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We present a novel solution of the 2D Hubbard model in the framework of the Compos-
ite Operator Method within a four-pole approximation. We adopt a basis of four fields:
the two Hubbard operators plus two fields describing the Hubbard transitions dressed
by nearest-neighbor spin fluctuations. We include these nonlocal operators because
spin fluctuations play a dominant role in strongly correlated electronic systems with
respect to other types of nonlocal charge, pair and double-occupancy fluctuations.
The approximate solution performs very well once compared with advanced (semi-)
numerical methods from the weak-to the strong-coupling regime, being by far less
computational-resource demanding. We adopt this solution to study the single-particle
properties of the model in the strong coupling regime, where the effects of strong short-
range magnetic correlations are more relevant and could be responsible for anomalous
features. In particular, we will focus on the characterization of the Fermi surface and
of its evolution with doping. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5042831

I. INTRODUCTION

Strongly correlated electron systems (SCES) exhibit a very rich phenomenology due to the
interplay between different types of interactions and to the closeness of the related energy scales.1–4

For instance, we have metal-insulator transitions (MIT) driven by charge, spin and/or orbital ordering,5

or solely by the competition of kinetic energy and Hubbard repulsion (Mott-Hubbard insulators).6

The competition or the coexistence between quite different (quasi-) ordered states often leads to very
unconventional phases such as the still-puzzling pseudogap phase of underdoped high-temperature
superconductors.7–16 In condensed matter theory, the SCES prototype is the Hubbard model17 that
features only the electronic kinetic energy and the local Coulomb repulsion and, nonetheless, manages
to capture relevant aspects of the basic phenomenology mentioned above, like the Mott-Slater and
Mott-Hubbard MIT,6 and non-Fermi-liquid normal phases characterized and dominated by short-
range spin and/or charge correlations.2,10,13 Solving this correlated model is an extremely challenging
task and definitely requires non-perturbative methods.18 In this paper, we use the operatorial approach
that studies the dynamics of the operators describing the relevant electronic transitions of the system
under analysis.19,20 Several methods use the operatorial approach: the Hubbard approximations,17

the Projection Operator Method,21,22 the works of Mori,23 Rowe,24 Roth,25 the Spectral Density
Approach26 and the Composite Operator Method (COM).10,27–29 In this work, we adopt the COM that
is based on the equations of motion and the Green’s function (GF) formalism in the Heisenberg picture
reformulated to be used for composite operators (CO). The latter are products of electronic operators
describing the new elementary excitations appearing in the system due to the strong correlations.
Another key ingredient of the approach is the Algebra Constraints (AC) that are relations among
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correlation functions dictated by the non-canonical algebra obeyed by the CO. The AC can be used to
determine unknown correlation functions and parameters in a self-consistent way.10,27–29 We apply
the COM to the 2D Hubbard model, designing a novel four-pole (4p) approximation, performing
very well with respect to numerical methods from the weak-to the strong-coupling regime, thanks
to a careful treatment of nearest-neighbor spin fluctuations. In this work, we focus on the behavior
of the Fermi surface on varying the doping, and discuss its deviation from the Fermi-liquid scenario
and the appearance of peculiar features due to strong correlations.

The paper is organized as follows: in Sec. II, we apply the COM to the Hubbard model and devise
a novel 4p approximation; in Sec. III, we show the accuracy of the related 4p solution comparing its
results with numerical data and explore the doping evolution of its Fermi surface for a sizable value
of the Coulomb repulsion. Then, in Sec. IV, we draw our conclusions.

II. MODEL AND METHOD

We consider the single-band 2D Hubbard model on a square L-site lattice:

H =
∑

i

[
−4tc†(i) · cα(i) + Un↑(i)n↓(i) − µn(i)

]
, (1)

where c†(i)= (c†
↑
(i) c†

↓
(i)) is the electronic field operator in spinorial notation [· stands for the inner

(scalar) product in spin space] and Heisenberg picture [i= (i, ti), being i = ri a Bravais lattice vec-
tor and ti the time]; nσ(i)= c†σ(i)cσ(i) is the particle density operator for spin σ at site i and
n(i)=

∑
σ nσ(i)= c†(i) ·c(i) the total particle density operator at site i; U is the on-site Coulomb repul-

sion and µ the chemical potential; t is the nearest-neighbor hopping integral (energy unit hereafter),
and αij =

1
L

∑
k eik ·(ri−rj)α(k) the nearest-neighbor site projector [α(k)= 1

2

∑2
j=1 cos

(
kj

)
], where k

runs over the first Brillouin zone (BZ) and the lattice parameter has been set to 1. For any operator
θ(i), we use the notation θκ(i)=

∑
j κijθ(j, ti).

Following COM prescription,10,27–29 we adopt the basis Ψ:

Ψ(i)=
*....
,

Ψ1(i)
Ψ2(i)
Ψ3(i)
Ψ4(i)

+////
-

=

*....
,

ξ(i)
η(i)
ξs(i)
ηs(i)

+////
-

, (2)

where the Hubbard operators ξ(i)= (1 − n(i))c(i) and η(i)= n(i)c(i) describe the electronic transi-
tions with filling variation per site 1 → 0 and 2 → 1, respectively; ξs(i)= 1

2 nk(i)σk · ξ
α(i) and

ηs(i)= 1
2 nk(i)σk · η

α(i) describe the same transitions dressed by nearest-neighbor spin fluctuations.
nk(i)= c†(i) · σk · c(i) is the spin density operator and σk (k = 1, 2, 3) the Pauli matrices. The
nonlocal basis components ξs(i) and ηs(i) have been included because spin fluctuations are key
ingredients to capture the effects of strong correlations and influence the dynamics more substan-
tially than other types of fluctuations. The vectorial current of the basis, J(i)= i ∂∂tΨ(i)= [Ψ(i), H],
can be written as J(i)=

∑
j ε(i, j)Ψ(j, t) + δJ(i). The first term represents the projection of J on Ψ

and δJ is named residual current. ε(i, j), the energy matrix, is obtained enforcing the constraint〈{
δJ(i, t),Ψ†(j, t)

}〉
= 0,10,27–29 where 〈. . .〉 stands for the thermal average in the grand-canonical

ensemble. Such a constraint assures that δJ contains only the physics orthogonal to the one described
by the basis Ψ and leads to the relation ε(k)=m(k)I−1(k) [ε(i, j)= 1

L

∑
k eik ·(ri−rj)ε(k)], where we

have introduced the normalization matrix I [I(i, j)=
〈{
Ψ(i, t), Ψ†(j, t)

}〉
= 1

L

∑
k eik ·(ri−rj)I(k)] and

the m-matrix [m(i, j)=
〈{

J(i, t),Ψ†(j, t)
}〉
= 1

L

∑
k eik ·(ri−rj)m(k)].

If we neglect the residual current δJ, we can obtain the thermal retarded GF
G(i; j)= 〈R

[
Ψ(i)Ψ†(j)

]
〉 and, in particular, its Fourier transform G(k,ω) within a n-pole approxi-

mation10,27–29 solving its Dyson’s equation in the frequency-momentum space:

i
∂

∂ti
G(i; j)= iδ

(
ti − tj

)
I(i, j) +

∑
l

ε(i, l)G(l, ti; j) (3)
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G(k,ω)=
1

ω − ε(k) + iδ
I(k)=

4∑
ν=1

σ(ν)(k)

ω − E(ν)(k) + iδ
. (4)

The eigenvalues E(ν)(k) of the energy matrix ε are the poles of G and represent the excitation
energy spectrum, i.e. the electronic transition energies of the system. Having chosen an operatorial
basis containing four operators, we end up with a G with just four poles: this is the essence of
the 4p approximation we present in this paper. σ(ν)

mn(k) are the spectral density weights per band:
σ(ν)

mn(k)=
∑

c Ωmν(k)Ω−1
νc (k)Icn(k), whereΩ contains the eigenvectors of ε as columns. The correlation

functions of the fields of the basis Cmn(i, j)=
〈
Ψm(i)Ψ†n(j)

〉
= 1

L

∑
k eik ·(ri−rj)Cmn(k) can be determined

in terms of G using the spectral theorem: Cmn(k,ω)= 2π
∑
ν

[
1 − fF

(
E(ν)(k)

)]
σ(ν)

mn(k)δ
(
ω − E(ν)(k)

)
,

being f F the Fermi function. In Sec. III, we characterize the 4p paramagnetic homogeneous solution.
Its I(k) and m(k) matrices, and the AC employed in the self-consistency procedure are given in the
supplementary material.

III. RESULTS

In order to assess the quality of the 4p solution, we compare its internal energy per site E with
data from advanced numerical methods. In Fig. 1, we show the behavior of E as a function of n for
T = 0.25 and for several values of U, comparing our 4p results with Dynamical Cluster Approximation
(DCA) and Diagrammatic Monte Carlo (DMC) data.30 We obtain E as E = 1

L 〈H〉 + µn= 8tCα
cc + UD

(D is the double occupancy). We find a very satisfactory agreement with numerical data and an
improvement with respect to the already good three-pole approximation:20,29,31 the 4p results agree
quantitatively with the numerical data for weak and moderate interactions (U = 2 and 4) at all fillings,
and for larger interactions for n < 1. The 4p energy at n = 1 shows a deviation from the DCA one for
U ≥ 6, because of the development of long-range (longer than the cluster size) magnetic order in the
numerical solution. We point out that our 4p homogenous paramagnetic solution is devised to capture
strong short-range spin fluctuations in the paramagnetic state and not, obviously, well-established
magnetic orderings.32,33 The overall outcome of this comparison assesses the very good accuracy of
the 4p solution.

Once we have checked the reliability of the 4p solution, we can adopt it to study the evolution of
the Fermi surface (FS) upon changing n. First, in Fig. 2, we show E(3)(k) (the band, among the four,
passing through the chemical potential) for U = 6, T = 0 and n ∈ [0.75, 0.999] along the principal
directions of the first BZ [Γ= (0, 0)→ S = ( π2 , π2 )→M = (π, π), M → X = (π, 0), and X → Γ]. The

band thickness is proportional to the electronic spectral density weight σ(3)
cc (k)=

∑2
n,m=1 σ

(3)
mn(k).

We can clearly see that the band cuts twice the chemical potential for all values of n, and this

FIG. 1. E as function of n for T = 0.25 and U = 2 (black solid line and symbols), 4 (red dashed line and symbols), 6 (blue
dotted line and symbols) and 8 (magenta dashed dotted line and symbols) for the 4p approximation in comparison with the
results of DCA (squares) and DMC (circles).30

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-048893
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FIG. 2: E(3)(k) in proximity of the chemical potential along the principal directions of the first Brillouin zone (see main text)
for U = 6, T = 0 and several values of n between 0.75 and 0.999. For the fillings indicated in the legend (thicker lines), the
thickness is proportional to the electronic spectral density weight σ(3)

cc (k). Thinner lines correspond to intermediate values of
the filling.

will determine the presence of two arcs in the FS. In fact, strong short-range antiferromagnetic
(AF) fluctuations induce a bending of the band leading to the formation of a second minimum at
M, which is anyway not as deep as the one at Γ. We also notice that the first cut, along Γ → M,
has always a much larger spectral density weight with respect to the second one, which tends to
vanish for n→ 1. In fact, close to half-filling, the AF correlations increase and the related effective
electronic self-energy reduces the weight of the second cut. It is worth noticing that the overall
behavior is very different from the one expected for an ordinary AF solution because of (i) the

FIG. 3. Fermi surface in the top right quadrant of the first Brillouin zone read out through the maxima of the spectral density
function A(k,ω = 0) for T = 0, U = 6 and n = 0.8, 0.85, 0.9 and 0.95. n(k)= 0.5 (dashed line) and r(k)= 0 (solid one) loci are
reported.
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inequality of the depth of the two minima and of the weight distribution and (ii) their evolution with
doping.

In order to investigate the FS topology, we consider the spectral density function A(k,ω)
=− 1

π Im[Gcc(k,ω)], where Gcc(k,ω)=
∑2

m,n=1 Gmn(k,ω) is the electronic GF. We report A(k,ω = 0)
contour plots: the positions of its maxima identify the effective FS as in Angle-Resolved PhotoE-
mission Spectroscopy experiments (see Fig. 3). Solid lines indicate the locus r(k)= 0, where r(k) is
the real part of the Gcc(k,ω) denominator. We also compute the momentum distribution function per
spin n(k)= ∫ dωfF(ω)A(k,ω): the locus n(k)= 0.5 (dashed lines) determines the FS for an ordinary
Fermi liquid (FL). We explore the evolution of the FS for T = 0, U = 6, upon changing n between 0.8
and 0.95. The strong short-range AF correlations force the system to depart from the usual FL-like
scenario and lead to the formation of a small FS (SFS) arc centered at M. For n = 0.8, the correlation
effects are still not so strong: the large FS (LFS) branch is centered at Γ and is not far from the FL
result; the spectral density peak is high and well defined. Increasing n from 0.8 to 0.85, a major qual-
itative change in the FS topology occurs, upon crossing the van Hove singularity (vHs) for n ≈ 0.81
(not shown), i.e. a Lifshitz topological transition: the LFS concavity is reversed, so that for smaller
dopings the LFS and the SFS are concentric and centered at M. The discrepancy with the FL case has
increased, and the main A(k,ω = 0) peak is lower in intensity. Such a result is really remarkable as
the vHs crossing occurs not at half-filling as expected (i) leading to the emergence of a finite critical
doping and (ii) signaling the appearance of dynamically generated values of next-nearest neighbor
hoppings typical of an AF background. For larger n, the deviation from the FL behavior is quite
dramatic, in particular for n ≥ 0.9. In fact, for small doping, stronger correlations cause a profound
reorganization of the spectral density: the LFS does not resemble the FS in the Landau’s quasiparticle
picture anymore and approaches the SFS, which is reducing its size without changing substantially
its shape on raising n. The deviation from the FL regime and the presence of the SFS are due to strong
correlations and induced by relevant nearest-neighbor spin fluctuations.

IV. CONCLUSIONS

In this paper, we have introduced a novel four-pole solution for the 2D Hubbard model within
the Composite Operator Method: we have chosen a basis given by two Hubbard operators and two
operators describing the Hubbard transitions dressed by nearest-neighbor spin fluctuations. This four-
pole solution is very accurate once compared with advanced numerical methods, being by far less
computational-resource demanding. Therefore, we have adopted this new solution to study the Fermi
surface evolution varying the filling in the strong coupling regime (low temperature, small doping
and sizable values of U). In such a case, the effects of the spin fluctuations are preeminent and induce
anomalous features that could be put in connection with some of those measured in angle-resolved
photoemission experiments in underdoped high-temperature superconducting cuprates. Remarkably,
we have obtained that the Fermi surface exhibits a clear deviation from the Fermi-liquid behavior and
develops a small additional arc centered at (π, π), with a spectral weight strongly doping dependent,
as a consequence of strong short-range antiferromagnetic correlations.

SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the explicit expressions for all equations defining,
within the framework of the COM, the 4p approximation to the 2D Hubbard model presented in this
work.
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