accounting for symmetry, the number of nonlinear independent equations is five, in five
unknowns (C, F1, F2, F3 and F4):

F1 ` F4 ´ C ¨ sinϑ´ Vc “ 0 (1)

F1 ´ F4 ´ F9 ` C ¨ sinϑ´ Nb “ 0 (2)

F2 ´ F3 ´ F10 ` C ¨ cosϑ´ Nc “ 0 (3)

F2 ` F3 ´ C ¨ cosϑ´ α ¨ Vc “ 0 (4)

h˚
b ¨ pF1 ` F4q ` h

˚
c ¨ pF2 ` F3q ´

C2

fc ¨B
´ Lc ¨ Vc “ 0 (5)

Furthermore in this system, column and beam shear, Vc and Vb, as well as the flexural moment at
column or beam, Mc or Mb, respectively, interface with joint satisfy also these relations:

Vc “
pVb ¨ Lbq

Lc

(6)

Vc “
2 ¨Mc

pLc ´ Hbq
(7)

Vc “
2 ¨Mb ¨ Lb

rpLb ´ Hcq ¨ Lcs
(8)
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Figure 2. Internal perimetric joint: geometry, internal distribution of forces.

3.2. Failure Modes

The paper focuses on internal perimetric joint failure; however, to fully understand joint behavior, it is
recommended to also evaluate beam and column peculiar failure modes (i.e., flexural and shear capacity,
according to classical structural analysis approaches, Cosenza et al. [19]). These failure modes are
expressed in terms of column shear according to Equations (6)–(8), thus providing the first four possible
column shear, Vc, capacity values corresponding to failure of the beam-column joint system. Eventual
deficiencies of beams or columns in terms of flexural and shear capacities could be solved by means of
FRP strengthening interventions, which are out of the scope of present paper and almost consolidated in
the technical community.

Focusing on joint panel, three different failure modes can be expected: failure of concrete strut due
to crushing, conventional failure due to yielding of longitudinal bars, or bond failure of longitudinal
bars (in fact, the joint panel has limited dimensions to anchor the high stress demand and gradients from
the bars).

The former failure mode involves the attainment of concrete crushing in the diagonal strut, so concrete
contact force, C, should be limited to the compression strength of strut:

Cmax “ B ¨ fc ¨
Hb

2 ¨ sin θ
(9)

If shear friction is assumed along cracks, the concrete contact force, C, can be assumed inclined not as
the diagonal (i.e., ϑ‰ θ), thus requiring a shear friction check where deviation from diagonal (i.e., |ϑ´θ|)
should be limited to a threshold value. Afterwards, conventional failure of reinforcement in tension is
checked, assuming different bars at each longitudinal reinforcement level i, having cross section Ak, and
yielding stress f y,k. So each Fi should be limited to axial strength:

Fmax,i “
ÿ

Ak ¨ fy,k (10)

Finally, the latter failure mode requires splitting the compression resultant force into steel and
concrete contributions (Figure 3). The basic idea is to evaluate (according to classical structural analysis
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approaches, Cosenza et al. [19]) the neutral axis depth, recalling linearity of the strain diagram of the
cross section; in the meantime, compression and tensile resultants are in equilibrium, according to the
previous systems of equations.

Figure 3 also remembers that the neutral axis changes with increasing flexural loads due to concrete
nonlinearity. The neutral axis, c, can be evaluated, for instance in the elastic field in a beam, without
axial load, equating the first order moment to zero (Equation (11)) and, once the neutral axis, c, is known,
the compressive force of reinforcements, S1, is derived:

Bb ¨ c
2
` n ¨

”

A
1

s,b ¨ p2 ¨ c´ Hb ` h
˚
b q ´ As,c ¨ pHb ` h

˚
b ´ 2 ¨ cq

ı

“ 0 (11)

S1 “ F4 ¨
A
1

s,c ¨ p2 ¨ c´ Hb ` h
˚
b q

As,b ¨ pHb ` h˚
b ´ 2 ¨ cq

(12)

Finally, estimating the effective bond length, Leb, the upper bound bond capacity of concrete (based on
uniform bond stress capacity, τ) is compared to the bond demand, given by the anchoring of longitudinal
bars, even with different longitudinal diameters, Φk, of bars at the same level, e.g., due to the two
resultants S1 + F4:

Leb “
h˚
b

tan θ
(13)

pS1 ` F4qmax “ τ ¨
ÿ

Leb,k ¨ Φk (14)

Three different bond stress capacities were considered according to Model Code 90 [20]: the
maximum bond capacity, τmax, is equal to 2.5¨

?
fc (good bond) or a medium value, τmed is equal to

1.25¨
?
fc all others conditions) for ribbed bars. The minimum value, τmin, equal to 0.3¨

?
fc can be used

in the case of smooth bars. Different bond capacities’ detailed analysis is out of the scope of present
work, however they can be evaluated and inserted in the proposed model as bond capacity thresholds,
e.g., (S1 + F4)max, to estimate corresponding column shear, Vc.
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4. Behavior of Proposed Simplified Model

To evaluate the behavior of proposed simplified model, a parametric analysis is performed, on an
internal perimetric joint, to highlight the peculiarities of this joint.

The joint analyzed to perform the parametric analysis is made of a beam of dimensions
(30 cm ˆ 50 cm, increased in a case) and a column 30 cm ˆ 30 cm. The considered beam has length



Polymers 2015, 7 1739

equal to 3.60 m, reinforced by five D16 longitudinal bars at upper side and three D16 at the lower one.
The length of the column is Lc = 3.40 m, reinforced symmetrically by two D16 longitudinal bars at
upper and lower sides. Both of them have been transversally reinforced by using D8 stirrups (two legs)
at 20 cm. Concrete cover value considered for both beam and column is 2.6 cm (see Figure 4).
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Figure 4. Geometry and reinforcement of analyzed beam column joint.

Scientific literature presents numerous experimental test results, conducted on different kinds of
geometry, evaluating stress values leading to joint failure. By using the proposed model, for each
geometry, the values of column shear, Vc, have been calculated for each of the failure modes for nodes
(and named Vc1 to Vc11 for each considered failure mode, see Table 1).Starting from the reference
condition, geometric variations have been performed leading to new column shear results related to
each of the failure modes. In particular, variations about the number (two and four) of legs for stirrups
and about the number and type of FRP layers have been considered. Four different Carbon CFRP
(Young’s modulus Ef = 230 GPa) configurations have been considered: one horizontal uni-axial layer
(tf = 0.333 mm), one quadri-axial layer, two quadri-axial layers, and four quadri-axial layers (each layer
of quadri-axial has a thickness of 0.053 mm, hence combining the overlapping of inclined layer it is
equivalent to 0.1279 mm in horizontal and vertical directions). FRP strain is assumed equal to debonding
value (e.g., 0.4% according to Italian guidelines CNR DT200 R1 2013 [21]).

In order to understand which failure mode is independent from the reinforcement and which is
improvable by using reinforcement, results were grouped and compared to the reference case, to
represent values of column shear (for each failure mode) related to the amount of reinforcement.
The main considered parameters were: axial load on column, Nc; concrete strength, f c; stirrups in the
joint; FRP externally bonded on the joint panel; longitudinal reinforcement ratio in beams and columns;
and beam height, hence joint panel dimensions. Variability of considered parameters is depicted in a
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numerical test matrix (in Table 2 at every case is associated an ID number). The identification of the
failure mode allowed to establish if and how it is possible to change and improve the hierarchy of the
failure modes. In many cases, the method led to switch a brittle failure mode into ductile failure modes,
even if some mechanisms are independent from the reinforcement inserted into the joint.

Table 1. Column shear, Vc, for each considered failure mode.

Column Shear Failure mode

Vc1 Bending capacity of beam
Vc2 Bending capacity of column
Vc3 Shear capacity of beam
Vc4 Shear capacity of column
Vc5 Joint with yielding of bars of beam
Vc6 Joint with yielding of bars of column
Vc8 Joint due to maximum bond exceedance
Vc9 Joint due to medium bond exceedance
Vc10 Joint due to minimum bond exceedance
Vc11 Joint due to concrete strut crushing

Table 2. Parametric analysis: variability of considered parameters; failure modes and
column shear capacities of considered joint configurations.

ID number Nc (kN) f c (MPa) Stirrups FRP Beam dimension (cm2) Failure mode (kN)

1 0 20 - - (50 ˆ 30) Vc2 37.14
2 315 20 - - (50 ˆ 30) Vc5 55.91
3 630 20 - - (50 ˆ 30) Vc5 55.91
4 315 40 - - (50 ˆ 30) Vc5 59.01
5 315 60 - - (50 ˆ 30) Vc5 60.03
6 315 20 2D8 - (50 ˆ 30) Vc2 62.18
7 315 20 4D8 - (50 ˆ 30) Vc2 62.18
8 315 20 8D8 - (50 ˆ 30) Vc2 62.18

9 315 20 -
1

plyquadri-axial (50 ˆ 30) Vc5 60.51

10 315 20 - 1 plyuni-axial (50 ˆ 30) Vc2 62.18

11 315 20 -
2

pliesquadri-axial (50 ˆ 30) Vc2 62.18

12 315 20 -
4

pliesquadri-axial (50 ˆ 30) Vc2 62.18

13 315 20 - - (70 ˆ 30) Vc2 66.79
14 1 315 20 - - (50 ˆ 30) Vc2 62.18
15 2 315 20 - - (50 ˆ 30) Vc8 20.08

1 θ – ϑ = + 20˝; 2 θ + ϑ = ´20˝.

As expected, those are all the mechanisms external to the joint (e.g., failure for bending and shear of
column or beam) not incorporated in the system of equations previously presented. Furthermore, thanks
to the symmetry of the joint, the values for yield strength in upper and lower bars of the column are the
same for each analysis (for this reason Vc7 was omitted because it is equal to Vc6).

It is clear from Table 1 that in the case of zero axial load on column (ID1), the failure of the system is
due to the flexural failure of column in bending (i.e., Vc2 = 37.14 kN is the lower column shear triggering
the failure mode). Increasing the axial load (ID2 and ID3) the failure moves to the joint due to yielding
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of bars in beam (i.e., Vc5 = 55.91 kN is the lower column shear triggering the failure mode). The increase
of concrete strength (ID4 and ID5) simply increases slightly the column shear leading to the same failure
mode of the joint.

Any improvement of the joint reinforcement (ID6 to ID8 in the case of internal reinforcement of
new structures, or ID9 to ID12 in the case of external retrofit of existing structures) moves the failure
mode from the brittle failure of the joint due to yielding of bars in the beam to the flexural failure of the
column. Only an exception is represented by one ply of quadri-axial reinforcement (ID9), not sufficient
in the horizontal direction to avoid a joint failure due to yielding of beam bars at a slightly lower load.
Increasing the dimensions of the joints (ID13) allows preventing of joint failure, hence moving to the
flexural failure of the column (at a slightly higher load, not because joint dimensions increase the ultimate
moment of the column, but because the lever arms slightly changes; see Equation (7)).

Assuming a friction along the diagonal cracks in the joint (ID14 and ID15 and assuming the maximum
of both) improves slightly the capacity of the joint pushing failure to the flexural capacity of the column.

Since the flexural failure of the column is not yet the optimum failure mode, a further intervention
could be foreseen for the column, hence increasing the flexural capacity up to a switch of the failure
mode to the beam flexural failure, the optimal ductile failure of such systems. It is worth noting that
once increasing the flexural capacity of a member, in this case the column, a shear check should always
be coupled and performed to evaluate the need for a combined shear strengthening, because shear loads
on the member could increase with the flexural improvement. However this latter aspect of column
strengthening is out of the scope of present work.

This discussion was performed assuming a good bond condition. However, in the case of smooth
bars, with poor bond conditions, the failure mode would always occur at a much lower column shear with
joint failure due to the bond of the longitudinal bars inside the joint. The fifteen analyses (Tables 2 and 3)
allow assessing the influence of different parameters, both in terms of failure mode and column shear, Vc.
In some cases, a parameter has no influence on the effective failure mode, however it has an influence
on other possible failure modes, but not triggered first in that case. The effect of axial load is mainly
on column reinforcement forces and flexural and shear capacity (see Figure 5 where the force resultant
F3 reaches its yielding value at increasing column shear, Vc, when increasing axial load on column, Nc).
In Figure 5, F3(Vc) curves have different origins because the higher is the axial load, Nc, the higher
is initial compression level at zero lateral load, Vc. Similarly, column shear corresponding to column
flexural failure increases from 37.14 kN to 79.46 kN (+114%) (in square brackets the percentage increase
has been reported), yet not being triggered as the first failure mode. Axial load has negligible effect on
joint failure. The effect of concrete strength is mainly related to shear and flexural capacity of beams
and columns.

A clear effect is also on bond capacity; Figure 6 shows bond demand F4 + S1 reaching its capacity
value at increasing column shear, Vc, when changing bond capacity (in good bond conditions) due to
concrete strength τmax(f c).

To evaluate the failure mode for each considered configuration case it is possible to refer to values
reported in Table 3.
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Table 3. Column shear for each configuration case and for every failure mode (to evaluate
the strength hierarchy).

Column shear
at failure

Configuration ID Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Vc1 (kN) 91.4 91.4 91.4 92.7 93.8 91.4 91.4 91.4 91.4 91.4 91.4 91.4 132.5 91.4 91.4
Vc2 (kN) 37.1 62.2 79.5 65.2 66.9 62.2 62.2 62.2 62.2 62.2 62.2 62.2 66.8 62.2 62.2
Vc3 (kN) 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0 295.0 419.5 295.0 295.0
Vc4 (kN) 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.1
Vc5 (kN) 55.9 55.9 55.9 59.0 60.0 64.0 71.7 86.1 60.5 67.7 65.00 73.6 78.6 65.7 47.5
Vc6 (kN) 58.7 93.8 120.4 104.4 107.8 93.8 93.8 93.8 97.4 93.8 100.5 106.8 177.2 64.0 106.9
Vc8 (kN) 67.2 67.2 67.2 99.1 123.5 74.8 82.1 95.4 71.6 78.2 75.8 83.8 104.4 120.5 20.1
Vc9 (kN) 36.0 36.0 36.0 51.9 64.1 44.9 53.5 69.5 41.1 48.9 46.0 55.6 53.6 79.7 10.2
Vc10 (kN) 9.1 9.1 9.1 12.9 15.8 18.9 28.5 46.5 14.7 23.4 20.2 30.8 13.1 22.4 2.5
Vc11 (kN) 144.5 144.5 144.5 289.0 433.6 144.5 144.5 144.5 144.5 144.5 144.5 144.5 144.5 124.2 130.8

Bold values refer to triggered failure mode with maximum bond conditions; Vc8, τmax is 2.5¨
?
fc; Vc9, τmed is

1.25¨
?
fc; Vc10, τmin is 0.3¨

?
fc.
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The effect of stirrups is meaningful, as it has many consequences. The most relevant is on longitudinal
reinforcement bars, reducing their load, thus bearing a portion of horizontal load demand. Stirrups are
assumed to yield, and for simplicity, their tensile force (T9) is assumed equal to yielding force from
the very beginning; for this reason, in Figure 7 the F4(Vc) curves have different origins. However
the presence of stirrups increases column shear corresponding to joint failure due to beam tensile
reinforcement yielding from 55.91 kN (no stirrups and actual failure of ID2 case) to 64.01 kN (+14.48%)
(two D8 stirrups with two legs, ID6 case) and 86.14 kN (+54.06%) (eight D8 stirrups with two legs), but
in these cases the failure mode switches to column flexural failure. Thus, it can be concluded that, in this
case, two D8 stirrups are enough to change the failure mode from brittle joint failure to more desirable
ductile column flexural failure.
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Figure 7. Parametric analysis: tensile force, F4, in beam bars and its threshold with
variability of stirrups.

Similar comments can be repeated for externally-bonded FRP. The role of the reinforcement is similar
to the insertion of stirrups; however, benefits can also be achieved on an existing joint, even if, originally,
they have no internal stirrups. From a numerical point of view, the presence of FRP is similar to stirrups
(note that one ply of uni-axial FRP is not enough to change the failure mode, remaining the joint failure
with yielding of beam bars). FRP and stirrups both provide an increase of horizontal, T9, (or vertical,
T10, if vertical fibers are also applied) load carrying capacity. FRP tensile force is assumed equal to
the debonding force from the very beginning. For this reason, in Figure 8 the F4(Vc) curves have
different origins. However, the presence of FRP increases the shear column value, Vc, corresponding to
system failure, from 55.91 kN (yet joint failure due to beam tensile reinforcement yielding) to 65.00 kN
(+16.25%) (two plies of quadri-axial FRP, ID11 case). FRP was able to change the failure mode from
brittle joint failure to more desirable ductile column flexural failure, with the only exception of ID9.

Longitudinal reinforcement has a low influence on the evaluation of force resultants, e.g., Figure 9
shows the F4(Vc) curves, they are overlapping; however, the yielding capacity is different, thus leading to
much different column shear values, Vc, corresponding to joint failure due to beam tensile reinforcement
yielding. These column shear values, Vc, reduces from 55.91 kN (actual failure of ID2 case) to 38.66 kN
(´30.85%] (2+2D16 bars in the beams), or increases to 144.53 kN (+158.5%) (4+4D32 bars in the
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beams) yet not reaching yielding of bars, however in this latter case the failure mode is a different one,
the column flexural failure, at Vc = 62.18 kN. Conversely, the increase of beam dimensions has two main
effects: the first one is the increase of beam capacity, both in terms of flexure and shear; and the second
one is the increase of joint panel dimensions.
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Figure 8. Parametric analysis: tensile force, F4, in beam bars and its threshold with
variability of externally bonded FRP.
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variability of longitudinal beam reinforcement.

The increase of joint panel dimensions reduces the demand in terms of resultant forces in
reinforcements, as shown in Figure 10 where the bond demand is lower for the higher beam. The same
figure also highlights the influence of bond capacity: the same beam-column joint, if reinforced with
smooth bars, presents a much lower capacity. In the case of beams of dimensions 70 cm ˆ 30 cm,
potential failure due to bond occurs at 97.45 kN in the case of good bond for ribbed bars, and it drops
dramatically to 12.62 kN (´87.05%) in the case of smooth bars. It is a “potential” failure mode in the
case of a good bond with ribbed bars, because the actual failure mode is column flexural failure at a shear
column value, Vc = 66.79 kN.
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Figure 10. Parametric analysis: tensile force, F4, in beam bars and its threshold with
variability of longitudinal beam reinforcement.

Compared to counterpart case ID2 (differing only for beam height), the increase of joint panel
dimensions increases the failure load. Conversely, if smooth bars where used, the predicted failure mode
of the system would have occurred due to bond failure at a very low shear column value, Vc = 12.62 kN.
This leads one to conclude that bond capacity has a meaningful effect on beam-column joint strength.

5. Model Validation

Theoretical predictions of the proposed simplified model were also compared to some experimental
tests available in the literature (Hakuto et al. [22], Prota et al. [23] and Zaid et al. [24]) to validate
the proposed theoretical model. Following, some beam-column joint specimens will be discussed in
detail showing the entire table of “potential” failure modes. Actual failure load is the smallest of the
potential failure modes. Discussion of the results considers two limit bond performances: maximum and
minimum (due to smooth bars) bond conditions. This approach allows one not only to better understand
the strength hierarchy, but also to calibrate strengthening design.

The basic idea is to avoid all undesired failure modes (e.g., brittle shear failure of joint, but also of
beams and columns) to push failure mode to more desirable ductile beam flexural failure. Once the
desired failure mode is selected, than all failure mode mechanisms presenting lower column shear values
should be improved and strengthening (on existing structures) or design improvements (in structures still
under design) can be calibrated to exceed the column shear, Vc corresponding to desired failure mode
(i.e., according to “capacity design” approach).

Six retrofit configurations have been implemented, and “applied” to literature experimental results.
In particular they have been supposed (as retrofit method): (a) one quadri-axial ply of FRP of thickness,
t = 0.1279 mm; (b) two quadri-axial plies of FRP of thickness, t = 0.2559 mm; (c) four quadri-axial plies
of FRP of thickness, t = 0.5116 mm; (d) one uni-axial horizontal ply of FRP of thickness, t = 0.333 mm;
(e) two stirrups (two legs) of diameter 12 mm; and (f) four stirrups (two legs) of diameter 12 mm,
simulated into the model by appropriate values of F9 and F10.

In all the cases FRP has a Young’s Modulus of 230 GPa and is assumed to debond at 0.4%. Table 4
shows concrete characteristics and beam and column longitudinal and transversal reinforcements for all
considered specimens of experimental tests available in scientific literature.
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Table 4. Geometrical and mechanical properties of specimens of experimental programs.

Specimen
ID Number

Concrete
characteristics

Concrete section Concrete cover
Beam Column Stirrups

Upper side Lower side Upper side Lower side Beam Column

Nc f ck Beam Column Beam Column
Bar

diameter
A’s,b fy

Bar
diameter

As,b fy
Bar

diameter
A’s,c fy

Bar
diameter

As,c fy
legs,

diameter
fy

legs,
diameter

fy

kN MPa cm2 cm2 mm mm mm cm2 MPa mm cm2 MPa mm cm2 MPa mm cm2 MPa N˝ , mm MPa N˝ , mm MPa

Hakuto et al. [22]
Unit 5 0 33 50ˆ 30 46ˆ 46 36 40 32 16.08 306 32 16.08 306 28 18.46 321 28 18.46 321

2, 12
398 2, 12 398

Unit 1 0 41 50ˆ 30 46ˆ 30 40 40 24 9.04 325 24 18.09 325 24 13.56 325 24 13.56 325 399 4, 12 399
Prota et al. [23]

L1 124.5 38.6

35.5ˆ 20 20ˆ 20 38 38 22 11.40 599 18 5.08 511 16 8.04 449 16 8.04 449 2, 12 398 2, 12 398
H1 249.0 31.7
L2 124.5 39.8
H2 249.0 36.5

Zaid et al. [24]
1 100 28 30ˆ 20 30ˆ 30 35 35 16 10.05 470 16 10.05 470 19 11.34 450 19 11.34 450 1, 6 390 1, 6 390
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However more details about experimental programs and results can be found in relevant cited
publications. Table 5 shows results obtained by the resolution of the experimental configuration model
(for each experimental program and each specimen).

The validation is proposed in Table 6 where the agreement between experimental outcomes and model
predictions (both in terms of failure modes and column shear capacity) is usually satisfactory and on the
safe side.

Table 5. Theoretical prediction of capacities for each potential failure modes of specimens
of experimental programs.

Column shear
at failure

Experimental program
Hakuto et al. [22] Prota et al. [23] Zaid et al. [24]
Unit 05 Unit 01 L1 H1 L2 H2 Specimen 3

Vc1 (kN) 170.50 94.32 63.20 62.43 63.29 62.95 171.26

Vc2 (kN) 197.57 131.17 32.50 36.73 33.82 40.67 228.73

Vc3 (kN) 299.21 248.54 32.57 434.84 501.26 475.32 446.75

Vc4 (kN) 739.40 629.79 128.76 128.76 247.56 244.56 328.58

Vc5 (kN) 130.19 76.03 35.90 32.26 33.31 32.94 121.52
Vc6 (kN) 163.44 121.55 53.07 54.34 49.49 57.20 128.33

Vc8 (kN) 192.62 187.06 30.19 26.93 30.58 29.14 129.80

Vc9 (kN) 111.22 99.95 15.93 14.30 16.12 15.41 90.91

Vc10 (kN) 29.22 25.12 3.97 3.58 4.02 3.85 36.01

Vc11 (kN) 250.39 400.84 79.73 64.97 81.58 74.81 132.87

Bold numbers indicate failure considering maximum bond. Italic numbers indicate failure considering
minimum bond.

Table 6. General validation of model by means of comparison of experimental outcomes
and simplified model predictions.

Reference and
Specimen ID

Experimental Theoretical
Difference %

Failure mode Vc (kN) Failure mode Vc (kN)

Hakuto et al. [22] O1 J 89.0 J 76.0 ´15%
Hakuto et al. [22] O5 BS 150.0 J 130.2 ´13%
Prota et al. [23] L1 CF 32.7 CF 32.5 ´1%
Prota et al. [23] H1 CF 37.7 J 32.3 ´14%
Prota et al. [23] L2 CF 31.6 CF 33.3 5%
Prota et al. [23] H2 J 38.4 J 32.9 ´14%
Zaid et al. [24] S3 J 130.0 J 121.5 ´6%

(J) is joint failure due to beam tensile reinforcement yielding; (CF) is column flexural failure; (BS) is beam
shear failure.
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5.1. Simulation of Experimental Tests in Research from Hakuto et al.

Both specimens tested by Hakuto et al. [22], have a failure mode due to yielding of bars of the beam,
with a value of Vc5 equal to 130.20 kN and 76.03 kN, for Unit 5 and Unit 1 (considering maximum
bond), respectively. The proposed model satisfactorily underestimates the actual capacity of the tested
joint. By applying the retrofit methods (a) to (d) at Unit 5, the failure mode does not change (both in
case of minimum or maximum bond); instead, applying methods (e) and (f), the failure mode in case
of maximum bond, moves from yielding of bars of column to yielding of bars of column, but not one
of the considered retrofits provides a ductile failure mode. Unit 1 has a different behavior. Considering
the maximum bond case, by applying the retrofit methods (a) and (b) failure does not change. In case of
maximum bond, retrofit methods (c) to (f) allow to move to a failure mode due to bending moment of
the beam (the most desirable one) applying three plies of FRP (t = 0.33 mm), so the joint is upgradable.
Results of the specimen named Unit 1 are shown in Table 7.

Table 7. General validation of model by means of comparison of experimental outcomes
and simplified model predictions.

Column shear at
failure

Hakuto et al.—Unit 01
No retrofit 1 ply (a) 2 plies (b) 4 plies (c) 1 Uni-axial ply (d) 2 Stirrups (e) 4 Stirrups (f)

Vc1 (kN) 94.32 94.32 94.32 94.32 94.32 94.32 94.32
Vc2 (kN) 131.17 131.17 131.17 131.17 131.17 131.17 131.17
Vc3 (kN) 248.54 248.54 248.54 248.54 248.54 248.54 248.54
Vc4 (kN) 629.79 629.79 629.79 629.79 629.79 629.79 629.79
Vc5 (kN) 76.03 83.26 90.41 104.51 94.69 112.91 147.80
Vc6 (kN) 121.55 128.38 135.14 148.41 121.56 121.56 121.56
Vc8 (kN) 187.06 193.05 198.97 210.57 202.50 217.45 245.72
Vc9 (kN) 99.95 106.94 113.85 127.46 117.98 135.56 169.16
Vc10 (kN) 25.12 32.83 40.46 55.52 45.03 64.50 101.97
Vc11 (kN) 400.84 400.84 400.84 400.84 400.84 400.84 400.84

Bold numbers indicate failure considering maximum bond. Italic numbers indicate failure considering
minimum bond.

5.2. Simulation of Experimental Tests in Research from Prota et al.

In this paper [23], four specimens of a wider experimental program on perimetric joints have been
considered, namely H1, L1, L2, and H2. For all of them, column length, Lc, is 264 cm, beam length,
Lb, is 305 cm, distance between reinforcement layers in the column, h*

c = 12.4 cm, distance between
reinforcement layers in the beam, h*

b = 27.9 cm, and concrete cover of beam and column is 4 cm.
The specimen named L1 does not present external FRP reinforcement. Considering the case of

maximum bond the failure mode can be changed by applying one ply of uni-axial FRP (t = 0.13 mm)
from bond failure to the bending moment of the column. Similar results can be obtained in cases of
medium or minimum bond, increasing the number of FRP plies or the number of stirrups. In any case,
the retrofit yields to a failure due to the bending moment of the column. Nevertheless, to avoid this kind
of joint failure, column bending capacity needs to be improved, but this kind of retrofit is out of the scope
of present paper. Results are shown in Table 8.

Concrete strength of specimen H1 (31.70 MPa) and H2 (36.50 MPa) is lower than previous
cases (specimen L1 f c = 38.60 MPa), so it is more difficult to obtain every desirable failure mode.
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Considering maximum bond, the failure mode moves to flexural column failure by application of retrofit
named (f) in both cases, even if Vc values of specimen H2 are higher than values of specimen H1.
Furthermore, the reduced concrete strength reduces the possibilities of FRP retrofit since the concrete
strut crushing (i.e., Vc11) could occur at column shear close to the desired flexural failure of beams (i.e.,
Vc1). All potential failure modes and relevant column shears are reported in Tables 9 and 10.

Specimen L2 presents results comparable with specimen L1.

Table 8. Theoretical prediction of capacities for each potential failure modes of different
retrofit solutions for specimens “L1” (Prota et al.).

Column shear
at failure

Prota et al.—L1
No retrofit 1 ply (a) 2 plies (b) 4 plies (c) 1 uni-axial ply (d) 2 Stirrups (e) 4 Stirrups (f)

Vc1 (kN) 63.20 63.20 63.20 63.20 63.20 63.20 63.20
Vc2 (kN) 32.57 32.57 32.57 32.57 32.57 32.57 32.57
Vc3 (kN) 494.32 494.32 494.32 494.32 494.32 494.32 494.32
Vc4 (kN) 128.76 128.76 128.76 128.76 128.76 128.76 128.76
Vc5 (kN) 35.90 38.15 40.33 44.53 41.62 43.25 49.96
Vc6 (kN) 53.07 54.78 56.45 59.62 53.06 53.07 53.07
Vc8 (kN) 30.19 32.57 34.89 39.36 36.26 38.00 45.18
Vc9 (kN) 15.93 18.61 21.24 26.33 22.79 24.78 33.00
Vc10 (kN) 3.97 6.88 9.73 15.28 11.42 13.59 22.59
Vc11 (kN) 79.73 79.73 79.73 79.73 79.73 79.73 79.73

Bold numbers indicate failure considering maximum bond. Italic numbers indicate failure considering
minimum bond.

Table 9. Theoretical prediction of capacities for each potential failure modes of different
retrofit solutions for specimens “H1” (Prota et al.).

Column shear
at failure

Prota et al.—H1
No retrofit 1 ply (a) 2 plies (b) 4 plies (c) 1 uni-axial ply (d) 2 Stirrups (e) 4 Stirrups (f)

Vc1 (kN) 62.43 62.43 62.43 62.43 62.43 62.43 62.43
Vc2 (kN) 36.73 36.73 36.73 36.73 36.73 36.73 36.73
Vc3 (kN) 434.84 434.84 434.84 434.84 434.84 434.84 434.84
Vc4 (kN) 128.76 128.76 128.76 128.76 128.76 128.76 128.76
Vc5 (kN) 32.26 34.40 36.47 40.41 37.69 39.22 45.39
Vc6 (kN) 54.34 55.54 56.68 58.75 54.32 54.34 54.34
Vc8 (kN) 26.93 29.23 31.47 35.73 32.78 34.44 41.17
Vc9 (kN) 14.30 16.94 19.52 24.47 21.04 22.96 30.86
Vc10 (kN) 3.58 6.47 9.30 14.76 10.97 13.10 21.87
Vc11 (kN) 64.97 64.97 64.97 64.97 64.97 64.97 64.97

Bold numbers indicate failure considering maximum bond. Italic numbers indicate failure considering
minimum bond.
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Table 10. Theoretical prediction of capacities for each potential failure modes of different
retrofit solutions for specimens “H2” (Prota et al.).

Column shear
at failure

Prota et al.—H2
No retrofit 1 ply (a) 2 plies (b) 4 plies (c) 1 uni-axial ply (d) 2 Stirrups (e) 4 Stirrups (f)

Vc1 (kN) 62.95 62.95 62.95 62.95 62.95 62.95 62.95
Vc2 (kN) 40.67 40.67 40.67 40.67 40.67 40.67 40.67
Vc3 (kN) 475.32 475.32 475.32 475.32 475.32 475.32 475.32
Vc4 (kN) 244.56 244.56 244.56 244.56 244.56 244.56 244.56
Vc5 (kN) 32.94 35.20 37.40 41.61 38.69 40.34 47.05
Vc6 (kN) 57.20 58.64 60.03 62.64 57.18 57.20 57.20
Vc8 (kN) 29.14 31.50 33.79 38.20 35.15 36.86 43.91
Vc9 (kN) 15.41 18.08 20.69 25.73 22.23 24.20 32.32
Vc10 (kN) 3.85 6.75 9.59 15.11 11.28 13.43 22.37
Vc11 (kN) 74.81 74.81 74.81 74.81 74.81 74.81 74.81

Bold numbers indicate failure considering maximum bond. Italic numbers indicate failure considering
minimum bond.

5.3. Simulation of Experimental Tests in Research from Zaid et al.

In this case [24], column length, Lc, is 147 cm, beam length, Lb, is 270 cm, distance between
reinforcements layer in the column, h*

c = 23 cm, distance between reinforcements layer in the beam,
h*

b = 23 cm, concrete cover of beam and column is 3.5 cm and concrete contact force inclination is equal
to ϑ = 0.785 rad.

Results obtained by applying retrofits (a) to (f), and not reported here for brevity, show that it is not
possible to move from the joint failure mode due to yielding of bars of beam by retrofitting the joint
only with the considered retrofit configurations. In this case the reinforcement ratio of the beams is high;
hence the flexural capacity is relatively high to move to the desired ductile flexural beam failure.

6. Concluding Remarks

The beam-column joints behavior can strongly influence the seismic performance of RC buildings.
A simplified analytical/mechanical model of joint behavior is discussed and theoretical simulations are
performed in order to fully understand the mechanical behavior and the failure modes. Compared to
previous models and theories the proposed one does not require FEM or complex nonlinear numerical
analyses of the structure or sub-assemblage and does not require the calibration of empirical factors to
account for the many parameters affecting joint seismic response and outlined in the paper.

The model moves from a previous one, but it improves and alters deeply the main unknowns,
assumptions, and solutions. Among the main parameters affecting the performance of joints, namely
material property, joint panel geometry, reinforcement in joint panel, column axial load, and
reinforcement bond condition; axial load on columns showed negligible influence, while meaningful
influence was given by bond performance. Similarly, joint (transverse) reinforcement, either external
FRP or internal stirrups, provides many benefits pushing failure mode from brittle joint shear to ductile
beam flexural.

The identification of the failure mode establishes if and how it is possible to change and improve
the hierarchy of the failure modes to switch a brittle failure mode into ductile failure modes, even
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if some mechanisms are independent from the reinforcement inserted into the joint, and should be
treated independently.

Once the desired failure mode is selected, than all failure mode mechanisms presenting lower column
shear values should be improved and strengthening (on existing structures) or design improvements
(in structures still under design) can be calibrated to exceed the column shear, Vc corresponding to
desired failure mode. Hence, the proposed tool fully fits the “capacity design” approach for strengthening
interventions design.

Notation List

Ak: Longitudinal reinforcement cross section; A’s,b: Section of bars of upper side of Beam;
As,b: Section of bars of lower side of Beam; A’s,c: Section of bars of upper side of Column; As,c: Section
of bars of lower side of Column; B: Depth of the joint; Bb: Depth of the section of the beam; Bc: Depth
of the section of the column; BF: Beam flexural failure; BS: Beam shear failure; c: The neutral axis;
C: Concrete contact force; D: Diameter; f c: Mean concrete compressive strength; f y: Longitudinal
reinforcement maximum stress; f y,k: Longitudinal reinforcement yielding stress; Fi: Force resultants;
h*

b: Distance between reinforcements layer in a beam; h*
c: Distance between reinforcements layer in a

column; Hb: Height of the section of the beam; Hc: Height of the section of the column; i: Longitudinal
reinforcement level; J: Joint failure; Lb: Length of beam; Lc: Length of column; Leb: Effective bond
length; Mb: Flexural moment of beam; Mc: Flexural moment of column; Nb: Axial load on beam;
Nc: Axial load on column; n: Number of longitudinal bars; R2: Effective bond length; Si: Reinforcement
forces; Ti: Steel bars’ resultant force; t: Thickness of FRP ply; Vb: Shear beam; Vc: Shear column;
α: Lc/Lb ratio; θ: Diagonal of the joint panel inclination; ϑ: Concrete contact force inclination;
σc: Compressive stress of concrete; τ: Uniform bond stress capacity; τmax: Maximum bond capacity;
τmed: Medium bond capacity; τmin: Minimum bond capacity; Φk: Longitudinal reinforcement diameter.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix

In this appendix a numerical worked example is proposed analyzing the experimental test S3 by
Zaid et al., [24]. The main system of Equations (1) to (5) is solved adopting as input the geometrical
parameters and material characteristics reported in the last line of Table 4 for the relevant experimental
S3 data of Zaid et al., [24]. F9 = 88.22 kN is the capacity of the 4 stirrups (2 legs D6) in the joint. In
this way it is possible to calculate the main five unknowns Fi(Vc) [N], with i equal to 1 to 4 and diagonal
contact force C(Vc) [N].

F1 “ 0.5ˆ 91, 908` Vc (1A)

F2 “ 5.56ˆ 10´ 3
ˆ p9, 000, 000` 49 ¨ Vcq (2A)

F3 “ 1.41ˆ 10´ 27 ˆ p4.20ˆ 1032 ´ 9.80ˆ 1011 ˆ
a

2.16ˆ 1041 ´ 1.63ˆ 1036 ¨ Vc ` 1.92ˆ 1026 ¨ Vcq (3A)

F4 “ 8.38ˆ 10´ 25 ˆ p7.13ˆ 1029 ´ 1.65ˆ 109 ˆ
a

2.16ˆ 1041 ´ 1.63ˆ 1036 ¨ Vc ` 5.97ˆ 1023 ¨ Vcq (4A)
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C “ 1.38ˆ 10´ 15
ˆ p6.58ˆ 1020

´ 1.41ˆ
a

2.16ˆ 1041 ´ 1.63ˆ 1036 ¨ Vcq (5A)

Previous equations trace the evolution of forces in the joint as function of column shear, Vc, hence it
is possible to evaluate the relevant Vc,i triggering each considered failure mode. In particular, looking at
the joint failure, column shear corresponding to the yielding failure of bars in tension into the beam or
column, at the upper or lower side, can be evaluated by equating F4 to minimum yielding force of beam
reinforcement and F3 to minimum yielding force of column reinforcement, respectively.

Such yielding forces of bars have to be calculated in advance. Since the reinforcement is symmetric,
the minimum yielding force is simply evaluated by accounting for 5D16 (Asb = 1004.8 mm2) in the beam
and 4D19 (Asc = 1133.54 mm2) in the column, so that yielding forces are:

Fmax,4 “ Abeam
s ¨ fy “ 1004.8ˆ 470 “ 472, 256 N (6A)

Fmax,3 “ Acolumn
s ¨ fy “ 1133.54ˆ 450 “ 510, 093 N (7A)

Hence the column shear corresponding to the failure due to the yielding of bars in beam, Vc5 is equal
to 121.73 kN and the column shear corresponding to the failure due to the yielding of bars in column,
Vc6 is equal to 128.33 kN, as it can be found in Table 5.

To evaluate the column shear leading to the failure due to reinforcement debonding, the bond capacity
should be calculated. The bond capacity can be calculated as Fbond:

F4 ` S1 “ Fbond “ n ¨ π ¨ Φ ¨ Leb ¨ τ (8A)

where n is the number of longitudinal bars, Φ is bar diameter, Leb is the effective bond length and τ is the
uniform bond stress capacity. Three conditions of bond have been considered. The case of maximum,
medium and minimum bond capacities, namely τmax = 13.23 MPa, τmed = 6.61 MPa and τmin = 1.59 MPa,
calculated according model Code 1990 [20]. Hence Fbondmax, Fbondmed, Fbondmin are evaluated substituting
the values of τmax, τmed and τmin into the Equation (8A):

Fbondmax “ 5π ˆ 16ˆ 230ˆ 13.23 “ 764.31 kN (8Aa)

Fbondmed “ 5π ˆ 16ˆ 230ˆ 6.61 “ 382.15 kN (8Ab)

Fbondmin “ 5π ˆ 16ˆ 230ˆ 1.59 “ 91.72 kN (8Ac)

To evaluate bond demand F4 + S1 as a function of column shear Vc, the bar force in compression,
S1, is extracted from the global compression force F1, as previously described. The whole section is
assumed in the elastic range, hence it is possible to assess the neutral axis, c, by considering the static
moment of the cracked section equal to zero (see Equation (11)). Compression force S1 is evaluated
according to Equation (12) as:

S1 “ 2.92ˆ 10´ 25 ˆ p7.13ˆ 1029 ´ 1.65ˆ 109 ˆ
a

2.16ˆ 1041 ´ 1.63ˆ 1036 ¨ Vc ` 5.97ˆ 1023 ¨ Vcq (9A)

where neutral axis, c, is equal to 47 mm. In this way, equating the bond demand to the bond capacity
previously evaluated in the three bond conditions, it is possible to evaluate the column shears Vc8, Vc9

and Vc10, respectively, as reported in Table 5 for the relevant simulation case.
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Similarly Vc11 corresponding to joint failure due to crushing of concrete strut is evaluated by equating
C to Cmax = 1,188 kN, in this case (see Equation (9)).

It is now possible to evaluate failure modes due to bending and shear failures of beam and column.
According to technical theory of flexure and shear capacity at ultimate state of RC beams and columns
(e.g., in this case according to Italian practice [19]), the relevant values can be expressed as functions
of the column shear (see Equations (6)–(8)). In the present case, relevant capacities are: beam flexural,
Mb = 142.50 kNm, column flexural, Mc = 90.19 kNm, beam shear, Vb = 423.23 kN and column shear,
Vc = 328.58 kN, directly equal to Vc4. These values yield to column shears Vc1 to Vc4, respectively
(Table 5). Due to changes of sign of fibers in tension and compression, the capacities are those minimum,
hence evaluated accounting for the minimum reinforcement (in this case reinforcement is symmetric).

To identify the actual failure mode, the lowest column shear identifies the failure, and in this case (in
good bond conditions) it is Vc5, hence a joint failure mode with yielding of bars in tension in the beam
(Vc = 121.5 kN as reported in Table 6, slightly underestimating the experimental capacity, that is 130 kN,
with the same reported joint failure mode).

As a concluding remark, to design a retrofit intervention, failure mode should be moved to
beam flexural failure, hence joint should be improved to avoid a joint failure for a Vc smaller than
Vc1 = 171.3 kN (see Table 5). In any cases, having a clear summary of the column shears activating
different failure modes for a beam column joint, it is possible to design a proper and effective retrofit
intervention according to capacity design approach.
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