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An increasing number of practical applications of three-dimensional microwave imaging require accurate and efficient inversion
techniques. In this context, a full-wave 3D inverse-scattering method, aimed at characterizing dielectric targets, is described in
this paper. In particular, the inversion approach has a Newton-based structure, in which the internal linear solver is a conjugate
gradient-like algorithm in lp spaces. The presented results, which include the inversion of both numerical and experimental
scattered-field data obtained in the presence of homogeneous and inhomogeneous targets, validate the reconstruction
capabilities of the proposed technique.

1. Introduction

The possibility of obtaining a point-by-point characteriza-
tion of dielectric structures from noninvasive measurements
of the scattered electromagnetic field has attracted the atten-
tion of scientists and researchers for decades [1–10]. Basi-
cally, the quantitative retrieval of the dielectric properties of
a structure under test from scattered-field data is associated
with the solution of an inverse problem [3], which is nonlin-
ear (if no simplifying model approximations are made) and
typically ill-posed. Several two- and three-dimensional
approaches have been devised in the past years for the
numerical solution of such a problem. Under the two-
dimensional approximation, which assumes a particular
form of the electromagnetic field (e.g., transverse-magnetic)
and that the targets are invariant along one axis, the problem
at hand can be significantly simplified [3]. Based on this 2D
assumption, many inverse scattering techniques have been
proposed [11–16] and subsequently exploited in experimen-
tal systems [17–19]. Among them, the family of the so-
called Newton-based deterministic methods appears really

valuable in the reconstruction process, providing accurate
characterization results. The common aspect of such itera-
tive techniques is that the original nonlinear problem is
firstly linearized around the current solution estimate and
then approximately solved by means of a linear regulariza-
tion method. For their attractive features, Newton-based
techniques have been chosen and specialized for different
applications, ranging from the detection of buried objects
[20, 21] and the imaging of civil structures and wood [19]
to the biomedical uses for breast imaging [22, 23] and brain
stroke detection [24].

Clearly, the development of both measurement systems
and reconstruction techniques useful to address the full
three-dimensional electromagnetic problem is more chal-
lenging. First of all, it is necessary to develop effective mea-
surement systems able to acquire the needed field samples.
In this framework, different setups have been proposed in
the literature [25–28]. Secondly, the development of 3D
imaging techniques should be guided by a responsible use
of computational resources, a problem which unfortunately
does not disappear even with the enormous increase in the
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computer power nowadays available. However, thanks to
the relevant advances carried out by several research
groups all around the world, the practical 3D imaging of
complex structures does not seem an unreachable goal
anymore [29–33].

Along with satisfying and encouraging results, the devel-
opment of microwave imaging methods opens a series of
theoretical and computational issues that have been only
partially addressed. In particular, from a theoretical perspec-
tive, a critical point of the most deterministic approaches is
the need for a priori information, which is sometimes cru-
cial for a successful inversion with complex configurations
[34, 35]. Another key issue is the accuracy of the provided
solution, frequently affected by ringing phenomena and
oversmoothing effects when the reconstruction procedure
is formulated in the standard mathematical framework, that
is, in the framework of Hilbert spaces. In order to overcome
the latter problem, compressive sensing and sparsity-
promoting techniques [36–39], as well as Banach space for-
mulations, have been proposed, the last with both Landwe-
ber- [40, 41] and conjugate gradient-based inner solvers
[42]. As regards Banach space methods and in particular
lp space approaches, the lack of a dot product inducing a
complete space for p ≠ 2 does not allow to use spectral tools
such as the singular value decomposition, and therefore,
much more involving convex analysis tools need to be used
to characterize the inversion procedures. Anyway, despite
such difficulties, the conjugate gradient (CG) method has
been extensively analysed in the framework of minimization
into lp spaces, and its convergence and regularization prop-
erties have been recently proven [43]. We highlight that the
generalization of the CG method to lp spaces is nontrivial,
by both a theoretical and a practical point of view. The main
difficulty of applying the CG method to lp spaces is that, dif-
fering from the Hilbertian l2 case, an explicit formula for
computing the step size does not exist. The reason of this
difference is that the derivative of the l2 cost function for
the computation of its stationary points leads to a linear
operator, so that we can explicitly compute its solutions.
Conversely, the derivative of the lp cost function leads to a
nonlinear operator, and an explicit and closed-form formula
for its solution does not exist. On this ground, the computa-
tion of the optimal step size unfortunately requires a one-
dimensional iterative minimization procedure in the lp case.
On the other hand, the CG method usually provides a faster
convergence speed, especially when compared with the basic
Landweber one.

Despite the increased complexity of the lp space
approaches, the obtained results in both 2D [41, 42] and
3D configurations [44] are promising. So far, only the Land-
weber solver has been extensively validated for the use
inside lp space inexact Newton techniques, but its conver-
gence speed sometimes appears very low, leading to a con-
siderable number of required iterations of the method.
Such a behaviour may be problematic, especially in the 3D
case where the computational cost for each iteration is quite
significant. Consequently, in this paper, the Newton con-
jugate gradient approach, which has been found to pro-
vide a higher convergence rate in 2D microwave imaging

applications [42], is extended for the first time to deal with
three-dimensional configurations.

This paper has the following structure: the next section
provides the basic mathematical background useful for
understanding the proposed Newton-CG inversion method
in lp spaces. The subsequent sections report a simulated
and experimental validation campaign aimed at testing the
inversion strategy in different operating conditions. Finally,
conclusions are outlined, as well as some future goals.

2. Mathematical Formulation

In the considered microwave imaging problem, an unknown
target is located in an investigation volume V inv of known
geometry, as schematically shown in Figure 1. The back-
ground medium is characterized by a complex dielectric per-
mittivity ϵb. The inspected scenario is illuminated by a set of

known time-harmonic incident electric fields E v
i r , where

r denotes the position vector and v the index of the consid-
ered illumination. The term ejωt , ω being the angular fre-
quency, is omitted in the following. The total electric field

E v
t r , resulting from the interactions between the incident

field and the object, is measured in a given observation

domain D
v
obs, which surrounds the investigation volume.

As it is well known, the scattered electric field E v
s r =

E v
t r − E v

i r can be expressed in terms of the space-
dependent dielectric properties in V inv by means of the fol-
lowing integral relationship (data equation):

E v
s r = −k2b

V inv

c r′ E v
t r′ ·Gb r, r′ dr′, r ∈D v

obs,

1

where kb = ω ϵbμ0 is the wavenumber in the background
medium (assumed to be nonmagnetic, i.e., characterized by
magnetic permeability equal to the one of the vacuum, μ0),

Gb r, r′ = I + k−2b ∇∇ gb r, r′ is the dyadic Green’s func-

tion for free space [45], with gb r, r′ = −e−jkb r−r′ / 4π r −
r′ being the three-dimensional scalar Green’s function
and I being the dyadic identity, and c is the contrast func-
tion defined as

c r = ϵ r
ϵb

− 1 2

A similar relationship holds true for the total electric
field inside the investigation volume (state equation), i.e.,

E v
i r = E v

t r + k2b
V inv

c r′ E v
t r′

·Gb r, r′ dr′, r ∈ V inv

3

In order to numerically solve the scattering problem,
equations (1) and (3) are discretized by using the method
of moments with pulse basis functions and Dirac’s delta
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testing functions [46]. In particular, the investigation
domain is subdivided into N nonoverlapping cubic subdo-
mains with center rinvn , n = 1,… ,N , and side d, whereas the
field is sampled, for every view, in M points robsm , m = 1,… ,
M. In this way, the following discrete equations (correspond-
ing to (1) and (3), respectively) are obtained:

e v
s = G v

obsdiag3 c e v
t ,

e v
i = I − G invdiag3 c e v

t ,
4

where the involved numerical arrays are defined as follows:

c = c rinv1 ,… , c rinvN
t , 5

e v
s = E v

s,x robs1 ,… , E v
s,x robsM , E v

s,y robs1 ,… ,

E v
s,y robsM , E v

s,z robs1 ,… , E v
s,z robsM

t

,
6

e v
i = E v

i,x rinv1 ,… , E v
i,x rinvN , E v

i,y rinv1 ,… ,

E v
i,y rinvN , E v

i,z rinv1 ,… , E v
i,z rinvN

t

,
7

e v
t = E v

t,x rinv1 ,… , E v
t,x rinvN , E v

t,y rinv1 ,… ,

E v
t,y rinvN , E v

t,z rinv1 ,… , E v
t,z rinvN

t
8

In (6)–(8) the subscripts x/y/z denote the components,
with respect to a rectangular coordinate system, of the corre-
sponding electric field vector. Moreover, in (4), the matrices

G v
obs and G inv contain the contributions of the integrals

of the Green’s dyadic function over the subdomains [3],
which are analytically computed by using the relationship
in [47], whereas I denotes the identity matrix. Finally, the
diag3 function is defined as

diag3 c =
diag c 0 0

0 diag c 0
0 0 diag c

, 9

where 0 is a null matrix of dimension N ×N and diag c
transforms the numerical array c in a diagonal matrix whose
diagonal elements are the values contained in c .

The discretized data and state equations in (4) are com-
bined together to obtain the following nonlinear relationship:

e v
s = G v

obsdiag3 c I − G invdiag3 c −1e v
i 10

Moreover, in order to exploit the information of the
considered multiview setup, the numerical arrays for each
illumination are stacked as follows:

es =

e 1
s

…

e V
s

=

G 1
obsdiag3 c I − G invdiag3 c −1e 1

i

…

G V
obs diag3 c I − G invdiag3 c −1e V

i

= F c ,
11

where F is the discrete multiview operator that describes
the mapping between the contrast function values c and
the measured samples of the scattered electric field es.

In this paper, (11) is inverted by using a Newton scheme
[40, 48] with a CG inner loop performing a regularization in
the framework of the discrete lp spaces [43]. In particular, the
unknown discrete numerical array c is assumed to belong to
the discrete Banach space C = lp ℂN , whereas the data
array es belongs to the linear space E = lp ℂ3MV . The
developed inversion procedure is schematized in Figure 2.
Fundamentally, the algorithm is based on two nested loops.
The outer one iteratively performs a linearization of (11)
around the current estimate of the discrete distribution of
dielectric properties described by the array cu (the subscript

x

y

Measurement
points

𝕍inv

z

i 𝔻obs
(v)(v)

Target

Figure 1: Schematic representation of the considered imaging
configuration.
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u denotes the outer iteration index). This loop is initialized
with a starting guess c0, which may incorporate the eventu-
ally available a priori information about the target. If such
information is not available, a void volume is assumed,
i.e., c0 = 0 The linearization is performed by computing
a first-order Taylor expansion of the discrete operator F
that involves the calculation of the Jacobian matrix Fu′
at cu, which, for the 3D microwave imaging problem at
hand, is defined as [3]

Fu′ =

G 1
obs,udiag3 e

1
t,u

⋮

G V
obs,udiag3 e

V

t,u

, 12

where G v
obs,u and e v

t,u are matrices and arrays containing
the contributions of the integrals of the inhomogeneous
dyadic Green’s function and of the internal total electric
field due to the dielectric distribution described by cu.
Such quantities are obtained as [3]

G v
obs,u = G v

obs I − diag3 cu G inv

−1
,

e v
t,u = I − G invdiag3 cu

−1
e v
i ,

13

and are efficiently computed by using the BiCGSTAB-FFT
method [49].

The inner loop is used to solve the linearized equation,
and it is based on a CG-like scheme performing a regulariza-
tion in the framework of the discrete lp Banach spaces [50].
Such inversion procedure has been firstly proposed for
microwave imaging of 2D structures in [42], and it is
extended for the first time to 3D settings in this paper. The
main advantage of the regularization in the more general
Banach spaces is that they allow, for 1 < p < 2, to reduce the
oversmoothing and ringing effects that are usually associated
to the conventional reconstructions in l2 Hilbert spaces [40,
44]. The key point for extending the standard CG inversion
scheme to Banach spaces is represented by the duality maps
JC , JE , and JC∗ that are used in the update formulas in
Figure 2 [51]. In particular, for the considered lp Banach
space C , by virtue of the Asplund theorem, the duality map
JC is defined as

JC h = h 2−p
p

h1
p−1 sign h1

⋮

hN
p−1 sign hN

14

Analogous definitions hold for the duality map JE of data
spaceE and for the one of the dual space ofC , JC∗ (where the
Hölder conjugate of p, i.e., q = p/ p − 1 , is used instead of p)
[51]. Moreover, the parameters αk and βk are computed by
using the following relationships:

Initialize the iterative procedure with a
starting guess c0

Linearize (11) by means of a first-order
expansion obtaining the linear equation

Initialize the iterative procedure with

Update the search direction with

Update the current solution with

Convergence?

Find a regularized solution h

Update the contrast function with

Convergence?

Yes

End

No

No

CG loopIN loop

Yes

J𝒞 J𝒞

J

J

Figure 2: Flowchart of the developed lp Newton-CG inversion procedure.
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αk = arg min
α>0

Fu′ JC∗ JC hk + αp
k

− ru
2

p
, 15

βk =
Fu′

∗
JE Fu′ hk − ru

2

2

Fu′
∗
JE Fu′ hk−1 − ru

2

2

, 16

where Fu′
∗
denotes the Hermitian transpose of the Jacobian

matrix Fu′ and the minimization problem in (15) is solved
by using the secant method [52].

It is important to remark that the main difference with
respect to the approach presented in [44] is related to the
adoption of the CG inner solver in each Newton lineariza-
tion step instead of the basic Landweber algorithm. Such a
modification allows to exploit the faster convergence and
good regularization properties of the CG method, which
still hold in lp spaces [43]. However, with respect to the
Landweber algorithm, the extension to lp settings of the
classical CG algorithm poses additional difficulties, since
there is not any explicit formula for computing the optimal
step size αk (which exists in the standard l2 case). On this
ground, we choose to apply a 1D iterative minimization
approach based on the secant method to solve the optimiza-
tion problem in (15).

3. Numerical Results

An initial validation campaign of the proposed full-wave
inversion scheme has been carried out with simulated data.
In the considered configuration, the background medium is
vacuum (characterized by a dielectric permittivity ϵ0, mag-
netic permeability μ0, and wavenumber k0 = ω μ0ϵ0). The
working angular frequency is ω = 2πf , with f = 3 × 108 Hz.
The target is sequentially illuminated by V = 6θ-polarized
plane waves with unit amplitude, whose directions of propa-
gation are shown in Figure 3 (red arrows). For each view, the
total electric field is collected in M = 82 measurement points
uniformly distributed on a sphere of radius RDobs

= 2λ0,
λ0 = 1m being the wavelength in a free space (blue dots in
Figure 3). The number of measurement points has been cho-
sen slightly larger than the minimum value needed to cor-
rectly sample the field, as suggested by the degrees of
freedom theory [53]. Since the computational requirements
(memory and computational time) increase almost linearly
with the number of views, a limited number of illumination
directions have been instead adopted. However, this value
has been empirically found to be able to provide good results
for the considered configurations. The investigation volume
V inv is a cube of side LV inv

= λ0, which has been subdivided
into N = 8000 cubic voxels inside the inversion procedure.
The simulated data have been computed by using a custom
method-of-moment numerical code, in which V inv is parti-
tioned into Nfwd = 29791 cubic subdomains. A signal-to-
noise ratio SNR = 25 dB on the total electric field data has
been obtained by adding to the simulated values a white
Gaussian noise with a zero mean value.

The iterative loops of the inversion procedure have been
terminated when the relative variation of the data residual is
below the predefined thresholds 0.01 (for the outer loop) and
0.05 (for the inner loop) or when the maximum numbers of
iterations Umax = 20 and Kmax = 10 are reached in the outer
and inner loops, respectively. The accuracy of the dielectric
reconstructions has been evaluated by using the normalized
root mean squared error on the solution (einv), the average
relative errors on the contrast function of the target (et) and
of the background (eb), defined as

einv =
∑N

n=1 c rinvn − c rinvn
2

∑N
n=1 c rinvn

2
,

et/b =
1

Nt/b
〠
n∈It/b

c rinvn − c rinvn

c rinvn + 1 ,

17

where c rinvn is the reconstructed value of the contrast func-
tion in the nth subdomain in which the investigation vol-
ume V inv has been partitioned, c rinvn is the corresponding
actual value, It/b are the sets of indexes of the cells inside
the target and background regions, respectively, and Nt/b
are the corresponding numbers of contained cells. It is inter-
esting to note that the normalized root mean squared error
einv represents a good compromise between the errors on
the background and on the target. Such a trade-off is useful
for characterizing the optimal value of the norm parameter
p in several scenarios, although it does not have an immedi-
ate physical interpretation. Meanwhile, the average relative
errors et and eb allow to obtain a more practical measure

−2

2

0

2

2

0
0

x/λ0

y/λ0

z
/λ

0

−2
−2

Measurement points
Directions of propagation
of the incident waves

Figure 3: Measurement and illumination setup for the numerical
validation of the proposed 3D full-vector microwave imaging
procedure.
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of the error on the two subparts of the domain occupied by
the target and background.

3.1. Single Dielectric Sphere. First of all, the reconstruction
capabilities of the proposed approach have been assessed by
considering a single dielectric sphere centered at rc,1 = 0 1,
0 1,−0 1 λ0, characterized by a relative dielectric permittivity
ϵr = 2 5, and with radius a1 ∈ 0 15,0 3 λ0. The reconstructed
distributions of the relative dielectric permittivity obtained
for a1 = 0 3λ0 with lp space exponents p = popt = 1 6 and p =
2 (Hilbert space) are reported in Figure 4. The optimal value
popt of the parameter p has been selected on the basis of
the normalized mean squared error, which is shown in
Figure 5 versus p for different values of the sphere radius
a1. Considering both reconstructions and errors on the
solution, it is clear that the proposed lp space method is
able to outperform the classic Hilbert space approach for
p ∈ 1, 2 . Furthermore, the optimal value of p monotoni-
cally increases with the target size. For comparison pur-
poses, an inexact Newton approach with Landweber
iterations in lp spaces has been also applied to the present
case, with the same stopping criteria. The behaviours of
the normalized data residuals in the inner and outer loops
versus the iteration number are reported in Figure 6 for
both methods, with a1 = 0 3λ0 and for the optimal expo-
nent parameters (popt = 1 6 and popt = 1 3 for the CG-
and Landweber-based methods, respectively). A signifi-
cantly faster minimization of the residual, associated with
a lower number of both inner and outer iterations
required to meet the convergence criteria, is observed with
the proposed CG-based approach. Concerning the compu-
tational times, each CG iteration took in average about
4.5 s, whereas the Landweber one about 0.5 s (on a PC
equipped with an Intel® Core™ i5 CPU and 8GB of
RAM). The significantly larger time needed by the CG
method is mainly related to the solution of the minimiza-
tion problem in (15), which is solved by a secant method
in the present implementation. However, more advanced

line-search procedures can be adopted in order to reduce
the computational burden associated to the calculation of
the step size αk (such as the derivative-free one used in
[43]). Nevertheless, the overall Newton scheme combined
with the CG solver requires a lower number of outer steps
(5 in this case) to reach the final solution than a corre-
sponding method with the Landweber inner loop (for
which 9 iterations are needed).

The outer steps (which are the same in both methods)
are by far the most computational expensive, since at
every iteration it is necessary to update the Fréchet deriv-
ative and to compute the current estimate of the scattered
field. In the considered case, such operations took in aver-
age about 200 s. Consequently, the overall computational
time of the Newton scheme with the Landweber solver is
significantly larger than the one obtained by using the
CG method.
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Figure 4: Three-dimensional view of the reconstructed distribution of the dielectric permittivity with (a) p = popt = 1 6 and (b) p = 2. Single
dielectric sphere with a1 = 0 3λ0.
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Figure 5: Behaviour of einv versus the norm parameter p for
different values of the radius a1. Single dielectric sphere.
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3.2. Separate Scatterers with Different Properties. We con-
sider now the reconstruction of two separate dielectric
scatterers. The first target is a dielectric sphere centered
at rc,1 = 0 25,0 25,0 λ0, with radius a1 = 0 125λ0, and rela-
tive dielectric permittivity ϵr,1 ∈ 2, 5 . The second target is
a z-directed dielectric cylinder with circular cross section,
characterized by radius a2 = 0 125λ0, height h2 = 0 4λ0, cen-
ter rc,2 = −rc,1, and relative dielectric permittivity ϵr,2 = 2.
The reconstructed distributions of the relative dielectric per-
mittivity for ϵr,1 = 3 with popt = 1 2 and p = 2 (Hilbert space)
are reported in Figures 7 and 8, respectively. The targets are
visible in both cases, but the reconstruction obtained in the
lpopt space is more accurate and allows us to appreciate the
difference in the dielectric permittivity of the two objects.
The behaviour of einv , reported versus the parameter p in
Figure 9 for different values of ϵr,1, clearly indicates that the
overall best results are achieved with p ∈ 1 2,1 3 . The aver-
age relative errors on the target and background regions
and the numbers of performed Newton iterations Uopt, are
reported in Table 1 for p = popt and p = 2. It is worth noting
that an increase in the dielectric permittivity of the sphere
corresponds to a slight decrease in the reconstruction accu-
racy, accompanied with an increase in the number of
required Newton iterations.

However, in all cases, the proposed method gives the best
results. Similar to the previous section, an example of the
behaviours of the normalized data residuals is reported in
Figure 10. As can be seen, in this configuration, the number
of inner iterations is comparable, although the CG method
still requires a slightly lower number of steps in the first outer
iteration.

3.3. Inhomogeneous Targets with Different SNRs. To further
validate the approach, an inhomogeneous structure has been
considered. It consists of a z-directed circular dielectric cylin-
der with radius a1 = 0 2λ0, height h1 = 0 6λ0, and centered at
rc = 0 15,0 15,0 λ0. The lowest half of the cylinder is charac-
terized by a relative dielectric permittivity ϵr,l = 2, whereas
the upper one has ϵr,u = 3. In this case, we also consider a
variation in the signal-to-noise ratio SNR ∈ 5, 50 dB. The
normalized mean squared error einv and the values of
popt for each SNR are listed in Table 2, where the average
relative errors and number of performed outer iterations
Uopt are also reported. It can be seen that einv increases,
as expected, while Uopt decreases (i.e., less iterations are exe-
cuted) with a decrease of SNR. The reconstructed distribution
of the relative dielectric permittivity for SNR = 20 dB
(popt = 1 5) is shown in Figure 11. In the same figure, the

0.2

0.4

0.6

0.8

1

Re
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Figure 6: Behaviour of the normalized data residuals for the conjugate gradient-based (top, popt = 1 6) and Landweber-based (bottom,
popt = 1 3) methods versus the iteration number. Residuals in the outer inexact Newton (IN) iterations and in the inner conjugate gradient
(CG) and Landweber (LW) loops are reported. Single dielectric sphere with a1 = 0 3λ0.
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corresponding reconstruction obtained in Hilbert spaces is
reported, too. As highlighted by the errors in Table 2, the
advantages of using the lp space procedure are evident in
all the presented cases. Finally, the behaviours of the normal-
ized data residuals are shown in Figure 12 for SNR = 30 dB
and considering the optimal value of the parameter p (1.5
and 1.3 for the CG- and LW-based approaches, respectively).
In this case, too, the inner CG solver requires less iterations,
and also the overall Newton scheme stops earlier.

4. Experimental Results

Finally, the proposed approach has been tested against
experimental data. The dataset provided by the Institut
Fresnel [54] has been used, since it represents a standard
and well-accepted benchmark for testing inverse-scattering
procedures. In particular, the TwoSpheres and TwoCubes
targets have been considered. In this case, the operating fre-
quency is f = 3 × 109 Hz, and the measurement configura-
tion is composed of V = 25 sources on a sphere with
radius RDobs

= 1 796m, and M = 27 measurement points on
a circumference with the same radius. More details about
the experimental setup can be found in [54]. The investiga-
tion volume V inv is a cubic region with side LV inv

= 0 15m
centered at the origin, partitioned into N = 8000 voxels for

the inverse problem solution. The trends of the reconstruc-
tion errors versus the parameter p for both the considered
targets are shown in Figure 13, whereas the reconstructions
for p = popt and p = 2 are reported in Figures 14 and 15.
These results further confirm the capabilities of the CG-
based inexact Newton approach in lp spaces, with 1 < p < 2,
to accurately retrieve a quantitative reconstruction of the
scene under test, outperforming the standard method in
Hilbert spaces.

In particular, as shown in Figure 13, the background
error eb increases as p grows. Such a behaviour can be related
to the fact that low values of p usually enhance the sparsity of
the solution, by also reducing the ringing effects and artefacts
on the background (for which the values of the contrast func-
tion are zero) [40, 44]. On the contrary, the object is usually
better retrieved with higher values of p, although increasing
too much, such a parameter produces an oversmoothing of
the solution and thus a worse reconstruction of localized
objects. Consequently, the optimal value of p is a compro-
mise between these two opposite behaviours, and in several
cases, it depends upon the target size.

Finally, it is worth noticing that the reconstruction results
compare very well with the ones obtained by using the
Landweber-based procedure in [44]. In fact, the optimal
value of the norm parameter is about the same (considering

−0.5
−0.5−0.5

−0.25

−0.25−0.25
00

0

0.250.25

0.25

0.50.5

0.5

1

1.2

1.4

1.6

1.8

2

2.2

ε r

y / λ0 x / λ0
z

 / 
λ 0

−0.5
−0.250.25

00
0.250.25/ λ0 x / λ0

(a)

0.50.250−0.25−0.5
−0.5

−0.25

0

0.25

0.5

1

1.2

1.4

1.6

1.8

2

2.2

ε r

x / λ0

z
 / 

λ 0

(b)

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

1

1.2

1.4

1.6

1.8

2

2.2

ε r

y / λ0 

z
 / 

λ 0

(c)

Figure 7: Reconstructed distribution of the dielectric permittivity with p = popt = 1 2. (a) Three-dimensional view; (b) xz-plane cut
(y = −0 25λ0); and (c) yz-plane cut (x = 0 25λ0). Dielectric sphere with ϵr,1 = 3 and cylinder with ϵr,2 = 2.
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the same stopping criteria adopted for the CG procedure).
Moreover, the shape, positions, and dielectric properties of
the targets are correctly identified with the new approach,
too. The reconstruction errors for the optimal value of the

norm parameter popt are reported in Table 3. For comparison
purposes, the corresponding values obtained by using the
Landweber-based inversion procedure in [44] are also pro-
vided. As can be seen, the two approaches give rise to compa-
rable results, although the normalized root mean square
errors for the CG-based approach are slightly larger. Such a
difference can be ascribed to the small variations in the back-
ground error, which is however related to a large part of the
investigation domain. Nevertheless, the relative errors on
the reconstruction of the objects are equal or lower for the
CG-based approach. Moreover, as observed with simulated
data, a lower number of outer iterations are required to sat-
isfy the adopted stopping criteria.
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Figure 8: Reconstructed distribution of the dielectric permittivity with p = 2. (a) Three-dimensional view; (b) xz-plane cut (y = −0 25λ0); and
(c) yz-plane cut (x = 0 25λ0). Dielectric sphere with ϵr,1 = 3 and cylinder with ϵr,2 = 2.
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Table 1: Average relative errors (et/b) and number of outer
iterations Uopt versus ϵr,1 with p = popt and p = 2.

ϵr,1
lpopt l2 (Hilbert)

popt et eb Uopt et eb Uopt

2 1.2 0.20 0.04 3 0.35 0.07 3

3 1.2 0.28 0.04 3 0.39 0.10 2

4 1.3 0.31 0.05 3 0.40 0.10 2

5 1.2 0.31 0.06 5 0.42 0.11 3
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5. Conclusions

Amicrowave imaging approach for reconstructing the three-
dimensional distribution of the dielectric properties of
unknown targets has been presented in this paper. The devel-
oped approach is based on the use of a Newton scheme, in
which at each step the linearized problem is solved by using
a conjugate gradient-like algorithm performing a regulariza-
tion in the framework of the lp spaces. Such an approach, ini-
tially developed by the present authors for solving two-
dimensional inverse scattering problems, has been extended
for the first time to three-dimensional settings by taking into
account the full-vector nature of the measured samples of the
fields. The reported numerical and experimental results show
that the proposed inversion procedure is able to effectively
reconstruct the considered targets, by also providing less
oversmoothing and ringing effects compared to Hilbert
space regularization schemes. Moreover, with respect to
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(bottom, popt = 1 2) methods versus the iteration number.
Residuals in the outer inexact Newton (IN) iterations and in the
inner conjugate gradient (CG) and Landweber (LW) loops are
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Table 2: Optimal values of p, normalized mean squared error (einv),
average relative errors (et/b), and number of outer iterations Uopt
versus SNR with p = popt and p = 2.

SNR (dB)
lpopt l2 (Hilbert)

popt einv et eb Uopt einv et eb Uopt

50 1.8 0.54 0.22 0.09 6 0.54 0.22 0.11 6

40 1.7 0.54 0.23 0.09 7 0.56 0.22 0.13 8

30 1.5 0.53 0.23 0.08 4 0.59 0.22 0.14 4

20 1.5 0.62 0.26 0.13 4 0.71 0.26 0.18 4

10 1.6 0.88 0.41 0.18 3 0.90 0.42 0.20 3

5 1.1 1.02 0.58 0.02 1 1.06 0.37 0.32 3
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Figure 11: Reconstructed distribution of the dielectric permittivity
for the signal-to-noise ratio SNR = 20 dB. (a) popt = 1 5 and (b)
p = 2. Inhomogeneous cylinder.
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Figure 13: Behaviour of the reconstruction errors versus the norm parameter p. (a) TwoSpheres and (b) TwoCubes targets.
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previous approaches in which the inner loop was solved by
using a Landweber-type algorithm, the new method presents
a faster convergence.

However, a relevant remark should be devoted to the
selection of the optimal lp exponent value popt. From the
observed results, the choice of this parameter is critical for
obtaining reliable results, and the optimal value depends on
the problem and target configuration. No unequivocal rules
give general criteria for this selection, and therefore, the best
values have been selected here a posteriori, knowing the
actual configuration and evaluating an error metric. It has
been recently found that Lebesgue space approaches with
nonconstant exponents may be attractive in dealing with
such an issue [55]. However, so far, only 2D formulations
have been proposed. Therefore, the use of these nonconven-
tional spaces will be hopefully explored even in 3D settings as
a further development, based on the findings reported in the
present work.

Moreover, further developments will be also devoted to
the validation of the approach in more complex configura-
tions, where the wanted targets are embedded in different
background media or hosting objects (e.g., in biomedical
applications as well as in ground penetrating radar imaging).
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