
Automatic Synthesis of OSCI TLM-2.0 Models
into RTL Bus-based IPs

Nicola Bombieri, Franco Fummi, and Valerio Guarnieri
Department of Computer Science

University of Verona
{firstname.lastname}@univr.it

Abstract—Transaction-level modeling (TLM) is the most
promising technique to deal with the increasing complexity
of modern embedded systems. TLM provides designers with
high-level interfaces and communication protocols for abstract
modeling and efficient simulation of system platforms. The Open
SystemC Initiative (OSCI) has recently released the TLM-2.0
standard, to standardize the interface between component models
for bus-based systems. The TLM standard aims at facilitating
the interchange of models between suppliers and users, and thus
encouraging the use of virtual platforms for fast simulation prior
to the availability of register-transfer level (RTL) code. On the
other hand, because a TLM IP description does not include
the implementation details that must be added at the RTL, the
process to synthesize TLM designs into RTL implementations is
still manual, time spending and error prone. In this context, this
paper presents a methodology for automating the TLM-to-RTL
synthesis by applying the theory of high-level synthesis (HLS) to
TLM, and proposes a protocol synthesis technique based on the
extended finite state machine (EFSM) model for generating the
RTL IP interface compliant with any RTL bus-based protocol.

I. INTRODUCTION

TLM is nowadays the reference modeling style for design
and verification of modern system-on-chips (SoCs) at the
electronic system-level (ESL) [1]. TLM greatly speeds up the
design process by allowing designers to model and verify
complex systems at different abstraction levels above RTL
[2]. The design implementation at different abstraction levels
is essential to quickly evaluate system-level exploration for
architectural decisions, such as hardware and software design,
verification, memory organization, and power management.

There has been a longstanding discussion in the ESL
community concerning what is the most appropriate taxonomy
of abstraction levels in TLM. Models have been categorized
according to a range of criteria, including granularity of
time, frequency of model evaluation, functional abstraction,
communication abstraction, and use cases [2], [3], [4], [5],
[6]. In this context, the Open SystemC Initiative (OSCI) [7]
committee has been developing a reference standard for TLM
in the last years for guaranteeing the maximum interoperability
between suppliers and users. TLM-2.0 has become the final
reference standard for SystemC TLM [8].

Nevertheless, even though a TLM-based design flow relies
on such a standard, heavy manual intervention is required
as soon as a TLM IP description has to be synthesized into

This work has been partially supported by the European project COCONUT
FP7-2007-IST-1-217069.

clk

TLM IP model

TLM

interface

library

(e.g., OSCI)

I step : functionality

synthesis

…

System-level

functionality

Blocking untimed

Non-blocking timed

Non-blocking untimed

interface

RTL IP model

Cycle-accurate/

pin accurate

basic

I/O interface

Cycle-accurate

functionality

II step: transducer

implementationp

clk

RTL IP model

Cycle-accurate/

Pin accurate

basic

I/O interface

Cycle-accurate

functionality

Cycle-accurate/

Pin accurate

Bus-based

I/O

interface

Interface

transducer

Fig. 1. TLM-to-RTL refinement flow.

an equivalent RTL implementation. In fact, a TLM-to-RTL
refinement generally starts from a TLM IP model, where the
system level (and mostly untimed) functionality is provided
with a standard TLM interface (e.g., blocking, non-blocking,
timed, untimed) (see Figure 1). In the refinement step, the
TLM IP functionality is synthesized into a more accurate
(i.e., cycle accurate) RTL implementation, while the TLM
interface is replaced by a first cycle accurate and pin accurate
interface (that will be called basic interface hereafter). The
basic interface is generally composed of all the data I/O ports
and some control ports for implementing basic mechanisms
of handshaking (e.g., enabling input data, enabling result).
Then, targeting to integrate the RTL IP model into a bus-based
platform, designers extend the RTL IP implementation with an
interface compliant with the target bus interface (that will be
called bus-based interface hereafter), and with a transducer
for translating the bus-based interface into the basic protocol
interface and viceversa. Nowadays, the two synthesis steps,
from the TLM IPs to the RTL implementations, are manual,
time spending and error prone.

On the other hand, high-level synthesis (HLS) is considered

978-1-4244-7806-4/10/$26.00 ©2010 IEEE 105

the reference paradigm for automatically generating RTL
descriptions starting from high-level algorithmic models [9].
In a HLS-based design flow, designers begin the specification
of an IP with a high-level description which captures the
desired functionality, using an high-level language (HLL),
such for example C. This first step thus involves writing a
functional specification (an untimed description) in which a
function consumes all its input data simultaneously, performs
all computations without any delay, and provides all its out-
put data simultaneously. At this abstraction level, variables
(structure and array) and data types (typically floating point
and integer) are related neither to the hardware design domain
(bits, bit vectors) nor to the embedded software. A realistic
hardware implementation thus requires conversion of floating-
point and integer data types into bit-accurate data types of
specific length with acceptable computation accuracy, while
generating an optimized hardware architecture starting from
this bit-accurate specification. HLS tools transform an untimed
(or partially timed) high-level specification into a fully timed
implementation [10]. They automatically or semiautomatically
generate a custom architecture to efficiently implement the
specification. In addition to the memory banks and the com-
munication interfaces, the generated architecture is described
at the RTL and contains a data path (registers, multiplexers,
functional units, and buses) and a controller, as required by
the given specification and the design constraints.

In this context, we present a methodology for automating the
synthesis of TLM IPs into RTL implementations. In this work,
we require the TLM IP interface to be compliant with the
standard OSCI TLM-2.0 library as it is the most common and
largely used in the TLM community. However, the method-
ology can be easily extended for supporting any different or
user-defined TLM library. The methodology applies the theory
of HLS to TLM and proposes a protocol synthesis technique
based on the extended finite state machine (EFSM) model for
generating the RTL IP interface compliant with any RTL bus-
based protocol.

Our methodology relies on two main steps: (1) high-
level synthesis and (2) TLM protocol synthesis into any
standard bus-based protocols. Different academic/commercial
tools (e.g., Forte [11]) do the first step but there is no work
neither tool that performs correct-by-construction translation
from TLM protocols into ”any” bus-based protocol. Our
methodology generates an RTL interface that complies with
such bus-based protocols and guarantees (by exploiting the
EFSM formal model) that the TLM transactions are correctly
mapped into RTL bus transfers.

A different solution is proposed in [12], in which designers
start from a specific language (i.e., SHIM) and, then, perform
the synthesis into HW or SW. Our work differs as we start
from a TLM SystemC design and synthesize it into an RTL
implementation

The rest of the paper is organized as follows. Section II
summarizes the background for understanding the proposed
methodology, including the key concepts of TLM and EFSM.
Section III presents the TLM-to-RTL synthesis methodology

as a whole. Section IV shows the experimental results, while
conclusions are drawn in Section V.

II. BACKGROUND

In this section, we introduce the key concepts of TLM and
EFSM, the formal model whereby we model the TLM and
RTL communication protocols.

A. OSCI TLM-2.0: use cases, interfaces, and coding styles

The OSCI committee explicitly recognizes the existence of
a variety of use cases in TLM, such as SW development,
SW performance analysis, architectural analysis, and HW
verification. However, rather than defining an abstraction level
around each use case, the TLM-2.0 standard describes a
number of coding styles that are appropriate for, but not locked
to, the various use cases. Two examples of TLM-2.0 coding
styles proposed by OSCI are the following:

• Loosely-timed. The loosely-timed coding style is appro-
priate for software development, by using, for example, a
virtual platform model of an MPSoC, where the software
may include one or more operating systems. Models im-
plemented with this coding style have a loose dependency
between timing and data. They do not depend on the
advancement of time to be able to produce a response
and, normally, resource contention and arbitration are not
considered.

• Approximately-timed. The approximately-timed coding
style is appropriate for architectural exploration and per-
formance analysis. Models implemented with this coding
style have a much stronger dependency between timing
and data. Since these models must synchronize the trans-
actions before processing them, they are forced to trigger
multiple context switches in the simulation, eventually
resulting in performance penalties. On the other hand,
they easily model resource contention and arbitration.

The best-suited coding style is applied depending on the
target use case and each coding style is implemented by using
a specific TLM interface. The TLM-2.0 standard defines the
following interfaces:

• Blocking interface. It allows a simplified coding style
for models that complete a transaction in a sin-
gle function call, by exploiting the blocking primi-
tive b_transport(payload, time). Timing an-
notation is performed by exploiting the time parameter
of the primitive. The blocking interface is suited to
implement, for example, the loosely timed coding style.

• Non-blocking interface. It supports the association of
multiple timing points with a single transaction.
Ir relies on the use of non blocking primitives
nb_transport_fw(payload, time, phase)
and nb_transport_bw(payload, time,
phase). Timing annotation is still performed by
exploiting the time parameter of the primitives while
parameter phase is exploited for implementing more
accurate communication protocols, such as the four
phases approximately timed coding style.

106

• Direct memory interface (DMI) and debug transport
interface. They are specialized interfaces distinct from
the transport interface, providing direct access and debug
access to an area of memory owned by a target. The
DMI and debug transport interfaces each bypass the
usual path through the interconnect components used by
the transport interface. In particular, DMI is intended to
accelerate regular memory transactions in a loosely-timed
simulation, whereas the debug transport interface is for
debug access without the delays or side-effects associated
with regular transactions.

In TLM, communication is generally accomplished by
exchanging packets containing data and control values (i.e.,
payloads), through a channel (e.g., a socket) between an
initiator module (master) and a target module (slave).

B. The EFSM model

An EFSM [13] is a transition system which allows a more
compact and intuitive representation of the state space with
respect to the traditional finite state machines (FSM). The
EFSM model is widely used for modeling complex systems
like reactive systems [14], communication protocols [15],
buses [16] and controllers driving data-path [17].

Definition 1: An EFSM is defined as a 5-tuple M =
〈S, I,O,D, T 〉 where: S is a set of states, I is a set of input
symbols, O is a set of output symbols, D is a n-dimensional
linear space D1 × . . . × Dn, T is a transition relation such
that T : S ×D × I → S ×D × O. A generic point in D is
described by a n-tuple x = (x1, ..., xn); it models the values
of the variable (or registers) internal to the design.1

A pair 〈s, x〉 ∈ S×D is called a configuration of M , while
an operation on an EFSM M = 〈S, I,O,D, T 〉 is defined as
follows:

Definition 2: If M is in a configuration 〈s, x〉 and it re-
ceives an input i ∈ I , it moves to the configuration 〈t, y〉 iff
((s, x, i), (t, y, o)) ∈ T for o ∈ O.

In an EFSM, each transition is associated with a couple of
functions (i.e., an enabling function and an update function)
acting on input, output and variable (or register) data. The
enabling function expresses a set of conditions on data, while
the update function consists of a set of statements performing
operations on data.

Definition 3: Given an EFSM M = 〈S, I,O,D, T 〉,
s ∈ S, t ∈ T, i ∈ I, o ∈ O and the sets X =
{x|((s, x, i), (t, y, o)) ∈ T for y ∈ D} and Y =
{y|((s, x, i), (t, y, o)) ∈ T for x ∈ X}, the enabling and
update functions are defined respectively as:

e(x, i) =

{
1 if x ∈ X;
0 otherwise.

u(x, i) =

⎧⎨
⎩

(y, o) if e(x, i) = 1 and
((s, x, i), (t, y, o)) ∈ T ;

undef. otherwise.

1We consider data values internal to the design to be represented by vari-
ables and system-level data types in TLM models, while they are represented
by registers and bit-accurate data types in RTL models.

A

B

in1==1

out1=0;

out2=0;

in1==1

out1=0;

out2=0;

in1!=1

x=in1;

out1=1;

out2=1;

in2<128 and x!=1

out1=x;

out2=x*2;

in2==0 and x==1

out1=in1*2;

out2=in1;
Enabling function

Update function

Fig. 2. Example of EFSM

Figure 2 gives an example of the state transition graph
(STG) of an EFSM. A transition is fired only if all the
conditions in the enabling function are satisfied, bringing the
machine from the current state to the destination state and
performing the operations included in the update function.

A deeper analysis and explanation on the EFSM model can
be found in [13]. In the following sections we will adopt this
model to formally represent the communication protocol of
both TLM and RTL models.

III. METHODOLOGY

Our approach starts from a TLM IP description and aims
at producing a correct-by-construction RTL implementation of
the IP. The result is a RTL IP where functionality is equivalent
to the TLM functionality and the interface complies with a
bus-based communication protocol. In order to achieve this
result, our methodology needs to run through a number of
different steps, as shown in Figure 3.

We firstly require functionality and communication imple-
mentation of the starting TLM IP description to be modu-
larly separated, as described in Section III-A. If the TLM
description satisfies such a prerequisite, the synthesis flow is
completely automatic. In contrast, the methodology proposes
a preliminary (manual) step that we call normalization (step
1).

Through normalization, we separate the code implementing
the IP functionality from the code implementing the TLM
interface. Then, we provide the former to an HLS tool (step 2),
in order to obtain the equivalent IP functionality implemented
at RTL (Section III-B).

The focus moves then on the interface (and the corre-
sponding communication protocol) part, which is examined
in Section III-C. In order to generate a RTL IP description
equivalent by construction to the input TLM IP description,
an analysis involving a formal model of the communication
protocols at both abstraction levels (steps 3 and 4) is necessary.
The result is a mapping between TLM and RTL protocols, in
terms of transitions and data structures (step 5). Through this

107

TLM IP

source Code

RTL Bus protocol

code

TLM IP protocol

EFSM

RTL Bus protocol

EFSM

RTL IP protocol

EFSM

1

TLM IP

normalized code

2

3

4

5

5

RTL IP code

RTL IP functionality

code

RTL IP protocol

code

6

Fig. 3. Methodology overview.

// TLM IP Description

struct data_struct_type {
typea a;
typeb b;
...

} data_struct;

transport_primitive(...) {
...
if (command == WRITE)

data_struct = payload.get_data_ptr();
functionality(data_struct->a,

&(data_struct->b), ...);
else if (command == READ)

payload.set_data_ptr(data_struct);
...

}

functionality(typea a, typeb *b, ...) {
...

}

a

b

...

TLM Communication
Data Structure

input value

output value

Fig. 4. A normalized TLM IP description.

information, we are able to generate the RTL code for the IP
interface (step6). This is achieved by generating a transducer
that translates the basic IP interface and the target bus-based
interface.

A. Normalization (step 1)

Figure 4 shows the outline of a normalized TLM IP descrip-
tion. Firstly, the definition of the data structure employed in the
communication phase is provided. Fields of this structure may
provide input data to the IP or be filled with output results, so
that the IP will be able to access all the data it needs in order to
process its functionality. This definition provides details about
the size and data type for each field, which will correspond to
a port in the RTL IP description.

Then the transport primitive is defined (e.g.,
b_transport() or nb_transport_fw() of the TLM-
2.0 library), which branches according to the transaction
type (i.e., write transaction or read transaction). In case of

A

true

B

Initiator Target

A

-Communication phase-

-Elaboration phase-

-Elaboration phase-

-Communication phase-

Setting data to be sent:

payload (p);

time (t);

phase ← BEGIN_REQ;

nb_transport_fw(p,phase,t);

Handling received data;

nb_transport_fw(p, phase, t) {

-) receiving payload;

-) time handling;

-) notifying req_event

-) return status;

}

-Elaboration phase-

BSetting resulting data to be sent

back:

payload (p);

time(t);

phase ← BEGIN_RESP;

nb_transport_bw(p,phase,t);

Handling received data;

-Communication phase-

C

true

-Elaboration phase-

nb_transport_bw() {

-) receiving payload;

-) time handling;

-) notifying resp_event

-) return status;

}

-Communication phase-

C

-Elaboration phase-

Fig. 5. EFSM of a TLM communication protocol based on the approximately-
timed coding style.

a write transaction, the data structure is extracted from the
payload and a procedure is invoked. This procedure wraps
all the IP functionality details, and executes the elaboration
phase triggered after a transport primitive has been called.
The signature of this procedure will contain a number of
parameters, one for each field of the data structure employed
in the communication phase. Otherwise, in case of a read
transaction, the data structure containing the output data is
stored into the payload, in order to provide results back to
the initiator.

As shown in Figure 4, the definition of communication pro-
cedures (e.g., b_transport() or nb_transport_fw(),
etc.) are separated from the definition of the IP functionality
procedure. In particular, the IP functionality procedure may
be a C++ procedure or a procedure associated to a SystemC
process (e.g., SC_METHOD, SC_THREAD).

B. Functionality Synthesis (step 2)

As far as functionality is concerned, our approach relies on
a HLS tool to generate RTL that implements the TLM IP func-
tionality. This activity is greatly helped by the normalization
process, which isolates the C++ code that has to be provided
to the synthesis tool as input.

The RTL code produced as output will feature an interface
having a port for each field of the data structure employed
in the communication phase. This assumption allows us to
successfully recombine functionality and communication in
the RTL IP description, ensuring that these two parts properly
interact together after being separated in our methodology
flow.

C. Protocol Synthesis (steps 3 - 6)

In order to produce a RTL communication protocol which
is equivalent by construction to the TLM one, we need to
describe these protocols with a formal model and find an
association between them.

108

A

B

HBUSREQ = 1;

- start request -
-

HGRANT == 0

D

F

HADDR = <addr> ;

HTRANS = NONSEQ;

HWRITE = 1;

HGRANT == 1 & HREADY == 1

Master

A

-

HSEL == 0

B

HREADY = 1;

HRESP = OK;

HSEL == 1

D

Slave

E

C

HREADY = 0;

HRESP = OK;

- not ready - HREADY = 0;

HRESP = OK;

- not ready -
C

- hold -

HREADY==0

-

HREADY == 1 & HRESP = OK & - end request -

- hold -

HREADY==0HWDATA = <data>;

true

HREADY = 1;

HRESP = OK;

- ready - & - end request -

HADDR = <addr>
N+1

;

HTRANS = SEQ;

HWDATA = <data>
N
;

HREADY == 1

HADDR = <addr>
N+1

;

HTRANS = SEQ;

HWDATA = <data>
N
;

HREADY == 1

HREADY = 1;

HRESP = OK;

- ready -

HREADY = 1;

HRESP = OK;

- ready -

Fig. 6. EFSM of a AHB burst write transfer.

1) EFSM Models of TLM Protocols (step 3): All the TLM
protocols can be modeled by means of EFSMs [18], [19], by
composing the EFSM models representing each single TLM
primitive. We show, for example, the EFSM representation of
a TLM communication protocol based on the approximately-
timed coding style (see Section II-A) as it is the most mean-
ingful and complete example among all the TLM coding styles
(see Figure 5).

The initiator starts the transaction by setting the pay-
load fields. The protocol phase is set to BEGIN_REQ to
indicate the beginning of a request. The transport primitive
nb_transport_fw() is called through the initiator socket.
The target implements this primitive by receiving payload,
taking care of timing details and notifying an event. This event
will activate a process which is responsible for the elaboration
phase in the target, in order to perform the operation requested
by the initiator. When this elaboration phase is completed, the
target updates payload fields in order to provide results (if any)
and enters the phase BEGIN_RESP to indicate the beginning
of a response. It then calls the non-blocking transport primi-
tive along the backward path (i.e., nb_transport_bw()).
The initiator implements this primitive usually by receiving
payload, handling timing details and notifying an event. Once
again, this event will activate a process which allows the
initiator to retrieve possible results sent by the target and to
successfully complete the transaction.

In the next sections, we show how such EFSM models
can be matched with corresponding EFSM model of RTL
protocols. The matching result allows us to translate TLM
transactions into equivalent RTL transactions.

2) EFSM Models of RTL Bus Protocols (step 4): The
EFSM model can be automatically extracted from an HDL
description, and all the RTL communication protocols can
be modeled by means of EFSMs [13], [20]. As an example
of EFSM model of a RTL bus-based protocol, we show the
AMBA AHB [21] representation, as it is the most widely used
and representative RTL bus-based protocol.

In the AHB protocol, a bus master starts a transfer (i.e.,

write or read) by firstly setting the HBUSREQ signal to 1 (see
Figure 6). Once the bus arbiter grants his request, the master
initiates the transfer by driving the address and control signals.
These signals specify the address, the transfer type (i.e., write
or read), and whether the transfer is part of a burst. Each
transfer consists of an address and control cycle and one or
more cycles for data to be written or read. The slave indicates
whether it is ready to sample or provide data by driving the
HREADY signal, which allows the introduction of wait states
in the transfer. The status of the transfer being carried on
is represented by the target through the HRESP signal. In
conjunction with the HREADY signal, HRESP indicates the
outcome of the transfer to the master.

Figure 6 shows the EFSM model of a complete burst write
transfer.

3) Mapping between TLM and RTL Transactions (step 5):
A TLM transaction is an abstraction of a data transfer between
two design modules [8]. Write and read operations requested
by an initiator and performed by a target are examples of
transactions. These transactions are usually represented in
the TLM description by a generic payload object, which is
exchanged between modules through primitive calls and socket
connections. A transaction consists of one or more trans-
port primitive calls according to the adopted TLM interface.
Since the TLM generic payload specifically aims at modeling
memory-mapped buses, our approach relies on mapping a
TLM transaction into RTL transactions.

In this context, a RTL transaction is a read or a write
operation of a data object performed on the bus data signal.
In general, a transaction may be part of a burst, which is a
sequence of bus transfers to or from a contiguous region of
address space. Thus, we propose a method to map a TLM
transaction into one or more bus transfers.

Firstly, since data transferred in a TLM transaction is
variable while RTL bus transfer rely on a fixed-length data
bus, we distinguish two cases, according to the payload data
length. If such value is not greater than the bus width, we map
the TLM transaction into a single bus transfer. Otherwise, we
decompose data into blocks having the same length as the bus
width, therefore splitting a TLM transaction into a number of
corresponding bus transfers. If the adopted bus allows burst
transfers, the bus transfers corresponding to a TLM transaction
will be enclosed in a burst.

Some mapping optimization is also possible to reduce the
number of bus transfers. For example, the data structure
included in the TLM payload generally contains fields for
both input values (to provide to the target) and output values
(to be retrieved from the target). In case of write transaction,
only the input fields of the data structure are required, since
no output will be sent back from the target. In contrast, in
case of a read transaction, only the output fields of the data
structure are required. As a consequence, we focus only on the
length of the required subset of data structure fields instead
of considering the total payload data length. This optimization
ensures that bus transfers are not wasted, even if it introduces
a degree of complexity since we have to deal with read and

109

TLM AHB APB STBus Notes
command HWRITE PWRITE OPC[3:0] TLM IGNORE COMMAND has no bus counterparts
address HADDR PADDR ADD Only 32-bits supported
response HRESP - R OPC[0] Only OK or generic error response

TABLE I
MAPPING OF TLM GENERIC PAYLOAD BASIC CONTROL FIELDS.

write operations in a different way.
Then, since a transaction consists of control as well as data

information, we consider also the payload control information
to complete the mapping analysis. We associate the TLM
generic payload control fields to the corresponding RTL buses
signals. The attributes required for a basic bus transfer, in
any standard bus-based RTL protocol are (i) command, (ii)
address, and (iii) a response attribute to indicate the status of
the ongoing transfer.

Table I shows some examples of mapping between the basic
control fields of the TLM payload and the bus control signals
of the most common RTL buses, such as, AMBA AHB and
APB by ARM and STBus by STMicroelectronics. However,
it is worth noting that the methodology is not dependent or
limited to these buses.

4) Transducer Generation (step 6): In order to translate
the basic interface of the RTL IP generated by the HLS tool
and the more advanced bus-based interface generated in the
earlier step, we extend the RTL IP with a transducer module.
The transducer features a bus slave interface on one side and
an IP basic interface on the other. Its main process will be
responsible for receiving requests from an initiator through
the bus, translating them to the IP and providing results from
the IP to the initiator, once again through the bus.

In case of write transactions, the transducer will sample
data from the write data bus and drive these values on the
corresponding RTL IP input ports. In case of read transactions,
the transducer will read the output ports of the RTL IP and
drive these values on the read data bus. The behavior of the
transducer in both cases is determined by the mapping between
TLM transactions and RTL bus transfers we have proposed
earlier.

Exploiting the EFSMs representing the RTL IP and TLM IP
protocols, the methodology extracts (i) information concerning
the RTL bus transfers, and (ii) the data structure employed
in TLM communication, indicating whether a field is used
as input or output (or both) value. Through these additional
information, the transducer can be automatically generated.

IV. EXPERIMENTAL RESULTS

The methodology presented in this paper has been imple-
mented in T2R, a prototype tool built on the top of HIF-
Suite [22]. It automatically synthesizes TLM IP descriptions
into RTL implementations, where the TLM IP interfaces are
compliant with the standard OSCI TLM-2.0 library. T2R relies
on CatapultC by Mentor Graphics for the HLS synthesis step
(see Section III-B).

CPU TLM

Bus TLM

S/P Conv.
TLM

Div
TLM

Root
TLM

CPU TLM

AHB Bus RTL

S/P Conv.
RTL

Div
RTL

Root
RTL

Master Transactor

APB Bridge

Trans.APB trans. Trans.

Serial Network

Serial Network

Memory

Dist
TLM

Dist
RTL

Trans.

Fig. 7. Experimental results environment.

Experimental results have been conducted by applying T2R
into the TLM-to-RTL design flow of the Face Recognition
System platform [23] provided by STMicroelectronics. In par-
ticular, four modules have been considered for the synthesis:
the first three modules (i.e., Root, Dist and Div) deal with pixel
elaboration and analysis, while a forth module (S/P conv.) is
a serial/parallel converter that receives data from the network
and sends it to the system.

Figure 7 illustrates the experimental results environment.
For the sake of clarity, only the primary initiator (i.e., the
CPU) and the synthesized four modules of the face recognition
system have been reported in Figure.

In a first system-level implementation of the platform, all
these modules have been implemented at TLM. Then, they
have been synthesized and connected to the target bus of the
RTL implementation. The target bus at RTL is a hierarchical
composition of AMBA AHB and AMBA APB.

Table II reports the experimental results. Column TLM if
indicates the TLM-2.0 coding style for each input design
considered. As we can see, the starting TLM platform is
based on the approximately-timed coding style, except for
the serial/parallel converter, which is modeled according to
the loosely-timed coding style. Its interaction with the other

110

IP TLM TLM fun TLM if TLM tot # data Bus Transaction RTL fun RTL td RTL tot
if loc loc loc param if mapping loc loc loc

dist AT4 38 83 121 3 (in) AHB 1 - 3 (W) 110 91 2011 (out) 1 - 1 (R)

div AT4 25 79 104 2 (in) AHB 1 - 2 (W) 83 76 1591 (out) 1 - 1 (R)

root AT4 5 94 99 1 (in) AHB 1 - 1 (W) 307 77 3841 (out) 1 - 1 (R)

sp conv LT 9 31 40 1 (in) APB 1 - 1 (W) 52 68 1202 (out) 1 - 2 (R)

TABLE II
EXPERIMENTAL RESULTS.

modules is achieved through a simple target socket, which
takes care of converting calls to transport primitives from a
transport interface to the other. Column TLM fun reports the
size of the functionality part of the starting TLM descriptions
in terms of line of code. Column TLM if refers to the interface
side of the starting TLM descriptions, while TLM tot provides
the total number of line of code. Column # data param
shows the number of fields in the data structure employed
in the TLM communication phase, separating between input
and output values. Column Bus if indicates the adopted RTL
bus interface for each module. Column Transaction mapping
shows the mapping between a TLM transaction and the
corresponding bus transfer(s), breaking down between write
and read operations. Columns RTL fun and RTL td report
respectively the line of code of the RTL description of the
IP functionality and the automatically generated transducer.
Column RTL tot reports the total number of line of code of
the generated RTL implementations.

Translating each TLM module into the equivalent RTL
implementation by using T2R, took up just a few minutes of
work, thanks to the high degree of automation provided by the
methodology.

On the other hand, a couple of work days have been spent
for manually synthesizing each module, with an increasing
chance of introducing design errors that may ultimately lead
to the RTL design not being equivalent to the input TLM
description.

V. CONCLUDING REMARKS

The paper addressed the problem of synthesis of TLM IP
models into RTL implementations. We proposed a method-
ology to automate the synthesis process, assuming that the
TLM IP interface be compliant with the standard OSCI TLM-
2.0 library. After a manual preliminary step, the method-
ology applies the theory of HLS to TLM and implements
a protocol synthesis technique based on the extended finite
state machine (EFSM) model for generating the RTL IP
interface compliant with any RTL bus-based protocol. The
methodology effectiveness and correctness have been shown
by synthesizing different TLM IPs into equivalent bus-based
RTL implementations of an industrial platform.

Several extensions of this work are part of our current and
future work. These include handling of TLM event queues,
pipelined transactions, and functional error handling.

ACKNOWLEDGMENTS

The authors would like to thank Umberto Rossi of STMi-
croelectronics for providing the case study and supporting the
analysis of the application results.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali. ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan
Kaufman Publishers, 2007.

[2] L. Cai and D. Gajski. Transaction Level Modeling: An Overview. In
ACM/IEEE CODES+ISSS, pp. 19–24. 2003.

[3] F. Ghenassia, A. Clouard, K. Jain, L. Maillet-Contoz, and J.-P. Strassen.
Using Transactional Level Models in a SoC Design Flow. Kluwer
Academic Publishers, 2003.

[4] A. Donlin. Transaction Level Modeling: Flows and Use Models. In
Proc. of ACM/IEEE CODES + ISSS, pp. 75–80. 2004.

[5] T. Kogel, A. Haverinen, and J. Aldis. OCP TLM for Architectural
Modeling, 2005. OCP methodology guideline, http://www.ocpip.org.

[6] N. Bombieri, F. Fummi, and G. Pravadelli. Reuse and Optimization
of Testbenches and Properties in a TLM-to-RTL Design Flow. ACM
TODAES, vol. 47(13), 2008.

[7] OSCI. 2009. Http://www.systemc.org.
[8] TLM-2.0. OSCI TLM-2.0 Language Reference Manual. Open SystemC

Organization Initiative, 2009. http://www.systemc.org.
[9] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. An Introduc-

tion to High-Level Synthesis. IEEE Design and Test of Computer,
vol. 13(24):pp. 8–17, 2009.

[10] P. Coussy and A. Morawiec. High-Level Synthesis: From Algorithm to
Digital Circuit. Springer, 2008.

[11] Forte Design Systems. Forte Cynthesizer.
http://www.forteds.com/products/index.asp.

[12] S. A. Edwards and O. Tardieu. SHIM: a deterministic model for
heterogeneous embedded systems. In Proc. of ACM EMSOFT , pp. 264–
272. 2005.

[13] K.-T. Cheng and A. Krishnakumar. Automatic Generation of Func-
tional Vectors Using the Extended Finite State Machine Model. ACM
TODAES, vol. 1(1):pp. 57–79, 1996.

[14] T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry. A
Formal Approach to Reactive System Design: Unmanned Aerial Vehicle
Flight Management System Design Example. In Proc. of IEEE CACSD,
pp. 522–527. 1999.

[15] H. Katagiri, K. Yasumoto, A. Kitajima, T. Higashino, and K. Taniguchi.
Hardware implementation of communication protocols modeled by con-
current EFSMs with multi-way synchronization. In Proc. of ACM/IEEE
DAC, pp. 762–767. 2000.

[16] A. Zitouni, S. Badrouchi, and R. Tourki. Communication Archi-
tecture Synthesis for Multi-bus SoC. Journal of Computer Science,
vol. 2(1):pp. 63–71, 2006.

[17] A. Guerrouat and H. Richter. A component-based specification approach
for embedded systems using FDTs. ACM SIGSOFT Softw. Eng. Notes,
vol. 31(2):pp. 14–18, 2006.

[18] N. Bombieri, F. Fummi, and G. Pravadelli. A Mutation Model for the
SystemC TLM 2.0 Communication Interfaces. In Proc. of ACM/IEEE
DATE, pp. 396–401. 2008.

[19] N. Bombieri, F. Fummi, and G. Pravadelli. On the Mutation Analysis
of SystemC TLM-2.0 Standard. In IEEE MTV , pp. 1–6. 2010.

111

[20] G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. EFSM
Manipulation to Increase High-Level ATPG Efficiency. In Proc. of
ACM/IEEE ISQED. 2006.

[21] ARM. AMBA Specification 2.0, 1999. http://www.arm.com.
[22] http://hifsuite.edalab.it.
[23] M. Borgatti, A. Capello, U. Rossi, G.L.Lambert, I. Moussa, F. Fummi,

and G. Pravadelli. An Integrated Design and Verification Methodology
for Reconfigurable Multimedia System. In Proc. of ACM/IEEE DATE,
pp. 266–271. 2005.

112

